
 EE345M Quiz 2a Fall 2005 Page 1 of 7

Jonathan W. Valvano

Jonathan W. Valvano First Name: _______________ Last Name:____________________
November 9, 2005, 1 to 1:50pm
 This is an open book, open notes exam. You may put answers on the backs of the pages, but
please don’t turn in any extra sheets.

(10) Question 1. In a CAN network, what is the purpose of the CRC field? I.e., What is it used for?

(10) Question 2. Assuming transfer rate of 100,000 bits/sec on a CAN network, and each message
contains 4 bytes, what is the maximum bandwidth of the network (in units of bytes of data per sec)? The
important part of this question is the development of the equation, and the calculation of the specific
number is of secondary importance.

 EE345M Quiz 2a Fall 2005 Page 2 of 7

Jonathan W. Valvano

(15) Question 3. Consider a producer/consumer problem linked by a FIFO queue. Both the producer
thread and the consumer thread operate in the background using interrupt synchronization. The input
device is a CAN receiver, and the output device is a SCI transmitter. When the CAN input is ready an
interrupt-38 is generated, and the producer thread (CAN input ISR) reads the data and puts them into a
FIFO. When the SCI output is idle, an interrupt-20 is generated, and the consumer thread (SCI output
ISR) gets data from the FIFO and writes them to the output device.

Input Producer Fifo
Fifo_Put Fifo_Get

Consumer Output

Part a) The initialization software will clear the FIFO. Which threads should be armed at this time? Circle
your answer.
 A) The consumer (SCI output)

 B) The producer (CAN input)

 C) Both

 D) Neither

Part b) After the producer thread puts data into the FIFO, it checks the FIFO status. It will disarm itself if
it finds the FIFO is full. When should the producer thread be rearmed? Circle your answer.
 A) Only by the ritual

 B) On the next output interrupt (when the SCI output device is idle)

 C) On the next input interrupt (when new CAN input is received)

 D) The producer will call Fifo_Put over and over until it is not full

Part c) The consumer thread disarms itself if it finds the FIFO is empty. When should the consumer thread
be rearmed? Circle your answer
 A) Only by the ritual

 B) On the next output interrupt (when the SCI output device is idle)

 C) On the next input interrupt (when new CAN input is received)

 D) The consumer will call Fifo_Get over and over until it is not empty

 EE345M Quiz 2a Fall 2005 Page 3 of 7

Jonathan W. Valvano

(25) Question 4. Consider a problem of running two foreground threads using a preemptive scheduler
with semaphore synchronization (like Lab 17.) There is a shared 16-bit global variable:
short TheData;
The writer thread stores into TheData, and the reader thread reads from TheData. The goal
is to create a 1-1 data transfer (repeating the pattern where one write is followed exactly one read). The
basic shell of this operation is given. Define one or more semaphores, then add calls to the following three
functions in order to properly synchronize the interactions between writer and reader.

int OS_InitSemaphore(Sema4Type *semaPt, short value);
void OS_Wait(Sema4Type *semaPt);
void OS_Signal(Sema4Type *semaPt);

You will define one or more semaphores and place calls to the three semaphore functions into the system,
otherwise no other changes are allowed. Use descriptive names for the semaphores that describe what the
semaphores mean. Assume writer is run first. You may assume the only accesses to TheData in the
entire software system are explicitly shown here.

void writer(void){

 wInit(); // initialization

 while(1){

 TheData=wProcess(); // body

 }

}

void reader(void){

 rInit(); // initialization

 while(1){

 rProcess(TheData); // body

 }

}

The purpose of the semaphores is to force the sequence of execution so that exactly one call to
wProcess is followed by exactly one call to rProcess.
 TheData = wProcess(); // writer body
 rProcess(TheData); // reader body
 TheData = wProcess(); // writer body
 rProcess(TheData); // reader body
 TheData = wProcess(); // writer body
 rProcess(TheData); // reader body
 ...

 EE345M Quiz 2a Fall 2005 Page 4 of 7

Jonathan W. Valvano

(30) Question 5. The goal of this problem is to design a cooperative thread switcher. There will be no
interrupts whatsoever, just the SWI instruction that causes a software interrupt. The main program creates
three threads and launches the first one. The threads are chained in a circle using the Next pointers in the
TCB. All threads will cooperate by calling your OS_Switch() function regularly. The following thread
control block will be used (like Lab17, except the Id removed.)

struct TCB{
 struct TCB *Next;
 unsigned char *StackPt;
 unsigned char MoreStack[99];
 unsigned char InitialCCR;
 unsigned char InitialRegB;
 unsigned char InitialRegA;
 unsigned short InitialRegX;
 unsigned short InitialRegY;
 void (*InitialPC)(void);
};
typedef struct TCB TCBType;
typedef TCBType * TCBPtr;

TCBType SystemTCB[3];

TCBPtr RunPt; // current

unsigned short NumThread=0;

void Thread1(void){
 Init1();
 while(1){
 Process1();
 OS_Switch();
 }
}
void Thread2(void){
 Init2();
 while(1){
 Process2();
 OS_Switch();
 }
}
void Thread3(void){
 Init3();
 while(1){
 Process3();
 OS_Switch();
 }
}
void main(void){
 OS_AddThread(&Thread1);
 OS_AddThread(&Thread2);
 OS_AddThread(&Thread3);
 OS_Launch(); // doesn't
return
}

Next
StackPt

Stack

Next
StackPt

Stack

Next
StackPt

Stack

Process1();
Process2();
Process3();
Process1();
Process2();
Process3();

Execution Sequence

 EE345M Quiz 2a Fall 2005 Page 5 of 7

Jonathan W. Valvano

NO hardware interrupts are allowed in this problem. You are not allowed to change the TCB structure or
the code of the foreground threads Thread1 Thread2 Thread3 or main. Code to add threads
and launch are similar to Lab17 (except no Id), which you are also not allowed to change.
void OS_Launch(void){
 RunPt = &SystemTCB[0]; // Specify first thread to run
asm ldx RunPt
asm lds 2,x
asm rti // Launch First Thread
}
short OS_AddThread(void(*fp)(void)){
 if(NumThread >= 3) return 0; // structure is full
 if(NumThread) SystemTCB[NumThread-
1].Next=&SystemTCB[NumThread];
 SystemTCB[NumThread].StackPt =
&SystemTCB[NumThread].InitialCCR;
 SystemTCB[NumThread].InitialCCR = 0x50; // CCR I bit set
 SystemTCB[NumThread].InitialPC = fp; // Initial PC
 SystemTCB[NumThread].Next = &SystemTCB[0];
 NumThread++;
 return 1; }
(10) Part a) Write the function OS_Switch, which issues a SWI.

(20) Part b) Write the SWI interrupt handler that suspends the current thread and runs the next thread in
the circular linked list.
interrupt 4 void SWIhandler(void){

 EE345M Quiz 2a Fall 2005 Page 6 of 7

Jonathan W. Valvano

(10) Question 6. In Lab 17, we defined time-jitter, δ t, as the difference between when a periodic task is
supposed to be run, and when it is actually run. The goal of a real-time DAS is to start the ADC at a
periodic rate, ∆t. Let tn be the nth time the ADC is started. In particular, the goal to make tn – tn-1 = ∆t.
The jitter is defined as the constant, δ t, such that
 ∆t-δ t < ti – ti-1 < ∆t+δ t for all i.
Assume the input to the ADC can be described as V(t) = A+Bsin(2π ft), where A, B, f are constants.
Derive an estimate of the voltage error, δ V, caused by time-jitter. Basically, solve for δ V as a function of
δ t, A, B, and f.

