
              EE345M Quiz 2        Spring 2009         Page 1 of 6 

Jonathan W. Valvano 

Jonathan W. Valvano   
 
    First Name: _______________ Last Name:____________________ 
 
April 17, 2009, 10:00 to 10:50am 
 Open book, open notes, calculator (no laptops, phones, devices with screens larger than a 
TI-89 calculator, devices with wireless communication). Please don’t turn in any extra sheets.  
 
(15) Question 1. A CAN system with 3 nodes has a baud rate of 50,000 bits/sec. The message 
protocol has frame sizes of exactly 4 data bytes per frame. The time between frame transmissions 
varies from 10 ms to 50 ms, with an average of 20 ms. This means each node starts a CAN 
transmission on average every 20 ms. The CAN uses 11-bit IDs.  
Part a) This system will work. I.e., this CAN baud rate can support the traffic on this network. 
However, determine the slowest baud rate that could support this traffic. You may ignore stuff bits. 
Show your work. 
 
 
 
 
 
 
 

 
 
Part b) Assuming a baud rate of 50,000 bits/sec, what is the actual average data bandwidth on this 
network.  Show your work. 
 
 
 
 
 
 
 
 
 
 
 
Part c) What are stuff bits and why are they used? 
 
 



              EE345M Quiz 2        Spring 2009         Page 2 of 6 

Jonathan W. Valvano 

(20) Question 2. Consider a 256-point FFT calculated on 12-bit ADC data sampled at 10 Hz. I.e., 
the input data are numbers from 0 to 4095 collected every 100 ms. The ADC range is 0 to 10 V. 
This means if the input is 5V, the ADC data will be 2048. 
   Input  x[2i] = sampled data for i = 0 to 255 input is real 
     x[2i+1] =0  
  Output X[2k] = real part of FFT for k = 0 to 255 output is complex 
     X[2k+1] = imaginary part of FFT  
 
Part a) What frequency does k=64 represent? 
 
 
 
 
 
 
 
Part b) For k=64, what does it mean if the real part (X[128]) equals the imaginary part (X[129])? 
 
 
 
 
 
 
Part c) What is the relationship between the FFT output at k, and the FFT output at 256-k, assuming 
k is not 0 or 128? 
 
 
 
 
 
 
 
Part d) Assume the input signal is a constant 5V, what will be the real part and imaginary part of the 
FFT output as calculated by the fft() used in Lab 4, were nn is 256? There is no noise. I.e., 
every input data sample is 2048. 
 
 
 
 



              EE345M Quiz 2        Spring 2009         Page 3 of 6 

Jonathan W. Valvano 

(15) Question 3. Consider the following 16-bit FIFO implementation. 
#define FIFOSIZE 100 
short static *PutPt;  // Pointer of where to put next  
short static *GetPt;  // Pointer of where to get next  
short static Fifo[FIFOSIZE];  // statically allocated data 
void Fifo_Init(void){  PutPt = GetPt = &Fifo[0];}  
int Fifo_Put(short data){ 
short *tempPt; 
  tempPt = PutPt; 
  tempPt++; 
  if(tempPt==&Fifo[FIFOSIZE]){/ 
    tempPt = &Fifo[0]; 
  } 
  if(tempPt == GetPt ){ 
    return(1);  // Failed, full 
  }                 
  else{ 
    *PutPt = data;  // save  
    PutPt = tempPt; // Success  
    return(0); 
  } 
} 

int Fifo_Get(short *datapt){ 
  if(PutPt == GetPt ){ 
    return(1);     // Empty 
  } 
  else{ 
    *datapt = *GetPt;  // store  
    GetPt++;             
    if(GetPt==&Fifo[FIFOSIZE]){ 
      GetPt = &Fifo[0]; 
    } 
    return(0); 
  } 
} 

 
Write a C function that returns a true (nonzero) if the FIFO is more than 75% full, and a false (0) if 
the FIFO is less than or equal to 75% full. You will be graded on style and effectiveness. You can 
not modify Fifo_Put or Fifo_Get. 
 
 
   
 
 
 
 
 
 
 



              EE345M Quiz 2        Spring 2009         Page 4 of 6 

Jonathan W. Valvano 

(25) Question 4. Consider a system that employs a preemptive real-time OS like Lab 5. There are 
multiple threads that need to update a shared LCD display. Consider this example with two 
foreground threads (thread1 thread2) and one background thread (isr) that all output to a 3-
line LCD. Free is a global variable, initialized to 1. 
void thread1(void){ 
unsigned short data; 
  init1(); 
  for(;;){ 
    data = calc1(); 
    Display(1,data); 
  } 
} 

void thread2(void){ 
unsigned short data; 
  init2(); 
  for(;;){ 
    data = calc2(); 
    Display(2,data); 
  } 
} 

interrupt 15 
void isr(void){ 
unsigned short data; 
  data = calc3(); 
  Display(3,data); 
} 

The first parameter of Display is the line number, and the second parameter is a 16-bit number. 
You may call the two LCD_GoTo LCD_OutDec functions without writing them. Your Display 
function will effectively perform the following (this program has a critical section.) 
unsigned char Free=1; 
void Display(int line, unsigned short num){ 
  if(Free){Free=0; LCD_GoTo(line,1); LCD_OutDec(num); Free = 1;} 
} 
Rewrite this Display function to remove the critical sections. You CAN NOT disable interrupts 
at all. You should not introduce new critical sections. You CAN NOT allow threads to block or 
spin. If the LCD is busy, then the output is simply skipped.  You may not change the thread code or 
the Display function prototype. Basically you will add software to this existing Display 
function, but not thread1, thread2 or isr. 
 
 
 
 
 
 



              EE345M Quiz 2        Spring 2009         Page 5 of 6 

Jonathan W. Valvano 

(25) Question 5. Implement the following fork and join synchronization. Each of the boxes in the 
figure represent one of 5 predefined functions (fun1, fun2, fun3, fun4, and fun5), which you 
do not need to implement. You will however define six different code segments so that fun2 fun3 
and fun4 run simultaneously. There is a master thread that exists before the fork and after the join. 
You may assume initially the master thread is active at priority level 3, but the two slave threads 
have not yet been added. 
void master(void){ 
  for(;;){ 
    fun1(); 
    segment1A 
    fun2(); 
    segment1B 
    fun5(); 
  } 
} 

 
 
void slave3(void){ 
  segment3A 
  fun3(); 
  segment3B 
} 

 
 
void slave4(void){ 
  segment4A 
  fun4(); 
  segment4B 
} 

 
Assume the OS is preemptive priority scheduler with blocking semaphores like the solution to Lab 
5. In this question, you can call any of the following OS commands without implementing the 
function. The fun functions need about 50 bytes of stack space. You can create semaphores by 
defining them as variables with SemaType. 
 
// ******** OS_InitSemaphore ************ 
// initialize semaphore  
// input:  pointer to a semaphore 
// output: none 
void OS_InitSemaphore(Sema4Type *semaPt, short value);  
// ******** OS_Wait ************ 
// decrement semaphore and block if less than zero 
// input:  pointer to a counting semaphore 
// output: none 
void OS_Wait(Sema4Type *semaPt);  
// ******** OS_Signal ************ 
// increment semaphore, wakeup blocked thread if appropriate  
// input:  pointer to a counting semaphore 
// output: none 
void OS_Signal(Sema4Type *semaPt);  
//******** OS_AddThread ***************  
// add a foregound thread to the scheduler 
// Inputs: pointer to a void/void foreground function 
//         number of bytes allocated for its stack 
//         priority (0 is highest) 
// Outputs: 1 if successful, 0 if this thread can not be added 
short OS_AddThread(void(*fp)(void),  
   unsigned short stackSize, short priority); 
// ******** OS_Sleep ************ 
// place this thread into a dormant state 
// input:  number of ms to sleep 
// output: none 
void OS_Sleep(unsigned short sleepTime);  
// ******** OS_Kill ************ 
// kill the currently running thread, release its TCB memory 
// input:  none 
// output: none 
void OS_Kill(void); 

1

2 3 4

5



              EE345M Quiz 2        Spring 2009         Page 6 of 6 

Jonathan W. Valvano 

Part 0) List the semaphore(s) needed 
 
 
 
 
Part a) Give the C code labeled segment1A for the master to execute between fun1 and fun2 
 
 
 
 
 
 
Part b) Give the C code labeled segment1B for the master to execute between fun2 and fun5 
 
 
 
 
 
Part c) Give the C code labeled segment3A for the slave3 to execute before fun3 
 
 
 
 
 
 
Part d) Give the C code labeled segment3B for the slave3 to execute after fun3 
 
 
 
 
 
 
Part e) Give the C code labeled segment4A for the slave4 to execute before fun4 
 
 
 
 
 
Part f) Give the C code labeled segment4B for the slave4 to execute after fun4 
 
 


