
 EE445M/EE380L.6 Quiz 2 Spring 2017 Solution Page 1 of 5

Jonathan W. Valvano

Jonathan W. Valvano
 First Name: _______________ Last Name:____________________
April 21, 2017, 10:00 to 10:50am
 Open book, open notes, calculator (no laptops, phones, devices with screens larger than a
TI-89 calculator, devices with wireless communication). Please don’t turn in any extra sheets.

(10) Question 1. You wish to use DMA to move a 256 (0x100) byte buffer from location
0x2000.0000 to location 0x2000.0040 (notice they overlap). What will be the DMA settings?

Start source address =

Start destination address =

Source data size = 1 2 or 4 bytes

Destination data size = 1 2 or 4 bytes

Source address increment = -4, -2, -1, 0, 1, 2, 4

Destination address increment = -4, -2, -1, 0, 1, 2, 4

Count (number of elements) =

You could have had size 2 (or 4), count 128 (or 64), and decremented by -2 (or -4). The starting
address then would be 0x2000.00FE (or 0x2000.00FC), and the destination address 0x2000.013E
(or 0x2000.013C).

(25) Question 2. Your OS supports 10 processes. Each process has a number (from 0 to 9). In order
to provide protection from one process to another, there will be a separate memory manager for
each process. In particular, there will be 10 independent memory managers. You are given a
memory manager within your OS with the following prototype:

void *malloc(uint32_t size, uint32_t pnum);

where size is the number of bytes to be allocated and pnum is the process number. The return
parameter is a pointer to a memory block of the correct number of bytes. You do not write
malloc, rather you will make the connections so when the user calls OS_malloc, the
appropriate manager for that process is used. In your OS, there is private global containing the
process number of currently running process (0 to 9)

unsigned long static ProcessNum=0;

In OS.h, within the user project there is a prototype for an OS function.

void *OS_malloc(uint32_t size);

There are other software interrupts (SVC), but you will use #99 for this OS call.

-1

-1

256

0x2000.013F

0x2000.00FF

1

1

 EE445M/EE380L.6 Quiz 2 Spring 2017 Solution Page 2 of 5

Jonathan W. Valvano

(10) Part a) Give the assembly code for OS_malloc in the osasm.s file within the user project.
OS_malloc
 SVC #99
 BX LR

(10) Part b) Give the assembly code for the SVC_Handler within the OS project. You may
assume there are other OS calls that use SVC, but you only have to show this one.

SVC_Handler
 LDR R12,[SP,#24] ; Return address
 LDRH R12,[R12,#-2] ; SVC instruction is 2 bytes
 BIC R12,#0xFF00 ; Extract trap number in R12
 LDM SP,{R0-R3} ; Get any parameters
 PUSH {LR}
 CMP R12,#99
 BEQ doMalloc
// other traps
doMalloc ;R0=size, R1=ProcessNum
 LDR R1,=ProcessNum
 LDR R1,[R1]
 BL malloc ; Call OS routine #99
 POP {LR}
 STR R0,[SP] ; Store return value
 BX LR ; Return from exception

 EE445M/EE380L.6 Quiz 2 Spring 2017 Solution Page 3 of 5

Jonathan W. Valvano

(15) Question 3. Consider this user code, written in C, with its corresponding compiler generated
assembly using the standard version of Keil (like Labs 1-4). In this code,

IdleCount is a global in RAM at address 0x200000CC.
IdleTask is in ROM at address 0x00001240.
WaitForInterrupt is function, also in ROM but at address 0x00000336
PB2 is an I/O port at address 0x40005010

void IdleTask(void){
 IdleCount = 0;

 for(;;){

 IdleCount++;

 PB2 ^= 0x04;

 WaitForInterrupt();
 }
}

 62: IdleCount = 0;
0x1240 2000 MOVS r0,#0x00
0x1242 4908 LDR r1,[pc,#32] ; @0x00001264
0x1244 6008 STR r0,[r1,#0x00]
 63: for(;;){
0x1246 BF00 NOP
 64: IdleCount++;
0x1248 4806 LDR r0,[pc,#24] ; @0x00001264
0x124A 6800 LDR r0,[r0,#0x00]
0x124C 1C40 ADDS r0,r0,#1
0x124E 4905 LDR r1,[pc,#20] ; @0x00001264
0x1250 6008 STR r0,[r1,#0x00]
 65: PB2 ^= 0x04; // toggle PB2
0x1252 4805 LDR r0,[pc,#20] ; @0x00001268
0x1254 6900 LDR r0,[r0,#0x10]
0x1256 F0800004 EOR r0,r0,#0x04
0x125A 4903 LDR r1,[pc,#12] ; @0x00001268
0x125C 6108 STR r0,[r1,#0x10]
 66: WaitForInterrupt();
0x125E F7FFF86A BL.W WaitForInterrupt (0x00000336)
0x1262 E7F1 B 0x00001248
0x1264 00CC DCW 0x00CC <- Patch this
0x1266 2000 DCW 0x2000
0x1268 5000 DCW 0x5000
0x126A 4000 DCW 0x4000

(5) Part a) Assume IdleTask and WaitForInterrupt are in the same process, and you wish
to relocate both functions to another place in memory (without recompiling), but the relative
distance between these two functions will remain constant. Look at the machine code for the BL.W
WaitForInterrupt function call. The F7 means BL, but what does the number 0xFFF86A
mean? If you were to relocate these functions, does this object code need patching (changing) in
order for the function call to operate properly?

0xFFF86A is the relative distance from 0x00001262 to 0x00000336. In particular, 0xFFF86A is
equal to (0x00000336-0x00001262)/2. Since these are PC relative, no patching is required

(5) Part b) If you were to relocate these functions (without recompiling), you would move all the
above machine code as one block. Would you have to make any patching (changing) in order for
the access to I/O port PB2 to operate correctly?
No patching needed. In this case the I/O address is fixed and not relative to the PC. However, since
the absolute address of PB2 is stored in the DCW 0x5000, DCW 0x4000 (little endian), the I/O port
access will operate without needing any patching.

(5) Part c) After relocation (without recompiling), IdleCount is now at address 0x20004560,
how would you patch this machine code?
The absolute address of IdleCount is stored in the DCW 0x00CC, DCW 0x2000. This will need
patching to allow access to the new location, change 0x00CC to 0x4560

Which object code needs patching?

 EE445M/EE380L.6 Quiz 2 Spring 2017 Solution Page 4 of 5

Jonathan W. Valvano

(50) Question 4. In this question you will implement a very simple file system. You will implement
this file system in the 128k internal ROM of your microcontroller. ROM addresses 0 to
0x0001.FFFF will contain programs and other constant data. However, locations 0x0002.0000 to
0x0003.FFFF will contain the disk. The block size of this disk is fixed at 1024 bytes. This means
there are 128 blocks: 0x0002.0000, 0x0002.0400, 0x0002.0800,… 0x0003.FC00. You are given
two functions to implement the low-level disk operation. The first function given to you will erase a
1024-byte block in ROM. The addr parameter must be one of these 0x0002.0000, 0x0002.0400,
0x0002.0800,… 0x0003.FC00 addresses. The return parameter is 0 if successful (you can ignore
errors).
int Flash_Erase(uint32_t addr);
The second function given to you will program a 1024-byte block in ROM. The source parameter is
a pointer to a 1024-byte RAM buffer containing the data to be written. The addr parameter must
be one of these 0x0002.0000, 0x0002.0400, 0x0002.0800,… 0x0003.FC00 addresses. The return
parameter is 0 if successful (you can ignore errors).
int Flash_Write(uint8_t *source, uint32_t addr);

At initialization the entire disk is erased, filled with 0xFF, and you will consider this state as
formatted. Initially, of course, there are no files on the disk. Each file has exactly 1024 bytes of
data. This file system does not have file names, rather files are identified by a number. Your system
should support up to 127 files. The files are numbered from 1 to 127. You will use the First
block for directory/free space management. File number n (1 to 127) will be in the block starting at
 0x00020000+1024*n
You can create C a pointer into the disk. Let n be any block 0 to 127. First define a byte pointer,
 uint8_t *block;
Second, set the byte pointer,
 block = (uint8_t *)(0x00020000+1024*n);
Third, you can read the disk using indexed syntax
 data = block[i]; // read byte i of block n
After each file operation all information must be placed onto the disk. However, during execution
of your OS commands, you may use this RAM buffer for temporary storage,
uint8_t Buffer[1024];

(10) Part a) Implement a helper function that reads 1024 bytes of the disk into RAM. Let n be the
block number (1 to 127) and buf be a RAM array into which the data are read.
void ReadBlock(uint32_t n, uint8_t buf[1024]){
uint32_t i;
uint8_t *block;
 block = (uint8_t *)0x00020000+1024*n;
 for(i=0;i<1024;i++){
 buf[i] = block[i];
 }
}

 EE445M/EE380L.6 Quiz 2 Spring 2017 Solution Page 5 of 5

Jonathan W. Valvano

(25) Part b) Implement the file write function. This function will allocate space for a new file,
store the 1024 bytes of data on the disk, update the directory onto the disk, and return the file
number of the new file. If the disk is full return -1, otherwise this function returns 1 to 127. Use the
first block to hold the directory and free space management.
int OS_FileWrite(uint8_t data[1024]){
uint32_t free=1;
// directory/free space is bytes 1 to 127, FF means free
 ReadBlock(0, Buffer);
 while(free < 128){ // find free block
 if(Buffer[free] == 0xff){ // free?
 Flash_Write(data, 0x00020000+1024*free); // data to disk
 Buffer[free] = 1; // used
 // Flash_Erase(0x00020000); // not needed
 Flash_Write(Buffer, 0x00020000); // update directory
 return free;
 }
 free++; // try next block
 }
 return -1; // full
}

(15) Part c) Implement to file erase function. This function will erase an existing file, updating the
directory on the disk. n is the file number to erase. Return 0 (success) if the file used to exist and
now it is erased. Return -1 if the file did not exist.
int OS_FileErase(uint32_t n){
 if((n<1)||(n>127)) return -1;
 ReadBlock(0, Buffer); // load directory
 if(Buffer[n] != 1) return -1; // does not exist
 Flash_Erase(0x00020000);
 Buffer[n] = 0xFF;
 Flash_Write(Buffer, 0x00020000); // update directory
 Flash_Erase(0x00020000+1024*n);
 return 0;
}

 EE445M/EE380L.6 Quiz 2 Spring 2017 Solution Page 6 of 5

Jonathan W. Valvano

Extra, unused question
(10) Question xx. Consider a file system that manages a 16 Megabyte (224 bytes) EEPROM storage
for a battery-powered embedded system. The block size is fixed at 214 bytes. In other words, the
block size is 16,384 bytes. The microcontroller can perform a 214 byte block-write operation in 1
ms. You are not allowed to split one block between two files. 16 bytes of each block are used by the
file system to manage pointers, type, size, and free space. These 16 bytes is not considered internal
fragmentation. There is one file in this system with 25,000 bytes of data, and another file with
50,000 bytes of data. No other files exist. What is the total number of bytes of internal
fragmentation? Show your work.

Each block can store up to 16,384-16=16,368 bytes
Little one needs 2 blocks. 25,000=16,368+8,632. 16,368-8,632=7,736 bytes of internal frag
Big one needs 4 blocks. 50,000=3*16,368+896. 16,368-896= 15,472 bytes of internal frag
Total is 7,736 + 15,472 = 23,208 bytes

