
 EE345M Summer 2000 Quiz 1 Solution Page 1 of 2

Jonathan W. Valvano July 3, 2000, 2:30pm-3:45pm
(50) Question 1. In this problem we design a digital thermometer using period measurement.
(5) Part a) The precision is 100 alternatives, so the desired resolution is (1514-1324)/100=1.9µs. Therefore I will use 1
µs resolution. From the table it looks like 2µs should work, but it is not quite enough.
(5) Part b) First I convert I to the proper units (P is already in µs) by multiplying the RHS by 10,

 T=1748.8-0.528•P
Then, I convert to integer arithmetic (0.528=66/125). I must divide last to get the correct answer, but I subtract first to
reduce the amplitude of the intermediate result, which eliminates overflow.

 T=950+((1514-p)*66)/125
As a test, I desk check the equation for high, middle, and low temperatures. Considering overflow I carefully watch the
intermediate calculations for values above 32767.
high T=950+((1514-1324)*66)/125=950+(190*66)/125=950+(12540)/125=950+100=1050
mid T=950+((1514-1419)*66)/125=950+(95*66)/125=950+(6270)/125=950+ 50=1000
low T=950+((1514-1514)*66)/125=950+(0*66)/125=950+(0)/125=950+ 0= 950
(15) Part c) I write the ritual subroutine that initializes the interface.
#define C6 0x40
#define C5 0x20
unsigned short First; // time of first edge
unsigned short p; // period in usec
void Ritual(void){
 asm(" sei"); // make atomic
 TIOS &= ~C6; // PT6 input capture
 TIOS |=OC5; // PT5 is output compare
 DDRT &= ~C6; // PT6 is input
 TSCR = 0x80; // enable TCNT
 TMSK2= 0x33; // 1us clock
 TCTL3 = (TCTL3&0xCF)|0x10; // bits 5:4=0,1 rising
 First = TCNT; // first will be wrong
 bOK=0; // set on subsequent
 TFLG1 = C6; // Clear C6F
 TMSK1 |= C6+C5; // Arm IC6 and OC5
 TC5=TCNT+3000; // timeout after 3 ms
 asm(" cli");}
(25) Part d) I write the interrupt service routines that measure temperature.
#pragma interrupt_handler TC6handler()
void TC6handler(void){ // called on a rising edge of PT6
 Period=TC6-First; // units are usec
 First=TC6; // Setup for next
 TC5=TCNT+3000; // timeout after 3 ms
 TFLG1=C6+C5; // ack by clearing C6F
 if(period>=1324)&&(period<=1514)){
 T=950+((1514-period)*66)/125; // units 0.1F
 bOK=1;}
 else
 bOK=0; // out of range
}
#pragma interrupt_handler TC5handler()
void TC5handler(void){
 TFLG1=C5; // ack OC5F
 TC5=TC5+3000; // Executed every 1 ms
 bOK=0; }
(10) Question 2. In this problem consider two C functions.
Part a) These two functions are friendly because they do not undo each other's action. In particular, it does not matter in
what order they are executed.
Part b) It depends whether the compiler produces atomic code or not. If the compiler generates the following nonatomic
code, then they have critical sections between the read and write DDRH.
_Ritual0 ldab DDRH _Ritual1 ldab DDRH
 orab #$01 orab #$01
 stab DDRH stab DDRH
 rts rts
If the compiler generates the following atomic code, then they have no critical sections.
_Ritual0 bset DDRH,#$01 _Ritual1 bset DDRH,#$02
 rts rts

 EE345M Summer 2000 Quiz 1 Solution Page 2 of 2

(10) Question 3. Consider the LED interface to a 6812.
Part a) The largest possible LED current is determined by the IOH of the 6812, which is 0.8 mA.
Part b) R = (5-2V)/500µA=6000Ω

(40) Question 4. In this problem I will interface a DAC as an output port to the MC68HC812A4.
(5) Part a) I use expanded narrow because it has an 8-bit wide data path.

(5) Part b) I choose synchronized because the timing of the edge matters, and I choose positive logic because I want the
falling edge to occur when the data is available.

(10) Part c) There are two good answers. The one on the right only activates for write cycles.

8

ST

Data Input

DACCS0

D7-D0
8

ST

Data Input

DACCS0

D7-D0

R/W
74LS04 74LS02

(10) Part d) Let t1 be the E clock period (125, 250, 375 or 500ns)

WDA = Write Data Available = (106, t1 + 20)
From the DAC timing

WDR = Write Data Required = (↓ST-80, ↓ST)
Since ST will be generated from the CS0, ↓ST=↑CS0+10 (the 10ns is due to one gate delay). So,

WDR = (↑CS0+10-50, ↑CS0+10) = (t1+10+10-80, t1+10+10) = (t1-60, t1+20)
To make WDA overlap WDR, we must make have one cycle stretch

106≤t1-60, or 166≤t1

(10) Part e) The combined write cycle timing diagram is important to verify proper timing.

80 0

R/W

D7-D0 WDA

E 0

250
19060

60
CS0

10

20

1046

20

D7-D0

10

WDR

WDA=(106,270)

WDR=(190,270)

ST

