(30) Question 1. Let \(t_1 \) be the E clock period with stretching. \(t_{DW} \) is 100ns.

WDA = (106, \(t_1 + 20 \))

the rise of CS1 occurs at \(t_1 + [0,10] \), so

WDR = (\(t_1 + [0,10]-100, t_1 + [0,10] \))

To make it WDA overlap WDR, we need

\[106 = t_1 + [0,10]-100 \]

or

\[206 = t_1 \]

which is 1 stretch (makes \(t_1 = 250\text{ns} \)).

(15) Question 2.

*(short *) 0x0910 = *(short *) 0xFFEE;

(25) Question 3.

(10) Part a) Start with

\[y(n) = \frac{(12x(n) + 92x(n-3) - 60y(n-2))}{100} \]

then simplify to

\[y(n) = \frac{(3x(n) + 23x(n-3) - 15y(n-2))}{25} \]

(5) Part b) \[3*511 + 23*511 - 15*-512 = 1533+11753+7680 = 20966 \]

short because it is less than 32767

(10) Part c) Convert all terms to constants

\[y = \frac{(3x + 23x - 15y)}{25} \]

Solve for y/x

\[25y = 3x + 23x - 15y \]

\[40y = 26x \]

\[y/x = 26/40 = 0.65 \]

(30) Question 4. Match input range of 0.5 to 1.0 into output range of 0 to 5.0.

(10) Part a) \(V_{out} = 10*(V_{in}-0.5) \) or \(V_{out} = 10*V_{in}-5 \)

(20) Part b)

Add \(V_{ref} = 2.5\text{V} \)

\[V_{out} = 10*V_{in}-2*V_{ref} \]

Add \(V_g = 0\text{V} \), to make sum of gains equal to 1

\[V_{out} = 10*V_{in}-2*V_{ref}-7*V_g \]

Chose \(R_f = 140\text{ k} \Omega \), as the least common multiple of 10, 2, 7

Build

\[\text{transducer} \]

\[\text{REF03} \]

\[\text{ADin} \]

Jonathan W. Valvano