
 EE345M Quiz 2 Fall 2006 Page 1 of 9

Jonathan W. Valvano

Jonathan W. Valvano

First Name: _______________ Last Name:____________________

November 8, 2006, 1 to 1:50pm

This is an open book, open notes exam. You may put answers on the backs of the
pages, but please don’t turn in any extra sheets.

 EE345M Quiz 2 Fall 2006 Page 2 of 9

Jonathan W. Valvano

(15) Question 1. Consider a situation where 4 microcontrollers are connected together using a CAN
network. Assume for this question that each frame contains 100 bits. Also assume the baud rate is
100,000 bits/sec, therefore it takes 1ms to send a frame. Initially, the CAN controllers are initialized
(i.e., all computers have previously executed CAN_Open).

At time = 0 computer A calls CAN_Send with ID=1000
At time = 300us computer B calls CAN_Send with ID=800
At time = 500us computer C calls CAN_Send with ID=900
At time = 700us computer D calls CAN_Send with ID=600

Specify the time sequence in which the four frames occur on the CAN network. Clearly define the
begin and end times when each message is visible on the CAN network.

0 1ms 2ms 3ms 4ms 5ms 6ms

(10) Question 2. Assume the CAN transfer rate is 100,000 bits/sec, the system uses 11-bit IDs,
there are 8 nodes on the network, each node sends a message every 0.1 sec, and each message
contains 5 bytes of data, what is the actual bandwidth of this network (in units of bytes of data per
sec)? You may neglect stuff bits. The total number of bits in a CAN frame can be calculated as the
number of ID bits plus the number of data bits plus 36 bits. The important part of this question is
the development of the equation, and the calculation of the specific number is of secondary
importance.

 EE345M Quiz 2 Fall 2006 Page 3 of 9

Jonathan W. Valvano

(25) Question 3. The CAN physical channel defines one bit at a time in such a way that 0
dominates over 1. In particular, if one node is attempting to drive CANH to 2.5 and a second node
tries to make CANH 3.75, then the actual CANH signal goes to 3.75. Similarly, if one node is
attempting to drive CANL to 2.5 and a second node tries to make CANL 1.25, then the actual
CANL signal goes to 1.25. Notice also that CANH + CANL always equals 5.0 volts.
Part a) Define a new voltage protocol that transmits two bits at a time in such a way that 00
dominates over 01, which dominates over 10, which dominates over 11. There will still be two
signals, CANH and CANL, such that CANH + CANL always equals 5.0 volts. In order for the
interface to operate on a single 5 V supply, all voltages must be between 1 and 4 volts.

Digital input CANH CANL CANH+CANL
0 0 5.00 V
0 1 5.00 V
1 0 5.00 V
1 1 5.00 V

Part b) Demonstrate how your system will implement dominance by considering a simple case
with two nodes simultaneously transmitting. You will show just the functionality of CANH, but a
corresponding operation will occur on CANL. Since the system will be symmetric (fair) with
respect to nodes A and B, the situations with A dominating over B were removed from the table.

Node A1 CANH (A)2 Node B3 CANH (B)4 CANH5
0 0 0 0 A=B
0 1 0 0 B>A
1 0 0 0 B>A
1 1 0 0 B>A
0 1 0 1 A=B
1 0 0 1 B>A
1 1 0 1 B>A
1 0 1 0 A=B
1 1 1 0 B>A
1 1 1 1 A=B

A=B means A and B continue transmitting, and dominance occurs later
B>A means B asserts dominance over A, and A stops transmitting

1 This is the digital logic that Node A is attempting to send
2 Fill in with the value from your Table in part a)
3 This is the digital logic that Node B is attempting to send
4 Fill in with the value from your Table in part a)
5 This will be the actual voltage on the CANH signal

 EE345M Quiz 2 Fall 2006 Page 4 of 9

Jonathan W. Valvano

(25) Question 4. Assume the binary semaphore type is a simple 8-bit integer, e.g.,
char s1; // binary semaphore can be 0 or 1
The following implementation of the binary spinlock semaphore is proposed.
void OS_InitSemaphore(char *semaPt, char value){
 *semaPt = value;
}
void OS_bWait(char *semaPt){ // semaPt in RegD
asm tfr d,x // RegX->semaphore
asm ldaa #0 // RegA=0
asm minm 0,x // replace memory with the smaller of 0 and memory
 // minm sets the C bit if it changes from 1 to 0
asm bcc *-3 // execute minm until changes from 1 to 0
}
void OS_bSignal(char *semaPt){ // semaPt in RegD
asm tfr d,x // RegX->semaphore
asm ldaa #1 // RegA=1
asm staa 0,x // semaphore is set to 1
}
Part a) Does this implementation have any critical sections? If so, identify the specific place(s)
where the critical section exists.

Part b) In this part, assume the semaphore is initially 1, and two or more threads have started to
execute OS_bWait. Fill in the blank:
The first thread to execute the ______________ instruction will be the one to
return from OS_bWait, while the other thread(s) will spin in the minm/bcc loop.

Part c) Why is this implementation better than the spinlock implement you created in Lab 18?

 EE345M Quiz 2 Fall 2006 Page 5 of 9

Jonathan W. Valvano

(25) Question 5. Consider a problem of deadlocks that can occur with semaphore synchronization.
The following is a classic example that might occur if two threads need both the disk and the
printer. In this example, the disk has a binary semaphore DiskFree, which is 1 if the disk is
available, and similarly the printer has a binary semaphore PrinterFree, which is 1 if the
printer is available. A deadlock occurs if each thread gets one resource then waits (on each other)
for the other resource. In this example, we assume there is one disk and one printer.

void thread1(void){
 OS_bWait(&DiskFree);
 OS_bWait(&PrinterFree);

// use disk and printer

 OS_bSignal(&DiskFree);
 OS_bSignal(&PrinterFree);
}

void thread2(void){
 OS_bWait(&PrinterFree);
 OS_bWait(&DiskFree);

// use printer and disk

 OS_bSignal(&PrinterFree);
 OS_bSignal(&DiskFree);
}

In this problem we will develop a graphical method (called a resource allocation graph) to
visualize/recognize the deadlock. Draw each thread in your system as an oval, and each binary
semaphore as a rectangle. If a thread calls OS_bWait and returns, then draw an arrow (called an
allocation edge) from the semaphore to the thread. An arrow from a semaphore to a thread means
that tread owns the resource. If a thread calls OS_bSignal, then erase the previously drawn
allocation edge. If a thread calls OS_bWait and spins or blocks because the semaphore is not free,
then draw an arrow from the thread to the semaphore (called a request edge). An arrow from a
thread to a semaphore means that tread is waiting for the resource associated with the semaphore.

Part a) Draw the resource allocation graph that occurs with the deadlock sequence
 1) thread1 executes OS_bWait(&DiskFree);
 2) thread2 executes OS_bWait(&PrinterFree);
 3) thread2 executes OS_bWait(&DiskFree);
 4) thread1 executes OS_bWait(&PrinterFree);

PrinterFree

Thread1 Thread2

DiskFree

 EE345M Quiz 2 Fall 2006 Page 6 of 9

Jonathan W. Valvano

Part b) This method can be generalized to detect that a deadlock has occurred with an arbitrary
number of binary semaphores and threads. What shape in the resource allocation graph defines a
deadlock? In other words, generalize the use of this method such that you can claim

“There is a deadlock if and only if the resource allocation graph

contains a shape in the form of a ______________________”.

Part c) Justify your answer by giving a deadlock example with three threads and three semaphores.
In particular, give 1) the C code; 2) the execution sequence; 3) the resource allocation graph

void thread1(void){

}

void thread2(void){

}

void thread3(void){

}

PrinterFree

Thread1 Thread2

DiskFreeCOMFree

Thread3

 EE345M Quiz 2 Fall 2006 Page 7 of 9

Jonathan W. Valvano

 EE345M Quiz 2 Fall 2006 Page 8 of 9

Jonathan W. Valvano

 EE345M Quiz 2 Fall 2006 Page 9 of 9

Jonathan W. Valvano

