
 EE445M/EE380L Quiz 1 Spring 2017 Solution Page 1 of 5

Jonathan W. Valvano

Jonathan W. Valvano First Name: _______________ Last Name:____________________
March 3, 2017, 10:00 to 10:50am
 Open book and open notes. No calculators or any electronic devices (turn cell phones off).
Please be sure that your answers to all questions (and all supporting work that is required) are
contained in the space (boxes) provided. Anything outside the boxes will be ignored in grading. For
all questions, unless otherwise stated, find the most efficient (time, resources) solution.

(15) Question 1. Consider these three implementations that set bit two of an output port, as
performed on different architectures. The port does have multiple bits that are shared with other
threads. In each case, however, the code does indeed set bit 2 of the output port without having a
critical section. The normal address of Port F is 0x400253FC, which we use to access all bits.
;Freescale 9S12
;Set Port T bit 2
 BSET PTT,#4

;Cortex M version 1
;Set PF2 on TM4C123
 LDR R0,=0x40025010
 LDR R1, [R0]
 ORR R1, #4
 STR R1, [R0]

;Cortex M version 2
 LDR R0,=0x400253FC
L: LDREX R1, [R0]
 ORR R1, #4
 STREX R2,R1,[R0]
 CMP R2, #0
 BNE L

(5) Part a) Why does the 9S12 code not have a critical section?

We need to make the assumption that instructions on the 9S12 are atomic. Except for some fun
fuzzy logic instructions that can process entire arrays, all 9S12 instructions are atomic. Therefore,
the read modify write sequence is atomic

(5) Part b) Why does the Cortex M version 1 code not have a critical section?

This is a bit-specific address (not bit-banded). However, bit-banding would also have removed the
critical section. The read operation is irrelevant, and the bit specific addressing removes sharing

(5) Part c) Why does the Cortex M version 2 code not have a critical section?

The LDREX STREX pair provides mutual exclusive access to shared global

 EE445M/EE380L Quiz 1 Spring 2017 Solution Page 2 of 5

Jonathan W. Valvano

(10) Question 2. The thread scheduler described in book section 3.3 (RTOS starter project) is used
to schedule multiple tasks including this one. The semaphore ready is signaled when it is time to
take a sample. The previous SIZE samples are recorded. The system operates properly at
SIZE=10, but you get a hard fault when SIZE is increased to 1000.
#define SIZE 10
void Task1(void){ uint16_t x[SIZE];uint16_t y;
 while(1){
 for(int i=SIZE-1; i>0; i--)x[i] = x[i-1];
 OS_Wait(&ready);
 PD1 ^= 0x02; x[0] = ADC_In();
 y = DigitalFilter(x);
 }
}
(6) Part a) What caused the hard fault?

The buffer x is stored on the stack. When SIZE is 1000, the program needs 2000 bytes of space. If
the allocated stack size is less than 2000, then the stack will overflow. Stack overflow means this
thread corrupts the stack of the other threads.

(4) Part b) Briefly, give two ways to fix the bug. Hint: one way fixes the user code, and another
way fixes the OS.

One way is to increase stack size.

Another way is to move the array into the global space, so it is not on the stack. Making the
variable static would also have removed the crash.

(10) Question 3. There are four hardware-triggered ISRs, with priorities 1, 3, 3, and 5. Each of the
ISRs executes a real-time task. There are five main threads running with blocking semaphores.
Consider the one real-time task running as a priority 3 ISR; give an equation for the worst-case
latency for this real-time task. Let
 Amin, Aave, Amax be the minimum, average, and maximum time interrupts are disabled
 Bmin, Bave, Bmax be the minimum, average, and maximum time interrupts are enabled
 Cmin, Cave, Cmax be the minimum, average, and maximum time to run the priority 1 ISR
 Dmin, Dave, Dmax be the minimum, average, and maximum time to run the other priority 3 ISR
 Emin, Eave, Emax be the minimum, average, and maximum time to run the priority 5 ISR
 Fmin, Fave, Fmax be the minimum, average, and maximum time to execute one instruction
You may assume the ISRs do not interrupt themselves, and the actual times between interrupts of
the same task are long compared to the time it takes to execute an ISR

Worst case latency= Amax + Cmax + Dmax + Fmax

 EE445M/EE380L Quiz 1 Spring 2017 Solution Page 3 of 5

Jonathan W. Valvano

(20) Question 4. Consider this spinlock semaphore implementation with cooperation. In this
system, if a thread were to wait for more than 1 second, a deadlock has occurred. Modify this
implementation so it calls an OS function, OS_Deadlock(), if a thread waits for more than 1
second. You may call OS_Time(), which returns the time in 12.5 ns units. You can specify if
OS_Time counts up or down. You do not have to write OS_Time or OS_Deadlock(). Multiple
threads can call OS_Wait on the same or different semaphores. Do not add any fields to TCB.
void OS_Wait(int32_t *s){
uint32_t startTime; // CAN NOT BE STATIC
 DisableInterrupts();
 startTime = OS_Time(); // 32-bit down count
 while((*s) == 0){
 if((startTime-OS_Time())>80000000)OS_Deadlock();
 EnableInterrupts();
 // could have put the test here
 OS_Suspend();
 // could have put the test here
 DisableInterrupts();
 // could have put the test here
 }

 (*s) = (*s) - 1;

 EnableInterrupts();

}

(30) Question 5. In this question you will implement a simple preemptive round-robin OS
scheduler using SysTick interrupts. In this OS, the TCBs are a simple linear array containing only
the saved stack pointer. There are exactly four threads with no sleeping, no priority, no blocking,
and no killing. Your OS should run the threads in the 0,1,2,3,0,1,2,3,… order using SysTick.
#define STACKSIZE 100 // 400 bytes of stack
int32_t *tcbs[4]; // saved stack pointer for each thread
uint32_t RunI; // index of currently running thread (0,1,2,3)
int32_t Stacks[4][STACKSIZE];
void OS_AddThreads(void(*task0)(void), void(*task1)(void),
 void(*task2)(void), void(*task3)(void)){
 tcbs[0] = &Stacks[0][STACKSIZE-16]; // thread stack pointer
 Stacks[0][STACKSIZE-1] = 0x01000000; // thumb bit
 Stacks[0][STACKSIZE-2] = (int32_t)(task0); // PC
 tcbs[1] = &Stacks[1][STACKSIZE-16]; // thread stack pointer
 Stacks[1][STACKSIZE-1] = 0x01000000; // thumb bit
 Stacks[1][STACKSIZE-2] = (int32_t)(task1); // PC
 tcbs[2] = &Stacks[2][STACKSIZE-16]; // thread stack pointer
 Stacks[2][STACKSIZE-1] = 0x01000000; // thumb bit
 Stacks[2][STACKSIZE-2] = (int32_t)(task2); // PC
 tcbs[3] = &Stacks[3][STACKSIZE-16]; // thread stack pointer
 Stacks[3][STACKSIZE-1] = 0x01000000; // thumb bit
 Stacks[3][STACKSIZE-2] = (int32_t)(task3); // PC
 RunI = 0; // thread 0 will run first
}

 EE445M/EE380L Quiz 1 Spring 2017 Solution Page 4 of 5

Jonathan W. Valvano

Assume SysTick is configured to interrupt every 1 ms at priority 7. There are other ISRs running
other background tasks running at higher priority than 7. Show the assembly code for the SysTick
ISR. You may not add variables or make any changes to above code. Use comments to explain
what you are doing.

Solution 1
SysTick_Handler ; 1) Saves R0-R3,R12,LR,PC,PSR
 CPSID I ; 2) Prevent interrupt during switch
 PUSH {R4-R11} ; 3) Save remaining regs r4-11
 LDR R0,=RunI ; 4) R0=pointer to RunI, old thread
 LDR R1,[R0] ; R1 = RunI
 LSL R2,R1,#2 ; R2 = RunI*4
 LDR R3,=tcbs ; points to tcbs
 ADD R4,R3,R2 ; points to tcbs[RunI]
 STR SP,[R4] ; 5) Save SP into TCB
 ADD R1,#1 ; 6) R1 = RunI+1
 AND R1,#3 ; wrap 4 to 0
 STR R1,[R0] ; RunI = R1
 LSL R2,R1,#2 ; R2 = RunI*4
 ADD R4,R3,R2 ; points to tcbs[RunI]
 LDR SP,[R4] ; 7) new thread SP; SP = tcbs[RunI];
 POP {R4-R11} ; 8) restore regs r4-11
 CPSIE I ; 9) tasks run with interrupts enabled
 BX LR ; 10) restore R0-R3,R12,LR,PC,PSR
Solution 2
SysTick_Handler ; 1) Saves R0-R3,R12,LR,PC,PSR
 CPSID I ; 2) Prevent interrupt during switch
 PUSH {R4-R11} ; 3) Save remaining regs r4-11
 PUSH {R4,LR} ; Save LR, AAPCS
 BL GetOld ; 4) returns R0 to old TCB
 POP {R4,LR} ; restore LR
 STR SP,[R0] ; 5) Save SP into TCB
 PUSH {R4,LR} ; Save LR, AAPCS
 BL GetNew ; 6) returns R0 to new TCB
 POP {R4,LR} ; restore LR
 LDR SP,[R0] ; 7) new thread SP; SP = tcbs[RunI];
 POP {R4-R11} ; 8) restore regs r4-11
 CPSIE I ; 9) tasks run with interrupts enabled
 BX LR ; 10) restore R0-R3,R12,LR,PC,PSR
int32_t* GetOld(void){
 return tcbs[RunI];
}
int32_t* GetNew(void){
 RunI = (RunI+1)&0x03;
 return tcbs[RunI];
}

 EE445M/EE380L Quiz 1 Spring 2017 Solution Page 5 of 5

Jonathan W. Valvano

(15) Question 6. Consider these foreground threads that will run with your Lab 2 OS. Together
they form an assembly line, taking data from the previous thread, incrementing the value, and then
passing the data to the next thread. These three threads are exactly as shown; no other code other
than these threads exists. You may assume the three blocking semaphores are all initialized to zero
before the threads are launched. When running properly, the variables should increase by 3 each
time through the loop.

uint32_t t1=0;
void task1(void){
 while(1){
 OS_Wait(&s3);
 t1 = t3+1;
 OS_Signal(&s1);
 }
}

uint32_t t2=0;
void task2(void){
 while(1){
 OS_Wait(&s1);
 t2 = t1+1;
 OS_Signal(&s2);
 }
}

uint32_t t3=0;
void task3(void){
 while(1){
 OS_Wait(&s2);
 t3 = t2+1;
 OS_Signal(&s3);
 }
}

(7) Part a) Explain why this system gets stuck. It has a bug, tell me the bug

Since the semaphores are all initially zero, all threads block first time through the loop.

(8) Part b) Give one way to remove the bug, so the system runs continuously incrementing
variables by 3 each time through the loop.

Solution 1) Swap the order in task1
void task1(void){
 while(1){
 t1 = t3+1;
 OS_Signal(&s1);
 OS_Wait(&s3);
 }
}

Solution 2) Initialize one of the three semaphores with 1

