

Exam 1b

Date: Oct 3, 2019

UT EID: Professor: Valvano

Printed Name:

Last, First

Your signature is your promise that you have not cheated and will not cheat on this exam, nor will you help others to
cheat on this exam:

Signature:

Instructions:
 Closed book and closed notes. No books, no papers, no data sheets (other than the last two pages of this

Exam)
 No devices other than pencil, pen, eraser (no calculators, no electronic devices), please turn cell phones off.
 Please be sure that your answers to all questions (and all supporting work that is required) are contained in

the space (boxes) provided. Anything outside the boxes/blanks will be ignored in grading. You may use the
back of the sheets for scratch work.

 You have 75 minutes, so allocate your time accordingly.
 For all questions, unless otherwise stated, find the most efficient (time, resources) solution.
 Unless otherwise stated, make all I/O accesses friendly and all subroutines AAPCS compliant.
 Please read the entire exam before starting.

EID:____________ Initials:______

EE319K Fall 2019 Exam 1b Valvano Oct 3, 2019 12:30pm-1:45pm Page 2

(10) Question 1.
(2) Part a) Which equation describes the power dissipated in a resistor? …………
A) P = V/I B) P = V2*R
C) P = I2*R D) P = V/R2
E) Some of A – D F) None of A – D

(2) Part b) If you multiply an n-bit unsigned number to an m-bit unsigned number,
what is the maximum number of bits in the product? Assume n ≥ m. ………………………….

(2) Part c) Assume you add two signed 32-bit numbers using the
ADDS R2,R1,R0 instruction. Which bit is set on overflow? ………………..………

(2) Part d) Sketch an approximate plot of LED current as a function of LED voltage:

(2) Part e) What is the scope of a local variable in C? …………………………….

(2) Part f) Where are global variables allocated in C? …………………….

(6) Question 2. Consider a ULN2003 driver chip, where the input In is
connected to B, the emitter is grounded and the output Out is connected to C.

What is the Out if In is 0.0V? ………………

What is Out if In is 3.3V? ………………

F) none, P=V*I, there is
no R for LEDs

n+m

V-bit is set for signed overflow

D) Permanent, they always exist, in RAM

B) Restricted, accessible only within the
function

ULN2003B

In Out
CB

E
Floating, off, not driven, or hiZ

Low, or 0V (any voltage from 0
to 0.5V is ok)

V

I

EID:____________ Initials:______

EE319K Fall 2019 Exam 1b Valvano Oct 3, 2019 12:30pm-1:45pm Page 3

(12) Question 3. There is an 8-bit unsigned global variable called Stuff.
 AREA DATA,ALIGN=2
Stuff SPACE 1
Write Cortex M assembly subroutine that performs the same operation as this C function

uint8_t Stuff;
void ShiftandAdd(void){
 Stuff = (Stuff>>2)+5;
}

(5) Question 4. There is a 32-bit constant called Thing.
 AREA |.text|, CODE, READONLY, ALIGN=2
Thing DCD 0x9A1234F0
What is the value of R0 in hex after this assembly code is executed?
 LDR R1,=Thing
 LDRSB R0,[R1]

(12) Question 5. Show the declaration of a C function that finds the minimum value of an array.
The length of the array is fixed at 1000. A pointer to the array is passed by reference into the
function. The function returns the smallest value in the array. The function prototype is
int8_t min(int8_t data[1000]);

ShiftandAdd
 LDR R0,=Stuff
 LDRB R1,[R0]
 LSR R1,R1,#2
 ADD R1,R1,#5
 STRB R1,[R0]
 BX LR

C0xFFFFFFF0 (little endian)

int8_t min(int8_t data[1000]){int8_t result;
 result = data[0];
 for(int i=1;i<1000;i++){
 if(result > data[i]){
 result = data[i];
 }
 }
 return result;
}

EID:____________ Initials:______

EE319K Fall 2019 Exam 1b Valvano Oct 3, 2019 12:30pm-1:45pm Page 4

(10) Question 6. Interface eight switches to Port B using negative logic.
(5) Part a) For full credit, design the hardware interface that uses the fewest number of external
components (resistors, LEDs, ULN2003B).

(5) Part b) During initialization what values should to write into the following registers? For
registers you would not initialize, enter NA into the box.

GPIO_PORTB_DATA_R ...

GPIO_PORTB_DIR_R ...

GPIO_PORTB_PUR_R ...

GPIO_PORTB_PDR_R ...

GPIO_PORTB_DEN_R ...

PB7

PB6

PB5

PB4

PB3

PB2

PB1

PB0

+3.3V
+5V

0V

NA

0x00

0xFF

NA or 0

0xFF

EID:____________ Initials:______

EE319K Fall 2019 Exam 1b Valvano Oct 3, 2019 12:30pm-1:45pm Page 5

(10) Question 7. Interface an LED to PA7 using positive logic.
(5) Part a) The desired LED operating point is 2V, 2mA. The microcontroller output high
voltage is 3.2V, the microcontroller output low voltage is 0.2V. The ULN2003 output low
voltage is 0.3V. For full credit, design an interface that uses the fewest number of external
components. Hardware only, no software. For any resistor(s) you use, show your work for
determining the resistor value(s). R = (3.2V-2V)/2mA = 600Ω

(5) Part b) Assume Port A is initialized so PA7 is an output. Write a function in C that accepts
an input parameter (0 or 0x80) and writes to Port A in a friendly manner. Include both the
prototype and the declaration of the function.

#define GPIO_PORTA_DATA_R (*((volatile uint32_t *)0x400043FC))
void LED_Set(uint32_t value);

void LED_Set(uint32_t value){ uint32_t old;
 old = GPIO_PORTA_DATA_R; // previous data
 old = old&(~0x80); // clear bit 7
 GPIO_PORTA_DATA_R = old|value; // new value in bit 7
}
void LED_Set(uint32_t value){
 if(value == 0x80){
 GPIO_PORTA_DATA_R |= 0x80; // turn on
 } else{
 GPIO_PORTA_DATA_R &= ~0x80; // turn off
 }
}

RPA7

Microcontroller

+3.3V
+5V

0V

ULN2003B
CB

E

EID:____________ Initials:______

EE319K Fall 2019 Exam 1b Valvano Oct 3, 2019 12:30pm-1:45pm Page 6

(15) Question 8.

0x00001000 POP {R0,R1}
0x00001004 ADD R2,R0,R1
0x00001008 BL Func
0x0000100C ...
...
0x00002000 Func PUSH {R2,LR} A
0x00002004 MOV R2,R1
0x00002008 MUL R0,R2
0x0000200C ADD R0,R1
0x00002010 POP {R2,PC}

0x20000FF4 1
0x20000FF8 2
0x20000FFC 3
0x20001000 4
0x20001004 5
0x20001008 6
0x2000100C 7

(6) Part a) Give the state of the stack (SP and contents) after executing of the PUSH instruction, as
shown by arrow A: pop (R0,R1}causes R0=3, R1=4, SP = 0x20001004
Add R2,R0,R1 causes R2 = 7
BL causes LR = 0x0000100D
Push R2,LR

0x20000FF4
0x20000FF8
0x20000FFC 7
0x20001000 0x0000100D
0x20001004 5
0x20001008 6
0x2000100C 7

We give full credit for 0x0000100C. On the ARM/Thumb processors, the PC is 32 bits with bit 0
always clear. The processor uses this bit to specify if the destination code is ARM (0) or Thumb
(1). For EE319K this bit will always be 1 for Thumb.

SP = 0x20000FFC

R0 = 3

R1 = 4

R2 = 7

EID:____________ Initials:______

EE319K Fall 2019 Exam 1b Valvano Oct 3, 2019 12:30pm-1:45pm Page 7

 (25) Question 9. In this question there are two microcontrollers, such that the two Port B’s are
connected (PB7 to PB7, PB6 to PB6,…PB0 to PB0). The goal is to send a three bit value from
one microcontroller to the other. The transmit software will be on the left microcontroller. At all
times the transmitter must have exactly one of the Port B pins high. E.g., the 8-bit Port B data
must be 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40 or 0x80. You may assume the transmitter on
the left has initialized all of Port B to be output, and the receiver on the right has initialized all of
Port B to be input. On the transmitter, design an assembly function that accepts a 3-bit value in
R0 (let n be the value in R0, you may assume 0 ≤ n ≤ 7) and write to Port B the value 2n. On the
receiver design an assembly function that reads Port B (knowing the value will be restricted to 2n
for some 0 ≤ n ≤ 7) and returns in R0 the value n.
GPIO_PORTB_DATA_R EQU 0x400053FC

;Input: R0 is 0 to 7
Transmit
 MOV R1,#1
loop CMP R0,#0
 BEQ done
 LSL R1,#1 ;1,2,4,… 0x80
 SUB R0,#1
 B loop
done LDR R0,= GPIO_PORTB_DATA_R
 STR R1,[R0]
 BX LR
Transmit2
 LDR R2,= Table
 LDRB R1,[R2,R0]
 LDR R0,= GPIO_PORTB_DATA_R
 STR R1,[R0]
 BX LR
Table DCB 0x01,0x02,0x04,0x08
 DCB 0x10,0x20,0x40,0x80
Transmit3
 MOV R1,#1
 LSL R2,R1,R0
 LDR R3,= GPIO_PORTB_DATA_R
 STR R2,[R3]
 BX LR

;Output: R0 is 0 to 7
Receive
 LDR R2,= GPIO_PORTB_DATA_R
 LDR R1,[R2]
 MOV R0,#0 ;n
loop2 LSRS R1,#1 ;bit goes into C
 BCS done2
 ADD R0,#1 ;n=n+1
 B loop2
done2 BX LR

Receive2
 LDR R2,= GPIO_PORTB_DATA_R
 LDR R1,[R2]
 CLZ R3,R1 ;count leading zeros
 MOV R0,#32
 SUB R0,R0,R3
 BX LR

EE319K Reference sheet

Memory access instructions
 LDR Rd, [Rn] ; load 32-bit number at [Rn] to Rd
 LDR Rd, [Rn,#off] ; load 32-bit number at [Rn+off] to Rd
 LDR Rd, =value ; set Rd equal to any 32-bit value (PC rel)
 LDRH Rd, [Rn] ; load unsigned 16-bit at [Rn] to Rd
 LDRH Rd, [Rn,#off] ; load unsigned 16-bit at [Rn+off] to Rd
 LDRSH Rd, [Rn] ; load signed 16-bit at [Rn] to Rd
 LDRSH Rd, [Rn,#off] ; load signed 16-bit at [Rn+off] to Rd
 LDRB Rd, [Rn] ; load unsigned 8-bit at [Rn] to Rd
 LDRB Rd, [Rn,#off] ; load unsigned 8-bit at [Rn+off] to Rd
 LDRSB Rd, [Rn] ; load signed 8-bit at [Rn] to Rd
 LDRSB Rd, [Rn,#off] ; load signed 8-bit at [Rn+off] to Rd
 STR Rt, [Rn] ; store 32-bit Rt to [Rn]
 STR Rt, [Rn,#off] ; store 32-bit Rt to [Rn+off]
 STRH Rt, [Rn] ; store least sig. 16-bit Rt to [Rn]
 STRH Rt, [Rn,#off] ; store least sig. 16-bit Rt to [Rn+off]
 STRB Rt, [Rn] ; store least sig. 8-bit Rt to [Rn]
 STRB Rt, [Rn,#off] ; store least sig. 8-bit Rt to [Rn+off]
 PUSH {Rt} ; push 32-bit Rt onto stack
 POP {Rd} ; pop 32-bit number from stack into Rd
 ADR Rd, label ; set Rd equal to the address at label
 MOV{S} Rd, <op2> ; set Rd equal to op2
 MOV Rd, #im16 ; set Rd equal to im16, im16 is 0 to 65535
 MVN{S} Rd, <op2> ; set Rd equal to -op2
Branch instructions
 B label ; branch to label Always
 BEQ label ; branch if Z == 1 Equal
 BNE label ; branch if Z == 0 Not equal
 BCS label ; branch if C == 1 Higher or same, unsigned ≥
 BHS label ; branch if C == 1 Higher or same, unsigned ≥
 BCC label ; branch if C == 0 Lower, unsigned <
 BLO label ; branch if C == 0 Lower, unsigned <
 BMI label ; branch if N == 1 Negative
 BPL label ; branch if N == 0 Positive or zero
 BVS label ; branch if V == 1 Overflow
 BVC label ; branch if V == 0 No overflow
 BHI label ; branch if C==1 and Z==0 Higher, unsigned >
 BLS label ; branch if C==0 or Z==1 Lower or same, unsigned ≤
 BGE label ; branch if N == V Greater than or equal, signed ≥
 BLT label ; branch if N != V Less than, signed <
 BGT label ; branch if Z==0 and N==V Greater than, signed >
 BLE label ; branch if Z==1 or N!=V Less than or equal, signed ≤
 BX Rm ; branch indirect to location specified by Rm
 BL label ; branch to subroutine at label, return address in LR
 BLX Rm ; branch to subroutine indirect specified by Rm
Interrupt instructions
 CPSIE I ; enable interrupts (I=0)
 CPSID I ; disable interrupts (I=1)

Logical instructions
 AND{S} {Rd,} Rn, <op2> ; Rd=Rn&op2 (op2 is 32 bits)
 ORR{S} {Rd,} Rn, <op2> ; Rd=Rn|op2 (op2 is 32 bits)
 EOR{S} {Rd,} Rn, <op2> ; Rd=Rn^op2 (op2 is 32 bits)
 BIC{S} {Rd,} Rn, <op2> ; Rd=Rn&(~op2) (op2 is 32 bits)
 ORN{S} {Rd,} Rn, <op2> ; Rd=Rn|(~op2) (op2 is 32 bits)
 LSR{S} Rd, Rm, Rs ; logical shift right Rd=Rm>>Rs (unsigned)
 LSR{S} Rd, Rm, #n ; logical shift right Rd=Rm>>n (unsigned)

EE319K Reference sheet

 ASR{S} Rd, Rm, Rs ; arithmetic shift right Rd=Rm>>Rs (signed)
 ASR{S} Rd, Rm, #n ; arithmetic shift right Rd=Rm>>n (signed)
 LSL{S} Rd, Rm, Rs ; shift left Rd=Rm<<Rs (signed, unsigned)
 LSL{S} Rd, Rm, #n ; shift left Rd=Rm<<n (signed, unsigned)
Arithmetic instructions
 ADD{S} {Rd,} Rn, <op2> ; Rd = Rn + op2
 ADD{S} {Rd,} Rn, #im12 ; Rd = Rn + im12, im12 is 0 to 4095
 SUB{S} {Rd,} Rn, <op2> ; Rd = Rn - op2
 SUB{S} {Rd,} Rn, #im12 ; Rd = Rn - im12, im12 is 0 to 4095
 RSB{S} {Rd,} Rn, <op2> ; Rd = op2 - Rn
 RSB{S} {Rd,} Rn, #im12 ; Rd = im12 – Rn
 CMP Rn, <op2> ; Rn – op2 sets the NZVC bits
 CMN Rn, <op2> ; Rn - (-op2) sets the NZVC bits
 MUL{S} {Rd,} Rn, Rm ; Rd = Rn * Rm signed or unsigned
 MLA Rd, Rn, Rm, Ra ; Rd = Ra + Rn*Rm signed or unsigned
 MLS Rd, Rn, Rm, Ra ; Rd = Ra - Rn*Rm signed or unsigned
 UDIV {Rd,} Rn, Rm ; Rd = Rn/Rm unsigned
 SDIV {Rd,} Rn, Rm ; Rd = Rn/Rm signed
Notes Ra Rd Rm Rn Rt represent 32-bit registers
 value any 32-bit value: signed, unsigned, or address
 {S} if S is present, instruction will set condition codes
 #im12 any value from 0 to 4095
 #im16 any value from 0 to 65535
 {Rd,} if Rd is present Rd is destination, otherwise Rn
 #n any value from 0 to 31
 #off any value from -255 to 4095
 label any address within the ROM of the microcontroller
 op2 the value generated by <op2>
Examples of flexible operand <op2> creating the 32-bit number. E.g., Rd = Rn+op2
 ADD Rd, Rn, Rm ; op2 = Rm
 ADD Rd, Rn, Rm, LSL #n ; op2 = Rm<<n Rm is signed, unsigned
 ADD Rd, Rn, Rm, LSR #n ; op2 = Rm>>n Rm is unsigned
 ADD Rd, Rn, Rm, ASR #n ; op2 = Rm>>n Rm is signed
 ADD Rd, Rn, #constant ; op2 = constant, where X and Y are hexadecimal digits:

 produced by shifting an 8-bit unsigned value left by any number of bits
 in the form 0x00XY00XY
 in the form 0xXY00XY00
 in the form 0xXYXYXYXY

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12

R13 (MSP)
R14 (LR)
R15 (PC)

Stack pointer
Link register

Program counter

General
purpose

registers

Condition code bits
N negative
Z zero
V signed overflow
C carry or
 unsigned overflow

256k Flash
ROM

32k RAM

I/O ports

Internal I/O
PPB

0x0000.0000

0x0003.FFFF

0x2000.0000

0x2000.7FFF

0x4000.0000

0x400F.FFFF

0xE000.0000

0xE004.1FFF
DCB 1,2,3 ; allocates three 8-bit byte(s)
DCW 1,2,3 ; allocates three 16-bit halfwords
DCD 1,2,3 ; allocates three 32-bit words
SPACE 4 ; reserves 4 bytes

