

Exam 1
Date: Oct 4, 2018

UT EID: Professor: Valvano

Printed Name:

Last, First

Your signature is your promise that you have not cheated and will not cheat on this exam, nor will you help others to
cheat on this exam:

Signature:

Instructions:
• Closed book and closed notes. No books, no papers, no data sheets (other than the last two pages of this

Exam)
• No devices other than pencil, pen, eraser (no calculators, no electronic devices), please turn cell phones off.
• Please be sure that your answers to all questions (and all supporting work that is required) are contained in

the space (boxes) provided. Anything outside the boxes/blanks will be ignored in grading. You may use the
back of the sheets for scratch work.

• You have 75 minutes, so allocate your time accordingly.
• For all questions, unless otherwise stated, find the most efficient (time, resources) solution.
• Unless otherwise stated, make all I/O accesses friendly.
• Please read the entire exam before starting.

Problem 1 14

Problem 2 16

Problem 3 15

Problem 4 20

Problem 5 10

Problem 6 25

Total 100

EID:____________ Initials:______

EE319K Fall 2018 Exam 1 Valvano Oct 4, 2018 12:30pm-1:45pm Page 2

(14) Question 1. For each of the following components, decide where to place it within the memory
map of the microcontroller. Multiple choice select: RAM, ROM, or other. Select other if the
component is neither in RAM or ROM. There is one correct answer for each component.

(2) Part a) Registers (e.g., R0, R1, … themselves) …………………………………….

(2) Part b) Global variables …………………..…………………..………

(2) Part c) Reset vector (value to which the PC is initialized on power up ….

(2) Part d) The stack …………………………………………………………….

(2) Part e) Port E direction register (the register itself) …………………….

(4) Part f) A table representing all possible outputs
of a sine wave as a function of all possible inputs ………………..……….
as illustrated in the following figure

other

RAM

ROM

RAM

other

ROM

EID:____________ Initials:______

EE319K Fall 2018 Exam 1 Valvano Oct 4, 2018 12:30pm-1:45pm Page 3

(8) Question 2a. Assume initially R4=4, R5=5, R6=6, and R7=7.
Consider the following assembly code

 PUSH {R5,R6}
 ASR R4,R4,R7
 EOR R7,R5,R6
 PUSH {R7,R4}
 POP {R7,R5,R4,R6}

After executing these five instructions, what will
be the final values for these four registers?

(5) Question 2b. Consider this one stack instruction. Neglect AAPCS for this one question
 POP {R0}
Consider the following actions
A) Read 8 bits from memory at SP into R0 B) Read 16 bits from memory at SP into R0
C) Read 32 bits from memory at SP into R0 D) Write 8 bits from R0 into memory at SP
E) Write 16 bits from R0 into memory at SP F) Write 32 bits from R0 into memory at SP
G) SP = SP+1 H) SP = SP+2
I) SP = SP+4 J) SP = SP+8
K) SP = SP-1 L) SP = SP-2
M) SP = SP-4 N) SP = SP-8

Give the sequence of operations that occur when the
POP {R0} instruction is executed on the Cortex M. The machine
code for the instruction requires 16 bits or 2 bytes. Give your answer
as an ordered sequence of the letters from A to N.

(3) Question 2c. Consider how the following function uses the stack
Fun PUSH {R4,R14}
;
; a bunch of assembly instructions that do not affect the stack
;
 POP {R4,R13}
What happens when the POP instruction is executed? Specify the one letter that best describes
the effect of this POP instruction.

A) The values of R4 and R14 are swapped
B) This is a nonsensical operation, and therefore it will not assemble

because one cannot pop into the R13
C) A hard fault will occur at run time because the R13 will be pointing into ROM
D) Execution is returned to program that called the subroutine (a normal function return)
E) The program will jump to an unknown location within the software
F) None of the above

R4= 0

R5= 3

R6= 5

R7= 6

C,I

B

EID:____________ Initials:______

EE319K Fall 2018 Exam 1 Valvano Oct 4, 2018 12:30pm-1:45pm Page 4

(15) Question 3. Consider the following two assembly functions, Out and Func. You may
assume Port B is already initialized as an 8-bit output port.
Out ORR R0,R0,#0x80 ; R0 is input called data
 LDR R1,=GPIO_PORTB_DATA_R
 STR R0,[R1] ; output to Port B
 BX LR ; no return value
Func PUSH {R4,R5,R6,LR} ; R0 is input parameter called count
 MOV R4,R0 ; R4 contains the parameter count
 MOV R5,#0
loop CMP R5,R4
 BHS done
 MOV R0,R5 ; set data parameter for function call to Out
 BL Out
 ADD R5,R5,#1
 B loop
done MOV R0,#1 ; return 1 meaning success
 POP {R4,R5,R6,LR}
 BX LR ; there is a return parameter, and the value is 1

Rewrite both Out and Func functions in C (do not combine into one function)

#define GPIO_PORTB_DATA_R (*((volatile uint32_t *)0x400053FC)) // data register

EID:____________ Initials:______

EE319K Fall 2018 Exam 1 Valvano Oct 4, 2018 12:30pm-1:45pm Page 5

(20) Question 4. Assume the microcontroller’s output voltage high is 3.3V. Assume the
microcontroller’s output voltage low is 0V. The VOL for the ULN2003 driver is 0.5V. Pick
resistor(s) appropriately and assume you have 5V, 3.3V, and ground to which you can connect
your components. The symbols for each part are given below for your convenience – use the
minimum number of parts to construct each interface.
Part a) Interface the LED to Port B bit 2 using positive logic. The LED operating point is 2.5V
at 50mA. Show the circuit and calculate value(s) for any resistor(s) needed.

PB2

Microcontroller

ULN2003

+3.3V
+5V

0V

Part b) Interface this switch to the microcontroller Port B bit 6
using negative logic. Include a 10 kΩ external resistor.

PB6

Microcontroller

ULN2003

+3.3V
+5V

0V

Show calculations for selecting
resistor value(s)

100
75
50
25
0

-25
-50
-75

-100
mA-2 -1 0 +1 +2 +3 +4 V

Part c) Sketch the approximate
current versus voltage response of
the LED used in part a). The curve
goes through 50mA at 2.5V.

EID:____________ Initials:______

EE319K Fall 2018 Exam 1 Valvano Oct 4, 2018 12:30pm-1:45pm Page 6

(10) Question 5. Write the C function to initialize Port B so that PB2 is an output and PB6 is an
input. You do not need to set any of the PDR PUR AFSEL AMSEL or PCTL registers. Make
your solution friendly. You will need to access some or all of these registers.

#define GPIO_PORTB_DATA_R (*((volatile uint32_t *)0x400053FC)) // data register
#define GPIO_PORTB_DIR_R (*((volatile uint32_t *)0x40005400)) // direction register
#define GPIO_PORTB_DEN_R (*((volatile uint32_t *)0x4000551C)) // enable register
#define SYSCTL_RCGCGPIO_R (*((volatile uint32_t *)0x400FE608)) // clock register

EID:____________ Initials:______

EE319K Fall 2018 Exam 1 Valvano Oct 4, 2018 12:30pm-1:45pm Page 7

 (25) Question 6. In this question you will write software to control an insulin pump. You may
assume the PortB_Init function initializes PB5-PB0 as inputs, and initializes PB7-PB6 as
outputs. PB6 is an alarm output, and PB7 is the pump output. You do not write PortB_Init.
Write the assembly code that performs both these steps over and over indefinitely:

If PB5 equals 0, then set both PB6 and PB7 low;
If PB5 equals 1, the device is active and you should perform these steps
 Read PB4-PB0, the glucose level is unsigned 5-bit number from 0 to 31
 If the glucose level is less than 5, turn on PB6 alarm (otherwise turn PB6 off)
 If the glucose level is greater than 10, turn on PB7 pump (otherwise turn PB7 off)

GPIO_PORTB_DATA_R EQU 0x400053FC

start
 BL PortB_Init ;

EE319K Reference sheet

Memory access instructions
 LDR Rd, [Rn] ; load 32-bit number at [Rn] to Rd
 LDR Rd, [Rn,#off] ; load 32-bit number at [Rn+off] to Rd
 LDR Rd, =value ; set Rd equal to any 32-bit value (PC rel)
 LDRH Rd, [Rn] ; load unsigned 16-bit at [Rn] to Rd
 LDRH Rd, [Rn,#off] ; load unsigned 16-bit at [Rn+off] to Rd
 LDRSH Rd, [Rn] ; load signed 16-bit at [Rn] to Rd
 LDRSH Rd, [Rn,#off] ; load signed 16-bit at [Rn+off] to Rd
 LDRB Rd, [Rn] ; load unsigned 8-bit at [Rn] to Rd
 LDRB Rd, [Rn,#off] ; load unsigned 8-bit at [Rn+off] to Rd
 LDRSB Rd, [Rn] ; load signed 8-bit at [Rn] to Rd
 LDRSB Rd, [Rn,#off] ; load signed 8-bit at [Rn+off] to Rd
 STR Rt, [Rn] ; store 32-bit Rt to [Rn]
 STR Rt, [Rn,#off] ; store 32-bit Rt to [Rn+off]
 STRH Rt, [Rn] ; store least sig. 16-bit Rt to [Rn]
 STRH Rt, [Rn,#off] ; store least sig. 16-bit Rt to [Rn+off]
 STRB Rt, [Rn] ; store least sig. 8-bit Rt to [Rn]
 STRB Rt, [Rn,#off] ; store least sig. 8-bit Rt to [Rn+off]
 PUSH {Rt} ; push 32-bit Rt onto stack
 POP {Rd} ; pop 32-bit number from stack into Rd
 ADR Rd, label ; set Rd equal to the address at label
 MOV{S} Rd, <op2> ; set Rd equal to op2
 MOV Rd, #im16 ; set Rd equal to im16, im16 is 0 to 65535
 MVN{S} Rd, <op2> ; set Rd equal to -op2
Branch instructions
 B label ; branch to label Always
 BEQ label ; branch if Z == 1 Equal
 BNE label ; branch if Z == 0 Not equal
 BCS label ; branch if C == 1 Higher or same, unsigned ≥
 BHS label ; branch if C == 1 Higher or same, unsigned ≥
 BCC label ; branch if C == 0 Lower, unsigned <
 BLO label ; branch if C == 0 Lower, unsigned <
 BMI label ; branch if N == 1 Negative
 BPL label ; branch if N == 0 Positive or zero
 BVS label ; branch if V == 1 Overflow
 BVC label ; branch if V == 0 No overflow
 BHI label ; branch if C==1 and Z==0 Higher, unsigned >
 BLS label ; branch if C==0 or Z==1 Lower or same, unsigned ≤
 BGE label ; branch if N == V Greater than or equal, signed ≥
 BLT label ; branch if N != V Less than, signed <
 BGT label ; branch if Z==0 and N==V Greater than, signed >
 BLE label ; branch if Z==1 or N!=V Less than or equal, signed ≤
 BX Rm ; branch indirect to location specified by Rm
 BL label ; branch to subroutine at label, return address in LR
 BLX Rm ; branch to subroutine indirect specified by Rm
Interrupt instructions
 CPSIE I ; enable interrupts (I=0)
 CPSID I ; disable interrupts (I=1)

Logical instructions
 AND{S} {Rd,} Rn, <op2> ; Rd=Rn&op2 (op2 is 32 bits)
 ORR{S} {Rd,} Rn, <op2> ; Rd=Rn|op2 (op2 is 32 bits)
 EOR{S} {Rd,} Rn, <op2> ; Rd=Rn^op2 (op2 is 32 bits)
 BIC{S} {Rd,} Rn, <op2> ; Rd=Rn&(~op2) (op2 is 32 bits)
 ORN{S} {Rd,} Rn, <op2> ; Rd=Rn|(~op2) (op2 is 32 bits)
 LSR{S} Rd, Rm, Rs ; logical shift right Rd=Rm>>Rs (unsigned)
 LSR{S} Rd, Rm, #n ; logical shift right Rd=Rm>>n (unsigned)

EE319K Reference sheet

 ASR{S} Rd, Rm, Rs ; arithmetic shift right Rd=Rm>>Rs (signed)
 ASR{S} Rd, Rm, #n ; arithmetic shift right Rd=Rm>>n (signed)
 LSL{S} Rd, Rm, Rs ; shift left Rd=Rm<<Rs (signed, unsigned)
 LSL{S} Rd, Rm, #n ; shift left Rd=Rm<<n (signed, unsigned)
Arithmetic instructions
 ADD{S} {Rd,} Rn, <op2> ; Rd = Rn + op2
 ADD{S} {Rd,} Rn, #im12 ; Rd = Rn + im12, im12 is 0 to 4095
 SUB{S} {Rd,} Rn, <op2> ; Rd = Rn - op2
 SUB{S} {Rd,} Rn, #im12 ; Rd = Rn - im12, im12 is 0 to 4095
 RSB{S} {Rd,} Rn, <op2> ; Rd = op2 - Rn
 RSB{S} {Rd,} Rn, #im12 ; Rd = im12 – Rn
 CMP Rn, <op2> ; Rn – op2 sets the NZVC bits
 CMN Rn, <op2> ; Rn - (-op2) sets the NZVC bits
 MUL{S} {Rd,} Rn, Rm ; Rd = Rn * Rm signed or unsigned
 MLA Rd, Rn, Rm, Ra ; Rd = Ra + Rn*Rm signed or unsigned
 MLS Rd, Rn, Rm, Ra ; Rd = Ra - Rn*Rm signed or unsigned
 UDIV {Rd,} Rn, Rm ; Rd = Rn/Rm unsigned
 SDIV {Rd,} Rn, Rm ; Rd = Rn/Rm signed
Notes Ra Rd Rm Rn Rt represent 32-bit registers
 value any 32-bit value: signed, unsigned, or address
 {S} if S is present, instruction will set condition codes
 #im12 any value from 0 to 4095
 #im16 any value from 0 to 65535
 {Rd,} if Rd is present Rd is destination, otherwise Rn
 #n any value from 0 to 31
 #off any value from -255 to 4095
 label any address within the ROM of the microcontroller
 op2 the value generated by <op2>
Examples of flexible operand <op2> creating the 32-bit number. E.g., Rd = Rn+op2
 ADD Rd, Rn, Rm ; op2 = Rm
 ADD Rd, Rn, Rm, LSL #n ; op2 = Rm<<n Rm is signed, unsigned
 ADD Rd, Rn, Rm, LSR #n ; op2 = Rm>>n Rm is unsigned
 ADD Rd, Rn, Rm, ASR #n ; op2 = Rm>>n Rm is signed
 ADD Rd, Rn, #constant ; op2 = constant, where X and Y are hexadecimal digits:

• produced by shifting an 8-bit unsigned value left by any number of bits
• in the form 0x00XY00XY
• in the form 0xXY00XY00
• in the form 0xXYXYXYXY

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12

R13 (MSP)
R14 (LR)
R15 (PC)

Stack pointer
Link register

Program counter

General
purpose

registers

Condition code bits
N negative
Z zero
V signed overflow
C carry or
 unsigned overflow

256k Flash
ROM

32k RAM

I/O ports

Internal I/O
PPB

0x0000.0000

0x0003.FFFF

0x2000.0000

0x2000.7FFF

0x4000.0000

0x400F.FFFF

0xE000.0000

0xE004.1FFF

	Exam 1
	UT EID: Professor: Valvano
	Instructions:
	LDRSH Rd, [Rn,#off] ; load signed 16-bit at [Rn+off] to Rd
	LDRSB Rd, [Rn,#off] ; load signed 8-bit at [Rn+off] to Rd
	Branch instructions
	Interrupt instructions
	Logical instructions
	BIC{S} {Rd,} Rn, <op2> ; Rd=Rn&(~op2) (op2 is 32 bits)
	ORN{S} {Rd,} Rn, <op2> ; Rd=Rn|(~op2) (op2 is 32 bits)
	Arithmetic instructions
	ADD{S} {Rd,} Rn, <op2> ; Rd = Rn + op2
	ADD{S} {Rd,} Rn, #im12 ; Rd = Rn + im12, im12 is 0 to 4095
	SUB{S} {Rd,} Rn, <op2> ; Rd = Rn - op2
	SUB{S} {Rd,} Rn, #im12 ; Rd = Rn - im12, im12 is 0 to 4095
	RSB{S} {Rd,} Rn, <op2> ; Rd = op2 - Rn
	RSB{S} {Rd,} Rn, #im12 ; Rd = im12 – Rn
	Notes Ra Rd Rm Rn Rt represent 32-bit registers
	ADD Rd, Rn, Rm ; op2 = Rm
	ADD Rd, Rn, Rm, LSL #n ; op2 = Rm<<n Rm is signed, unsigned
	ADD Rd, Rn, Rm, LSR #n ; op2 = Rm>>n Rm is unsigned
	ADD Rd, Rn, Rm, ASR #n ; op2 = Rm>>n Rm is signed
	ADD Rd, Rn, #constant ; op2 = constant, where X and Y are hexadecimal digits:

