
EE319K Fall 2014 Exam 1 Page 1

Erez, Valvano, Yerraballi October 2, 2014 7:00pm-8:15pm

Exam 1
Date: October 2, 2014

UT EID:

Printed Name:

Last, First

Your signature is your promise that you have not cheated and will not cheat on this exam, nor will you help others to
cheat on this exam:

Signature:

Instructions:
• Closed book and closed notes. No books, no papers, no data sheets (other than the last two pages of this

Exam)
• No devices other than pencil, pen, eraser (no calculators, no electronic devices), please turn cell phones off.
• Please be sure that your answers to all questions (and all supporting work that is required) are contained in

the space (boxes) provided. Anything outside the boxes/blanks will be ignored in grading. You may use the
back of the sheets for scratch work.

• You have 75 minutes, so allocate your time accordingly.
• For all questions, unless otherwise stated, find the most efficient (time, resources) solution.
• Unless otherwise stated, make all I/O accesses friendly.
• Please read the entire exam before starting.

Problem 1 10

Problem 2 6

Problem 3 4

Problem 4 10

Problem 5 20

Problem 6 10

Problem 7 10

Problem 8 15

Problem 9 15

Total 100

EE319K Fall 2014 Exam 1 Page 2

Erez, Valvano, Yerraballi October 2, 2014 7:00pm-8:15pm

(10) Question 1. State the term, symbol, or expression that is best described by each definition.

Part a) A property of memory that describes the fact that when power is
removed and subsequently restored, the contents of the memory is lost.

Part b) A debugging instrument or tool that measures voltage versus
time for multiple digital signals.

Part c) A drawing that describes how information is passed from one
module to another in a system. An arrow from circle A to circle B means
information is passed from software module A to software module B.

Part d) A collection of wires in a computer that allows data to travel
from one module to another within the computer.

Part e) A processor in which the operands to ALU instructions are never
a memory location uses what type of generic architecture? (Hint: the
answer to this question is not ARM, THUMB, or Cortex-M, but rather
the general architecture type.)

Part f) The electrical property that specifies the number of electrons per
second that are traveling down a wire.

Part g) This C operator will perform the exclusive or of two numbers in
a bit-wise fashion.

Part h) A C program calls an assembly subroutine. When the assembly
subroutine returns, where can the return value be found? (Hint: AAPCS)

Part i) This declaration is used to create a variable in C that can take on
the values from -20 to +200. Pick the most efficient format.

Part j) A debugging feature that causes execution to halt, and control
returns to the debugger, when your software executes an instruction at a
specific location in your code.

volatile

Logic analyzer or
oscilloscope

Data flow graph

Bus

Load/store or RISC

^

int16_t

In register R0

Current or amps

Breakpoint

EE319K Fall 2014 Exam 1 Page 3

Erez, Valvano, Yerraballi October 2, 2014 7:00pm-8:15pm

(6) Question 2. Octal means base 8 in the same way binary means base 2, decimal means base
10, and hexadecimal means base 16. This means each octal digit can be 0, 1, 2, 3, 4, 5, 6, or 7.
What is the value of the unsigned four-digit octal number 1036? Give your answer as a decimal
number. Show your work.

(4) Question 3 Consider the following 8-bit addition (assume registers are 8 bits wide, and
assume the condition code bits are set in a way similar to the Cortex M4)
 Load 0x80 into R1
 Load 0x20 into R2
 Adds R3 = R1+R2, setting the condition codes

a. What is the 8-bit result in Register R3 (as an unsigned decimal)?

b. What is the 8-bit result in Register R3 (as a signed decimal)?

c. What will be the value of the carry (C) bit?

d. What will be the value of the overflow (V) bit?

3 points for the basis: Basis is 80, 81, 82, 83 = 20, 23, 26, 29 = 1, 8, 64, 512
3 points for the value Value = 512*1+64*0+8*3+6*1 = 512+24+6 = 542

139

-117-

0x80 is 128 and 0x20 is 32, 128+32 = 160
Another way: 0x80+0x20 = 0xA0, which is 10*16 = 160
1 point, no partial credit

0x80 is -128 and 0x20 is 32, -128+32 = -96
Another way: -0x80+0x20 = -0x60 which is -6*16 = -96
1 point, no partial credit

Carry bit is clear (C=0) because 160 is the correct answer
1 point, no partial credit

Overflow bit is clear (V=0) because -96 is the correct answer
1 point, no partial credit

EE319K Fall 2014 Exam 1 Page 4

Erez, Valvano, Yerraballi October 2, 2014 7:00pm-8:15pm

(10) Question 4. Write an assembly subroutine that initializes Port D, making PD4 an output,
and making PD3, PD2, PD1 PD0 inputs. This subroutine is called once at the start of execution
of the system. All accesses to I/O registers must be friendly. Your subroutine will set the
clock, direction, and enable registers (in this question do not worry about AFSEL, PUR, PDR,
AMSEL, or PCTL). Basically fill in the instruction or instructions for the following five boxes.
Boxes may contain 0, 1, or 2 instructions. Do not assume DIR, DEN or DATA registers have
been cleared by the reset operation. Comments are not needed.

GPIO_PORTD_DATA_R EQU 0x400073FC
GPIO_PORTD_DIR_R EQU 0x40007400
GPIO_PORTD_DEN_R EQU 0x4000751C
SYSCTL_RCGCGPIO_R EQU 0x400FE608
PortD_Init
 LDR R1, =SYSCTL_RCGCGPIO_R
 LDR R0, [R1]

 STR R0, [R1]

 LDR R1, =GPIO_PORTD_DIR_R
 LDR R0, [R1]

 STR R0, [R1]
 LDR R1, =GPIO_PORTD_DEN_R
 LDR R0, [R1]

 STR R0, [R1]

ORR R0,R0,#0x08 ; enable Port D
1 point for ORR, 1 point for #0x08
e.g., MOV R0,#0x08 is 1 point out of 2 possible

NOP
NOP ; wait for clock to stabilize
1 point for any wait, no partial credit

ORR R0,R0,#0x10 ; PD4 output
BIC R0,R0,#0x0F ; PD3-0 inputs
1 point for ORR #0x10, 1 point for BIC, 1 point for #0x0F
e.g., MOV R0,#0x10 is 1 point out of 3 possible

ORR R0,R0,#0x1F ; enable PD4-0
1 point for ORR, 1 point for #0x1F (ok if 0xFF)

BX LR ; return from subroutine
2 points, no partial credit for other or nothing

EE319K Fall 2014 Exam 1 Page 5

Erez, Valvano, Yerraballi October 2, 2014 7:00pm-8:15pm

(20) Question 5. The inputs are on Port D pins 3,2,1,0. The output is PD4. Design a detector that
reads a 4-bit number on PD3 – PD0 and activates a detection light on PD4. First, read the input
and count the number of input pins, PD3 – PD0, that are high. If the count is odd, set PD4 high;
if the count is even, clear PD4 low. For example, if PD3 – PD0 is 1011 then there are an odd
number of pins that are high, the pattern is detected, and the PD4 should be set high. When such
a pattern is detected turn ON the light otherwise turn it off. You will design pieces of the solution
in two parts. You may assume the subroutine in Question 4 has been called making PD4 an
output and making PD3 – PD0 inputs.

Part a) Write an assembly subroutine called Detect that takes a 4-bit input in a register (the
remaining bits are zero). Returns a 1 if pattern is detected, 0 otherwise. Detect must be AAPCS
compliant.

Part b) Complete the caller code loop in assembly that repeatedly reads the 4-bit number, calls
Detect and appropriately manipulates the light. Execute these steps over and over.

Detect2 MOV R1,R0 ;copy
 LSR R1,#1
 XOR R0,R1,R0 ;Bit1^Bit0
 LSR R1,#1
 XOR R0,R1,R0 ;Bit2^Bit1^Bit0
 LSR R1,#1
 XOR R0,R1,R0 ;Bit3^Bit2^Bit1^Bit0
 AND R0,R0,#1 ;0 or 1
 BX LR

Detect PUSH {R4,LR} ; R4 saved for compliance
 MOV R4,#0
 LSR R0,#1 ; R0 has input (Compliant)
 BCC Bit1 ; C bit has bit 0 which is 0
 ADD R4,#1
Bit1 LSR R0,#1
 BCC Bit2 ; C bit has bit 1 which is 0
 ADD R4,#1
Bit2 LSR R0,#1
 BCC Bit3 ; C bit has bit 2 which is 0
 ADD R4,#1
Bit3 LSR R0,#1
 BCC Done ; C bit has bit 3 which is 0
 ADD R4,#1
Done MOV R0,R4 ; Compliant by returning in R0
 AND R0,R0,#1 ;0 or 1
 POP {R4,PC} ; R4 restored for compliance

 LDR R4,=GPIO_PORTD_DATA_R
Loop LDR R0,[R4] ;input Port D
 AND R0,#0x0F ;mask (could skip this)
 BL Detect ;1 if odd,0 if even
 LSL R0,R0,#4 ;16 if odd, 0 if even
 STR R0,[R4] ;output to LED
 B Loop

EE319K Fall 2014 Exam 1 Page 6

Erez, Valvano, Yerraballi October 2, 2014 7:00pm-8:15pm

(10) Question 6. You are to interface an external LED on Port D pin 4 that operates using
positive logic. You have an LED whose desired brightness requires an operating point of (Vd ,
Id) = (1.5V, 15mA). Given the TM4C microcontroller output low VOL ranges between (0V,0.5V)
and output high VOH ranges between (2.4V,3.3V). The 7406 driver’s VOL is 0.5V. Show the
calculation used to find the resistor value needed and draw the circuit below by connecting the
needed elements: R = (5-1.5-0.5V)/15mA = (5-2V)/15mA= (3V)/15mA = 200 ohms

R

PD4

Microcontroller

7406

+3.3V
+5V

0V

(10) Question 7. You are to interface an external Switch on Port D pin 2 that operates using
negative logic by using the needed elements in the following figure.
(8) Part a) Given the TM4C microcontroller limits the current flow into it to 2 µA calculate the
voltage at Port D pin 2 when the switch is open? R = any resistance from 1k to 1M

R

PD2

Microcontroller

7406

+3.3V
+5V

0V

(2) Part b) If you were using an internal resistor instead (of an external one) what extra line(s) would you
add to the initialization for port D. (C or Assembly is okay)
 GPIO_PORTD_PUR_R |= 0x04; // need pullup in PD2

Let R = 10k
VPD2 = 3.3V – R*I = 3.3V-10k*2uA =
3.3V – 20mV = 3.28V

EE319K Fall 2014 Exam 1 Page 7

Erez, Valvano, Yerraballi October 2, 2014 7:00pm-8:15pm

(15) Question 8. The right column shows Cortex M assembly for a function called Calc. You
will write the corresponding C code in the left column. Think of the assembly as code generated
by the C compiler. You must write the C code that corresponds to the functionality defined in the
assembly code. Do not optimize, just translate the assembly into C.

#include <stdint.h> // C99
uint16_t Num;
uint16_t Cnt;
// 2 points, uint16_t variables

uint16_t Calc(uint16_t input){
// 1 points, uint16_t type
// 1 points, function
// 1 point, input parameter
 Num = input;
// 1 point

 for(Cnt=0; Cnt<10; Cnt++){
// 4 points, while{} or for(){}

 if(Num < 100){
// 1 point, if

 Num = Num + Cnt;
// 1 point, Num = Num+Cnt

 }else{
// 1 point, else
 Num = Num + 1;
// 1 point, Num = Num+1

 }

 return Num;
// 1 points, return
}

 AREA Data,ALIGN=2
Num SPACE 2
Cnt SPACE 2
 AREA |.text|, CODE, ALIGN=2
 THUMB
 EXPORT Calc
;Input is 16-bit unsigned in R0
;Output is 16-bit unsigned in R0
Calc LDR R1, =Num
 STRH R0, [R1] ;R0 is input

 LDR R2, =Cnt
 MOV R3, #0
 STRH R3, [R2]
 B labelD

labelA LDRH R0, [R1]
 CMP R0, #0x64
 BHS labelB
 LDRH R3, [R2]
 ADD R0, R0, R3
 STRH R0, [R1]
 B labelC

labelB ADD R0, R0, #1
 STRH R0, [R1]

labelC LDRH R3, [R2]
 ADD R3, R3, #1
 STRH R3, [R2]

labelD LDRH R3, [R2]
 CMP R3, #0x0A
 BLS labelA

 LDRH R0, [R1]
;R0 is the 16-bit return value
 BX LR

EE319K Fall 2014 Exam 1 Page 8

Erez, Valvano, Yerraballi October 2, 2014 7:00pm-8:15pm

(15) Question 9. Consider the following assembly code. Execution begins at line 127 in main,
and the initial SP equals 0x20000100.
 111: ;R0 dividend
 112: ;R1 divisor
 113: ;R0 is returned with remainder
 114: 0x000002F8 B500 mod PUSH {LR}
 115: 0x000002FA FBB0F3F1 UDIV R3, R0, R1
 116: 0x000002FE FB03F301 MUL R3, R3, R1
 117: 0x00000302 EBA00003 SUB R0, R0, R3
 118: 0x00000306 BD00 POP {PC}
 119: 0x00000308 B510 fun PUSH {R4,LR}
 120: 0x0000030A F04F040A MOV R4, #10
 121: 0x0000030E F04F0010 loop MOV R0, #16
 122: 0x00000312 4621 MOV R1, R4
 123: 0x00000314 F7FFFFF0 BL mod
 124: 0x00000318 3C01 SUBS R4, #1
 125: 0x0000031A D1F8 BNE loop
 126: 0x0000031C BD10 POP {R4,PC}
 127: 0x0000031E F04F0405 main MOV R4, #5
 128: 0x00000322 F7FFFFF1 BL fun
 129: 0x00000326 E7FE done B done
Part a) What is the SP when execution reaches line 115 for the first time?
SP = 0x2000.00F4 because three items are pushed, each push decrements SP by 4. (4 points)
Part b) What are all the values stored on the stack as it executes from line 127 to line 115? Show
each value as a 32-bit hexadecimal number into the appropriate place on the stack picture. The
addresses and machine code are included for each line. (-3 each wrong answer, -3 for swap)

Notice the LR is always odd, so when the function returns, we remain in Thumb mode. Do not
take off points if LR values are given as even numbers
Part c) What addressing mode does the BL instruction in line 123 use?
This instruction uses PC-relative addressing. The number is a signed 24-bit value, meaning -16.
The target address from 318 to 2F8 is -32. So the branch location is PC+2*value. (1 points)
Part d) What does B500 at line 114 represent?
B500 is the machine code or object code representing the instruction PUSH {LR} (1 points)

0x200000F0
0x200000F4
0x200000F8
0x200000FC
0x20000100
0x20000104
0x20000108
0x2000010C
0x20000110

Initial SP

0x200000F0
0x200000F4
0x200000F8
0x200000FC
0x20000100
0x20000104
0x20000108
0x2000010C
0x20000110

New SP 0x00000319

0x00000005

0x00000327

EE319K Fall 2014 Exam 1 Page 9

Erez, Valvano, Yerraballi October 2, 2014 7:00pm-8:15pm

Memory access instructions
 LDR Rd, [Rn] ; load 32-bit number at [Rn] to Rd
 LDR Rd, [Rn,#off] ; load 32-bit number at [Rn+off] to Rd
 LDR Rd, =value ; set Rd equal to any 32-bit value (PC rel)
 LDRH Rd, [Rn] ; load unsigned 16-bit at [Rn] to Rd
 LDRH Rd, [Rn,#off] ; load unsigned 16-bit at [Rn+off] to Rd
 LDRSH Rd, [Rn] ; load signed 16-bit at [Rn] to Rd
 LDRSH Rd, [Rn,#off] ; load signed 16-bit at [Rn+off] to Rd
 LDRB Rd, [Rn] ; load unsigned 8-bit at [Rn] to Rd
 LDRB Rd, [Rn,#off] ; load unsigned 8-bit at [Rn+off] to Rd
 LDRSB Rd, [Rn] ; load signed 8-bit at [Rn] to Rd
 LDRSB Rd, [Rn,#off] ; load signed 8-bit at [Rn+off] to Rd
 STR Rt, [Rn] ; store 32-bit Rt to [Rn]
 STR Rt, [Rn,#off] ; store 32-bit Rt to [Rn+off]
 STRH Rt, [Rn] ; store least sig. 16-bit Rt to [Rn]
 STRH Rt, [Rn,#off] ; store least sig. 16-bit Rt to [Rn+off]
 STRB Rt, [Rn] ; store least sig. 8-bit Rt to [Rn]
 STRB Rt, [Rn,#off] ; store least sig. 8-bit Rt to [Rn+off]
 PUSH {Rt} ; push 32-bit Rt onto stack
 POP {Rd} ; pop 32-bit number from stack into Rd
 ADR Rd, label ; set Rd equal to the address at label
 MOV{S} Rd, <op2> ; set Rd equal to op2
 MOV Rd, #im16 ; set Rd equal to im16, im16 is 0 to 65535
 MVN{S} Rd, <op2> ; set Rd equal to -op2
Branch instructions
 B label ; branch to label Always
 BEQ label ; branch if Z == 1 Equal
 BNE label ; branch if Z == 0 Not equal
 BCS label ; branch if C == 1 Higher or same, unsigned ≥
 BHS label ; branch if C == 1 Higher or same, unsigned ≥
 BCC label ; branch if C == 0 Lower, unsigned <
 BLO label ; branch if C == 0 Lower, unsigned <
 BMI label ; branch if N == 1 Negative
 BPL label ; branch if N == 0 Positive or zero
 BVS label ; branch if V == 1 Overflow
 BVC label ; branch if V == 0 No overflow
 BHI label ; branch if C==1 and Z==0 Higher, unsigned >
 BLS label ; branch if C==0 or Z==1 Lower or same, unsigned ≤
 BGE label ; branch if N == V Greater than or equal, signed ≥
 BLT label ; branch if N != V Less than, signed <
 BGT label ; branch if Z==0 and N==V Greater than, signed >
 BLE label ; branch if Z==1 or N!=V Less than or equal, signed ≤
 BX Rm ; branch indirect to location specified by Rm
 BL label ; branch to subroutine at label
 BLX Rm ; branch to subroutine indirect specified by Rm
Interrupt instructions
 CPSIE I ; enable interrupts (I=0)
 CPSID I ; disable interrupts (I=1)

Logical instructions
 AND{S} {Rd,} Rn, <op2> ; Rd=Rn&op2 (op2 is 32 bits)
 ORR{S} {Rd,} Rn, <op2> ; Rd=Rn|op2 (op2 is 32 bits)
 EOR{S} {Rd,} Rn, <op2> ; Rd=Rn^op2 (op2 is 32 bits)
 BIC{S} {Rd,} Rn, <op2> ; Rd=Rn&(~op2) (op2 is 32 bits)
 ORN{S} {Rd,} Rn, <op2> ; Rd=Rn|(~op2) (op2 is 32 bits)
 LSR{S} Rd, Rm, Rs ; logical shift right Rd=Rm>>Rs (unsigned)
 LSR{S} Rd, Rm, #n ; logical shift right Rd=Rm>>n (unsigned)

EE319K Fall 2014 Exam 1 Page 10

Erez, Valvano, Yerraballi October 2, 2014 7:00pm-8:15pm

 ASR{S} Rd, Rm, Rs ; arithmetic shift right Rd=Rm>>Rs (signed)
 ASR{S} Rd, Rm, #n ; arithmetic shift right Rd=Rm>>n (signed)
 LSL{S} Rd, Rm, Rs ; shift left Rd=Rm<<Rs (signed, unsigned)
 LSL{S} Rd, Rm, #n ; shift left Rd=Rm<<n (signed, unsigned)
Arithmetic instructions
 ADD{S} {Rd,} Rn, <op2> ; Rd = Rn + op2
 ADD{S} {Rd,} Rn, #im12 ; Rd = Rn + im12, im12 is 0 to 4095
 SUB{S} {Rd,} Rn, <op2> ; Rd = Rn - op2
 SUB{S} {Rd,} Rn, #im12 ; Rd = Rn - im12, im12 is 0 to 4095
 RSB{S} {Rd,} Rn, <op2> ; Rd = op2 - Rn
 RSB{S} {Rd,} Rn, #im12 ; Rd = im12 – Rn
 CMP Rn, <op2> ; Rn – op2 sets the NZVC bits
 CMN Rn, <op2> ; Rn - (-op2) sets the NZVC bits
 MUL{S} {Rd,} Rn, Rm ; Rd = Rn * Rm signed or unsigned
 MLA Rd, Rn, Rm, Ra ; Rd = Ra + Rn*Rm signed or unsigned
 MLS Rd, Rn, Rm, Ra ; Rd = Ra - Rn*Rm signed or unsigned
 UDIV {Rd,} Rn, Rm ; Rd = Rn/Rm unsigned
 SDIV {Rd,} Rn, Rm ; Rd = Rn/Rm signed
Notes Ra Rd Rm Rn Rt represent 32-bit registers
 value any 32-bit value: signed, unsigned, or address
 {S} if S is present, instruction will set condition codes
 #im12 any value from 0 to 4095
 #im16 any value from 0 to 65535
 {Rd,} if Rd is present Rd is destination, otherwise Rn
 #n any value from 0 to 31
 #off any value from -255 to 4095
 label any address within the ROM of the microcontroller
 op2 the value generated by <op2>
Examples of flexible operand <op2> creating the 32-bit number. E.g., Rd = Rn+op2
 ADD Rd, Rn, Rm ; op2 = Rm
 ADD Rd, Rn, Rm, LSL #n ; op2 = Rm<<n Rm is signed, unsigned
 ADD Rd, Rn, Rm, LSR #n ; op2 = Rm>>n Rm is unsigned
 ADD Rd, Rn, Rm, ASR #n ; op2 = Rm>>n Rm is signed
 ADD Rd, Rn, #constant ; op2 = constant, where X and Y are hexadecimal digits:

• produced by shifting an 8-bit unsigned value left by any number of bits
• in the form 0x00XY00XY
• in the form 0xXY00XY00
• in the form 0xXYXYXYXY

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12

R13 (MSP)
R14 (LR)
R15 (PC)

Stack pointer
Link register

Program counter

General
purpose

registers

Condition code bits
N negative
Z zero
V signed overflow
C carry or
 unsigned overflow

256k Flash
ROM

32k RAM

I/O ports

Internal I/O
PPB

0x0000.0000

0x0003.FFFF

0x2000.0000

0x2000.7FFF

0x4000.0000

0x400F.FFFF

0xE000.0000

0xE004.1FFF

	Exam 1
	UT EID:
	Instructions:
	LDRSH Rd, [Rn,#off] ; load signed 16-bit at [Rn+off] to Rd
	LDRSB Rd, [Rn,#off] ; load signed 8-bit at [Rn+off] to Rd
	Branch instructions
	Interrupt instructions
	Logical instructions
	BIC{S} {Rd,} Rn, <op2> ; Rd=Rn&(~op2) (op2 is 32 bits)
	ORN{S} {Rd,} Rn, <op2> ; Rd=Rn|(~op2) (op2 is 32 bits)
	Arithmetic instructions
	ADD{S} {Rd,} Rn, <op2> ; Rd = Rn + op2
	ADD{S} {Rd,} Rn, #im12 ; Rd = Rn + im12, im12 is 0 to 4095
	SUB{S} {Rd,} Rn, <op2> ; Rd = Rn - op2
	SUB{S} {Rd,} Rn, #im12 ; Rd = Rn - im12, im12 is 0 to 4095
	RSB{S} {Rd,} Rn, <op2> ; Rd = op2 - Rn
	RSB{S} {Rd,} Rn, #im12 ; Rd = im12 – Rn
	Notes Ra Rd Rm Rn Rt represent 32-bit registers
	ADD Rd, Rn, Rm ; op2 = Rm
	ADD Rd, Rn, Rm, LSL #n ; op2 = Rm<<n Rm is signed, unsigned
	ADD Rd, Rn, Rm, LSR #n ; op2 = Rm>>n Rm is unsigned
	ADD Rd, Rn, Rm, ASR #n ; op2 = Rm>>n Rm is signed
	ADD Rd, Rn, #constant ; op2 = constant, where X and Y are hexadecimal digits:

