

Exam 1
Date: Oct 4, 2017

UT EID: Professor: Valvano

Printed Name:

Last, First

Your signature is your promise that you have not cheated and will not cheat on this exam, nor will you help others to
cheat on this exam:

Signature:

Instructions:
• Closed book and closed notes. No books, no papers, no data sheets (other than the last two pages of this

Exam)
• No devices other than pencil, pen, eraser (no calculators, no electronic devices), please turn cell phones off.
• Please be sure that your answers to all questions (and all supporting work that is required) are contained in

the space (boxes) provided. Anything outside the boxes/blanks will be ignored in grading. You may use the
back of the sheets for scratch work.

• You have 75 minutes, so allocate your time accordingly.
• For all questions, unless otherwise stated, find the most efficient (time, resources) solution.
• Unless otherwise stated, make all I/O accesses friendly.
• Please read the entire exam before starting.

Problem 1 12

Problem 2 8

Problem 3 10

Problem 4 15

Problem 5 10

Problem 6 15

Problem 7 20

Problem 8 10

Total 100

EID:____________ Initials:______

EE319K Fall 2017 Exam 1 Valvano Oct 4, 2017 3:00pm-4:15pm Page 2

(12) Question 1. Short answers.

(2) Part a) What are the two output states of open collector logic
as used by the 7406 LED driver?

(2) Part b) Does the equation power = voltage*current apply to both
resistors and LEDs? Answer yes or no.

(2) Part c) What does nonvolatile mean in context of computer memory?

(2) Part d) For what values of R0 does this code branch?

ORRS R0,R0,#4
 BNE FunTimes

(2) Part e) Considering R0 as input and R1 as output,
what is the mathematical relationship between R1 and R0?

LSL R1,R0,#4
SUB R1,R1,R0

(2) Part f) If you add an n-bit signed number to an m-bit signed
number, what is the maximum number of bits in the sum?
Assume n ≥ m.

EID:____________ Initials:______

EE319K Fall 2017 Exam 1 Valvano Oct 4, 2017 3:00pm-4:15pm Page 3

(8) Question 2. Assume an 8-bit value has binary of 10010010.
What is the 8-bit value in unsigned hexadecimal format?

What is the 8-bit value in unsigned decimal format?

What is the 8-bit value in signed decimal format?

(10) Question 3 Assume Data is an 8-bit unsigned global variable in RAM.
uint8_t Data;

Write assembly code that performs the following C code (no function, just assembly code),
 if(Data >= 32){
 Data = 255; // ceiling
 }else{
 Data = Data<<3;
 }

EID:____________ Initials:______

EE319K Fall 2017 Exam 1 Valvano Oct 4, 2017 3:00pm-4:15pm Page 4

(15) Question 4. Consider the following C function with two inputs and one output.
uint32_t func(uint32_t in1, uint32_t in2){
 uint32_t out;
 out = 1;
 while(in1 >= in2){
 out = out*in2;
 in2 = in2 + 1;
 }
 return out;
}
(5) Part a) Assume x is a 32-bit unsigned global variable. If we were to execute
x=func(6,4); what would be the value of x?

(10) Part b) Write func in assembly using AAPCS

EID:____________ Initials:______

EE319K Fall 2017 Exam 1 Valvano Oct 4, 2017 3:00pm-4:15pm Page 5

(10) Question 5. Please read this question carefully. Consider initialization code for a regular
GPIO pin PE0. You will need to use some choices (A – E) more than once. Consider the
following shorthand codes for 5 bits that need to be set during initialization

Clk = SYSCTL_RCGCGPIO_R (bit 4) GPIO clock register
Dir = GPIO_PORTE_DIR_R (bit 0) Direction register
Pur = GPIO_PORTE_PUR_R (bit 0) Pull up register
Pdr = GPIO_PORTE_PDR_R (bit 0) Pull down register
Den = GPIO_PORTE_DEN_R (bit 0) Data enable register

For each of the ten cases, choose the description that best fits
A) PE0 cannot be used for input or output
B) PE0 is a regular output, where the output will be 0 or 3.3V
C) PE0 is a regular input, where input must be 0 or 3.3V
D) PE0 is an input used with a negative logic switch and no external resistor
E) PE0 is an input used with a positive logic switch and no external resistor

Clk Dir Pur Pdr Den Place A, B, C, D, or E

0

0

0

0

1

1

0

0

0

1

1

0

0

0

0

1

1

0

0

1

1

1

0

0

0

0

1

0

0

1

1

0

1

0

1

1

0

0

1

0

1

0

0

1

1

1

0

1

1

0

EID:____________ Initials:______

EE319K Fall 2017 Exam 1 Valvano Oct 4, 2017 3:00pm-4:15pm Page 6

Initial PC
Initial SP

(15) Question 6. Assume the value of the Stack pointer (SP) is 0x20000FF8 when the
following code sequence starts execution (i.e., PC=0x00001000). The initial memory contents
in and around the SP are given on the right. When drawing the stack contents, you need only to
show values on the stack that represent actual valid stack data.

0x00001000 POP {R0,R1}
0x00001004 ADD R2,R0,R1
0x00001008 BL Func B
0x0000100C ...
...
0x00002000 Func PUSH {R2,LR} A
0x00002004 MOV R2,R1
0x00002008 MUL R0,R2
0x0000200C ADD R0,R1
0x00002010 POP {R2,PC}

0x20000FF4 1
0x20000FF8 2
0x20000FFC 3
0x20001000 4
0x20001004 5
0x20001008 6
0x2000100C 7

(6) Part a) Give the SP value and stack contents after executing of the PUSH instruction, as shown by
arrow A:

0x20000FF4
0x20000FF8
0x20000FFC
0x20001000
0x20001004
0x20001008
0x2000100C

(10) Part b) Give the SP value and stack contents while executing the instruction at memory location
0x0000100C as shown by the arrow B. Also give the values stored in R0, R1, and R2.

0x20000FF4
0x20000FF8
0x20000FFC
0x20001000
0x20001004
0x20001008
0x2000100C

SP =

SP =

R0 =

R1 =

R2 =

EID:____________ Initials:______

EE319K Fall 2017 Exam 1 Valvano Oct 4, 2017 3:00pm-4:15pm Page 7

(20) Question 7. Assume the microcontroller’s output voltage high is 3.3V. Assume the
microcontroller’s output voltage low is 0V. The VOL for the 7406 driver is 0.5V. Pick resistors
appropriately and assume you have 5V, 3.3V, and ground to which you can connect your
components. The symbols for each part are given below for your convenience – use the minimum
number of parts to construct the interface.
Part a) Interface the LED to Port B bit 7 (PB7) using negative logic. The LED operating point is
2.3V at 2mA.

PB7

Microcontroller

7406

+3.3V
+5V

0V

Part b) Interface this single pole double throw switch to the microcontroller PB6 input. The
switch has two possibilities. The first case is the C pin is connected to the L pin. For this case,
make PB6 low. The second case is the C pin is connected to the R pin. For this case, make PB6
high. The L pin is never connected to the R pin, and the C pin is connected to either L or R.

PB6

Microcontroller

+3.3V

0V

C

L R

Show calculations for selecting
resistor value(s)

EID:____________ Initials:______

EE319K Fall 2017 Exam 1 Valvano Oct 4, 2017 3:00pm-4:15pm Page 8

(10) Question 8. You may assume the PortE_Init function initializes PE1-PE0 as inputs, and
initializes PE3-PE2 as outputs. Write the C code for this main program that performs both these
two tasks over and over indefinitely:
Task 1) if PE1 equals PE0, then set PE3 high, otherwise set PE3 low;
Task 2) A trigger event is defined as the rising edge of PE0 (last time it was low, this time it is
high). On the 10th trigger event, set PE2 high. Once PE2 is high it will remain high. Perform
friendly output on Port E. You may assume the time PE0 is low and the time it is high are long
compared to the time it takes the software to execute the loop once.

PE0

PE2

You may add local variables, and you may execute code before the while(1) statement. You will
read and write to the Port E data register GPIO_PORTE_DATA_R.

int main(void){

 PortE_Init(); // you do not need to write this

 while(1){

EE319K Reference sheet

Memory access instructions
 LDR Rd, [Rn] ; load 32-bit number at [Rn] to Rd
 LDR Rd, [Rn,#off] ; load 32-bit number at [Rn+off] to Rd
 LDR Rd, =value ; set Rd equal to any 32-bit value (PC rel)
 LDRH Rd, [Rn] ; load unsigned 16-bit at [Rn] to Rd
 LDRH Rd, [Rn,#off] ; load unsigned 16-bit at [Rn+off] to Rd
 LDRSH Rd, [Rn] ; load signed 16-bit at [Rn] to Rd
 LDRSH Rd, [Rn,#off] ; load signed 16-bit at [Rn+off] to Rd
 LDRB Rd, [Rn] ; load unsigned 8-bit at [Rn] to Rd
 LDRB Rd, [Rn,#off] ; load unsigned 8-bit at [Rn+off] to Rd
 LDRSB Rd, [Rn] ; load signed 8-bit at [Rn] to Rd
 LDRSB Rd, [Rn,#off] ; load signed 8-bit at [Rn+off] to Rd
 STR Rt, [Rn] ; store 32-bit Rt to [Rn]
 STR Rt, [Rn,#off] ; store 32-bit Rt to [Rn+off]
 STRH Rt, [Rn] ; store least sig. 16-bit Rt to [Rn]
 STRH Rt, [Rn,#off] ; store least sig. 16-bit Rt to [Rn+off]
 STRB Rt, [Rn] ; store least sig. 8-bit Rt to [Rn]
 STRB Rt, [Rn,#off] ; store least sig. 8-bit Rt to [Rn+off]
 PUSH {Rt} ; push 32-bit Rt onto stack
 POP {Rd} ; pop 32-bit number from stack into Rd
 ADR Rd, label ; set Rd equal to the address at label
 MOV{S} Rd, <op2> ; set Rd equal to op2
 MOV Rd, #im16 ; set Rd equal to im16, im16 is 0 to 65535
 MVN{S} Rd, <op2> ; set Rd equal to -op2
Branch instructions
 B label ; branch to label Always
 BEQ label ; branch if Z == 1 Equal
 BNE label ; branch if Z == 0 Not equal
 BCS label ; branch if C == 1 Higher or same, unsigned ≥
 BHS label ; branch if C == 1 Higher or same, unsigned ≥
 BCC label ; branch if C == 0 Lower, unsigned <
 BLO label ; branch if C == 0 Lower, unsigned <
 BMI label ; branch if N == 1 Negative
 BPL label ; branch if N == 0 Positive or zero
 BVS label ; branch if V == 1 Overflow
 BVC label ; branch if V == 0 No overflow
 BHI label ; branch if C==1 and Z==0 Higher, unsigned >
 BLS label ; branch if C==0 or Z==1 Lower or same, unsigned ≤
 BGE label ; branch if N == V Greater than or equal, signed ≥
 BLT label ; branch if N != V Less than, signed <
 BGT label ; branch if Z==0 and N==V Greater than, signed >
 BLE label ; branch if Z==1 or N!=V Less than or equal, signed ≤
 BX Rm ; branch indirect to location specified by Rm
 BL label ; branch to subroutine at label, return address in LR
 BLX Rm ; branch to subroutine indirect specified by Rm
Interrupt instructions
 CPSIE I ; enable interrupts (I=0)
 CPSID I ; disable interrupts (I=1)

Logical instructions
 AND{S} {Rd,} Rn, <op2> ; Rd=Rn&op2 (op2 is 32 bits)
 ORR{S} {Rd,} Rn, <op2> ; Rd=Rn|op2 (op2 is 32 bits)
 EOR{S} {Rd,} Rn, <op2> ; Rd=Rn^op2 (op2 is 32 bits)
 BIC{S} {Rd,} Rn, <op2> ; Rd=Rn&(~op2) (op2 is 32 bits)
 ORN{S} {Rd,} Rn, <op2> ; Rd=Rn|(~op2) (op2 is 32 bits)
 LSR{S} Rd, Rm, Rs ; logical shift right Rd=Rm>>Rs (unsigned)
 LSR{S} Rd, Rm, #n ; logical shift right Rd=Rm>>n (unsigned)

EE319K Reference sheet

 ASR{S} Rd, Rm, Rs ; arithmetic shift right Rd=Rm>>Rs (signed)
 ASR{S} Rd, Rm, #n ; arithmetic shift right Rd=Rm>>n (signed)
 LSL{S} Rd, Rm, Rs ; shift left Rd=Rm<<Rs (signed, unsigned)
 LSL{S} Rd, Rm, #n ; shift left Rd=Rm<<n (signed, unsigned)
Arithmetic instructions
 ADD{S} {Rd,} Rn, <op2> ; Rd = Rn + op2
 ADD{S} {Rd,} Rn, #im12 ; Rd = Rn + im12, im12 is 0 to 4095
 SUB{S} {Rd,} Rn, <op2> ; Rd = Rn - op2
 SUB{S} {Rd,} Rn, #im12 ; Rd = Rn - im12, im12 is 0 to 4095
 RSB{S} {Rd,} Rn, <op2> ; Rd = op2 - Rn
 RSB{S} {Rd,} Rn, #im12 ; Rd = im12 – Rn
 CMP Rn, <op2> ; Rn – op2 sets the NZVC bits
 CMN Rn, <op2> ; Rn - (-op2) sets the NZVC bits
 MUL{S} {Rd,} Rn, Rm ; Rd = Rn * Rm signed or unsigned
 MLA Rd, Rn, Rm, Ra ; Rd = Ra + Rn*Rm signed or unsigned
 MLS Rd, Rn, Rm, Ra ; Rd = Ra - Rn*Rm signed or unsigned
 UDIV {Rd,} Rn, Rm ; Rd = Rn/Rm unsigned
 SDIV {Rd,} Rn, Rm ; Rd = Rn/Rm signed
Notes Ra Rd Rm Rn Rt represent 32-bit registers
 value any 32-bit value: signed, unsigned, or address
 {S} if S is present, instruction will set condition codes
 #im12 any value from 0 to 4095
 #im16 any value from 0 to 65535
 {Rd,} if Rd is present Rd is destination, otherwise Rn
 #n any value from 0 to 31
 #off any value from -255 to 4095
 label any address within the ROM of the microcontroller
 op2 the value generated by <op2>
Examples of flexible operand <op2> creating the 32-bit number. E.g., Rd = Rn+op2
 ADD Rd, Rn, Rm ; op2 = Rm
 ADD Rd, Rn, Rm, LSL #n ; op2 = Rm<<n Rm is signed, unsigned
 ADD Rd, Rn, Rm, LSR #n ; op2 = Rm>>n Rm is unsigned
 ADD Rd, Rn, Rm, ASR #n ; op2 = Rm>>n Rm is signed
 ADD Rd, Rn, #constant ; op2 = constant, where X and Y are hexadecimal digits:

• produced by shifting an 8-bit unsigned value left by any number of bits
• in the form 0x00XY00XY
• in the form 0xXY00XY00
• in the form 0xXYXYXYXY

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12

R13 (MSP)
R14 (LR)
R15 (PC)

Stack pointer
Link register

Program counter

General
purpose

registers

Condition code bits
N negative
Z zero
V signed overflow
C carry or
 unsigned overflow

256k Flash
ROM

32k RAM

I/O ports

Internal I/O
PPB

0x0000.0000

0x0003.FFFF

0x2000.0000

0x2000.7FFF

0x4000.0000

0x400F.FFFF

0xE000.0000

0xE004.1FFF

	Exam 1
	UT EID: Professor: Valvano
	Instructions:
	LDRSH Rd, [Rn,#off] ; load signed 16-bit at [Rn+off] to Rd
	LDRSB Rd, [Rn,#off] ; load signed 8-bit at [Rn+off] to Rd
	Branch instructions
	Interrupt instructions
	Logical instructions
	BIC{S} {Rd,} Rn, <op2> ; Rd=Rn&(~op2) (op2 is 32 bits)
	ORN{S} {Rd,} Rn, <op2> ; Rd=Rn|(~op2) (op2 is 32 bits)
	Arithmetic instructions
	ADD{S} {Rd,} Rn, <op2> ; Rd = Rn + op2
	ADD{S} {Rd,} Rn, #im12 ; Rd = Rn + im12, im12 is 0 to 4095
	SUB{S} {Rd,} Rn, <op2> ; Rd = Rn - op2
	SUB{S} {Rd,} Rn, #im12 ; Rd = Rn - im12, im12 is 0 to 4095
	RSB{S} {Rd,} Rn, <op2> ; Rd = op2 - Rn
	RSB{S} {Rd,} Rn, #im12 ; Rd = im12 – Rn
	Notes Ra Rd Rm Rn Rt represent 32-bit registers
	ADD Rd, Rn, Rm ; op2 = Rm
	ADD Rd, Rn, Rm, LSL #n ; op2 = Rm<<n Rm is signed, unsigned
	ADD Rd, Rn, Rm, LSR #n ; op2 = Rm>>n Rm is unsigned
	ADD Rd, Rn, Rm, ASR #n ; op2 = Rm>>n Rm is signed
	ADD Rd, Rn, #constant ; op2 = constant, where X and Y are hexadecimal digits:

