
The University of Texas at Austin
Department of Electrical and Computer Engineering

Introduction to Embedded Systems
EE319K (Gerstlauer), Spring 2013

Midterm 1 Solutions

Date: February 21, 2013

UT EID:

Printed Name:

Last, First

Your signature is your promise that you have not cheated and will not cheat on this exam, nor
will you help others to cheat on this exam:

Signature:

Instructions:
 Closed book and closed notes.
 No calculators or any electronic devices (turn cell phones off).
 Please be sure that your answers to all questions (and all supporting work that is required)

are contained in the space (boxes) provided.
 Anything outside the boxes will be ignored in grading.
 For all questions, unless otherwise stated, find the most efficient (time, resources)

solution.

Problem 1 10

Problem 2 10

Problem 3 15

Problem 4 20

Problem 5 30

Problem 6 15

Total 100

EE319K (Gerstlauer), Spring 2013, Midterm 1 Solutions 2
Name:

Problem 1 (10 points): Numbers

(a) (5 points) How many bits are minimally needed to represent all days in a year? What C
data type should be used to store such values?

Number of Bits 9 bits

C Data Type uint16_t or unsigned short

(b) (5 points) What values has the 8-bit number 0x70 when converted to decimal and binary
representations?

Signed decimal Unsigned decimal Binary

7 * 16 = 112 7 * 16 = 112 %01110000

Problem 2 (10 points): Interfacing

Interface a switch to (input) port PA7 of the LM3S1968 using negative logic. Assuming that no
current can flow in or out of the LM3S1968 and that the switch is perfect (zero resistance when
closed), what current will flow through the switch when it is closed?

LM3S1968

PA7

+3.3V

10kΩ I = V / R
 = 3.3V / 10kΩ
 = 0.33mA

EE319K (Gerstlauer), Spring 2013, Midterm 1 Solutions 3
Name:

Problem 3 (15 points): Arithmetic and Addressing

(a) (5 points) For the following operation sequence, what will be the value of register R0 and
condition code bits N, Z, V and C after execution of the sequence. Assume all values and
registers are 8-bit wide:

8-bit sequence R0 N Z V C

R1 ← -111
R2 ← 221

R0 ← R1 + R2

110 0 0 1 1

(b) (5 points) Consider the following operation sequence (in regular 32-bit ARM assembly):

 LDR R1,=-168
 ASRS R2,R1,#2
 CMP R1,R2

Mark which of the following branches will be taken after executing the above sequence:

Branch Taken Not taken

BEQ X

BHS X

BGE X

BLO X

BLT X

(c) (5 points) Consider the following assembly program:

 AREA CODE ;assume this starts at address 0x0000.1000
num DCD 0x87654321
Start LDR R0,=num
 LDRSH R1,[R0]

What is the value in register R1 at the end of execution?

(the ARM can be configured to
different endianess and the
result depends on that; default
is little)

 Big: 0xFFFF8765
Little: 0x00004321

EE319K (Gerstlauer), Spring 2013, Midterm 1 Solutions 4
Name:

Problem 4 (20 points): Execution

Given the following ARM assembly program:

 AREA DATA
0x20000000 00000000 res DCD 0

 AREA CODE
0x000005D0 B500 f PUSH {LR}
0x000005D2 2801 CMP R0,#0x01
0x000005D4 D007 BEQ done
0x000005D6 B401 PUSH {R0}
0x000005D8 F1A00001 SUB R0, R0, #1
0x000005DC F7FFFFF8 BL f
0x000005E0 BC02 POP {R1}
0x000005E2 FB00F001 MUL R0, R0, R1
0x000005E6 F85DEB04 done POP {LR}
0x000005EA 4770 BX LR

0x000005EC F04F0002 Start MOV R0,#2
0x000005F0 F7FFFFEE BL f
0x000005F4 4900 LDR R1,=res
0x000005F6 6008 STR R0,[R1]

(a) (10 points) Assume the stack pointer SP is initialized to 0x2001.0000. Show the contents
of the stack and indicate the location of the stack pointer right after the point when the
statement at address ‘f’ has just been executed for the second time.

0x2000.FFEC
0x2000.FFF0
0x2000.FFF4 0x0000.05E1 SP
0x2000.FFF8 0x0000.0002
0x2000.FFFC 0x0000.05F5

(b) (5 points) What is the value in memory location ‘res’ at the end of execution?

2

(c) (5 points) What general functionality does the subroutine ‘f’ implement?

Factorial (n!)

EE319K (Gerstlauer), Spring 2013, Midterm 1 Solutions 5
Name:

Problem 5 (30 points): Input/Output

You are asked to develop a software module to control the seatbelt warning lamp as part of a car
dashboard. For the part of the system that you are responsible for, the following inputs and
outputs are relevant (all positive logic):
 Ports PB5…PB2 are connected to a RPM sensor that reports the current engine speed as a

scaled (in units/increments of 500 RPM) unsigned 4-bit integer value, i.e. if the sensor
reports a value of 2 on PB5…PB2, the engine speed is 1000 RPM.

 Port PB0 is connected to the seatbelt switch that indicates whether the seatbelt is fastened.
 Port PB7 is connected to the safety warning indicator LED.

Your subsystem is supposed to turn on the LED if the engine is running (RPM >= 1000) and the
seatbelt is not fastened.

Since your code is part of a bigger system, make sure to develop subroutines that are friendly, i.e.
that do not modify unrelated bits of ports. You can assume that relevant definitions are given:

GPIO_PORTB_DATA_R
GPIO_PORTB_DIR_R
GPIO_PORTB_AFSEL_R
GPIO_PORTB_DEN_R
SYSCTL_RCGCGPIO_R

 SYSCTL_RCGCGPIO_GPIOB (= 0x00000002, port B clock gating control)

(a) (10 points) Write the assembly code for the initialization subroutine of the Belt module.
The Belt_Init subroutine should make PB7 an output, and PB0 and PB5 through PB2 inputs.
Fill in the blanks in the code template below. You are not allowed to use bit-specific
addressing or the BIC instruction.

Belt_Init
 LDR R1, =SYSCTL_RCGCGPIO_R
 LDR R0, [R1]

 ORR_R0,R0,#SYSCTRL_RCGCGPIO_GPIOB
 STR R0, [R1]
 NOP
 NOP
 LDR R1, =GPIO_PORTB_DIR_R
 LDR R0, [R1]

 ORR R0,R0,#0x80
 AND R0,R0,#0xC2__
 STR R0, [R1]
 LDR R1, =GPIO_PORTB_AFSEL_R
 LDR R0, [R1]

 AND R0,R0,#0x42__
 STR R0, [R1]
 LDR R1, =GPIO_PORTB_DEN_R
 LDR R0, [R1]

 ORR R0,R0,#0xBD__
 STR R0, [R1]
 BX LR

EE319K (Gerstlauer), Spring 2013, Midterm 1 Solutions 6
Name:

(b) (20 points) Write a main C program that first calls the Belt_Init subroutine from (a) then
performs a loop over and over to turn the LED on iff (if and only if)

 the engine is running (RPM >= 1000), and
 the seatbelt is not fastened.

In all other cases, the LED should be off.

// declaration of function implemented in assembly
void Belt_Init(void);

// main program
void main(void)

{

 Belt_Init();

 while(1) {

 if((((GPIO_PORTB_DATA_R & 0x3C) >> 2) >= 2) &&
 ((GPIO_PORTB_DATA_R & 0x01) == 0)) {

 GPIO_PORTB_DATA_R |= 0x80;

 } else {

 GPIO_PORTB_DATA_R &= 0x7F;

 }

 }

}

// alternate main program
void main(void)

{

 Belt_Init();

 while(1) {

 if((((GPIO_PORTB_DATA_R >> 2) && 0x0F) >= 2) &&
 ((GPIO_PORTB_DATA_R & 0x01) == 0)) {

 GPIO_PORTB_DATA_R |= 0x80;

 } else {

 GPIO_PORTB_DATA_R &= 0x7F;

 }

 }

}

EE319K (Gerstlauer), Spring 2013, Midterm 1 Solutions 7
Name:

Problem 6 (15 points): C Programming and Parameter Passing

Given below is the C code for a function that checks whether a number is prime. Translate the C
code into assembly. Follow the AAPCS calling convention standard, i.e. use register R0 both to
pass value ‘v’ and return the result, and you can freely use registers R0 through R3. Note: in
ARM assembly, the modulo operation (A % B) has to be implemented as (A – (B * (A / B))).

C code

int32_t prime(int32_t v)
{
unsigned int32_t;

for(i = 2; i < v; i++) {
 if((v % i) == 0) {
 return 0;
 }
}

return 1;

}

Assembly code

prime
 MOV R1,#2
loop CMP R1,R0

 BLO done1
 UDIV R2,R0,R1
 MUL R2,R2,R1
 CMP R0,R2
 BEQ done0
 ADD R1,R1,#1
 B loop

done0 MOV R0,#0
 B done
done1 MOV R0,#1
done BX LR

EE319K (Gerstlauer), Spring 2013, Midterm 1 Solutions 8
Name:

ASCII Table

BITS 4 to 6
 0 1 2 3 4 5 6 7
 0 NUL DLE SP 0 @ P ` p
B 1 SOH DC1 ! 1 A Q a q
I 2 STX DC2 " 2 B R b r
T 3 ETX DC3 # 3 C S c s
S 4 EOT DC4 $ 4 D T d t
 5 ENQ NAK % 5 E U e u
0 6 ACK SYN & 6 F V f v
 7 BEL ETB ' 7 G W g w
T 8 BS CAN (8 H X h x
O 9 HT EM) 9 I Y i y
 A LF SUB * : J Z j z
3 B VT ESC + ; K [k {
 C FF FS , < L \ l ;
 D CR GS - = M] m }
 E SO RS . > N ^ n ~
 F S1 US / ? O o DEL

EE319K (Gerstlauer), Spring 2013, Midterm 1 9

Memory access instructions
 LDR Rd, [Rn] ; load 32-bit number at [Rn] to Rd
 LDR Rd, [Rn,#off] ; load 32-bit number at [Rn+off] to Rd
 LDR Rd, =value ; set Rd equal to any 32-bit value (PC rel)
 LDRH Rd, [Rn] ; load unsigned 16-bit at [Rn] to Rd
 LDRH Rd, [Rn,#off] ; load unsigned 16-bit at [Rn+off] to Rd
 LDRSH Rd, [Rn] ; load signed 16-bit at [Rn] to Rd
 LDRSH Rd, [Rn,#off] ; load signed 16-bit at [Rn+off] to Rd
 LDRB Rd, [Rn] ; load unsigned 8-bit at [Rn] to Rd
 LDRB Rd, [Rn,#off] ; load unsigned 8-bit at [Rn+off] to Rd
 LDRSB Rd, [Rn] ; load signed 8-bit at [Rn] to Rd
 LDRSB Rd, [Rn,#off] ; load signed 8-bit at [Rn+off] to Rd
 STR Rt, [Rn] ; store 32-bit Rt to [Rn]
 STR Rt, [Rn,#off] ; store 32-bit Rt to [Rn+off]
 STRH Rt, [Rn] ; store least sig. 16-bit Rt to [Rn]
 STRH Rt, [Rn,#off] ; store least sig. 16-bit Rt to [Rn+off]
 STRB Rt, [Rn] ; store least sig. 8-bit Rt to [Rn]
 STRB Rt, [Rn,#off] ; store least sig. 8-bit Rt to [Rn+off]
 PUSH {Rt} ; push 32-bit Rt onto stack
 POP {Rd} ; pop 32-bit number from stack into Rd
 ADR Rd, label ; set Rd equal to the address at label
 MOV{S} Rd, <op2> ; set Rd equal to op2
 MOV Rd, #im16 ; set Rd equal to im16, im16 is 0 to 65535
 MVN{S} Rd, <op2> ; set Rd equal to -op2
Branch instructions
 B label ; branch to label Always
 BEQ label ; branch if Z == 1 Equal
 BNE label ; branch if Z == 0 Not equal
 BCS label ; branch if C == 1 Higher or same, unsigned ≥
 BHS label ; branch if C == 1 Higher or same, unsigned ≥
 BCC label ; branch if C == 0 Lower, unsigned <
 BLO label ; branch if C == 0 Lower, unsigned <
 BMI label ; branch if N == 1 Negative
 BPL label ; branch if N == 0 Positive or zero
 BVS label ; branch if V == 1 Overflow
 BVC label ; branch if V == 0 No overflow
 BHI label ; branch if C==1 and Z==0 Higher, unsigned >
 BLS label ; branch if C==0 or Z==1 Lower or same, unsigned ≤
 BGE label ; branch if N == V Greater than or equal, signed ≥
 BLT label ; branch if N != V Less than, signed <
 BGT label ; branch if Z==0 and N==V Greater than, signed >
 BLE label ; branch if Z==1 or N!=V Less than or equal,signed ≤
 BX Rm ; branch indirect to location specified by Rm
 BL label ; branch to subroutine at label
 BLX Rm ; branch to subroutine indirect specified by Rm
Interrupt instructions
 CPSIE I ; enable interrupts (I=0)
 CPSID I ; disable interrupts (I=1)

EE319K (Gerstlauer), Spring 2013, Midterm 1 10

Logical instructions
 AND{S} {Rd,} Rn, <op2> ; Rd=Rn&op2 (op2 is 32 bits)
 ORR{S} {Rd,} Rn, <op2> ; Rd=Rn|op2 (op2 is 32 bits)
 EOR{S} {Rd,} Rn, <op2> ; Rd=Rn^op2 (op2 is 32 bits)
 BIC{S} {Rd,} Rn, <op2> ; Rd=Rn&(~op2) (op2 is 32 bits)
 ORN{S} {Rd,} Rn, <op2> ; Rd=Rn|(~op2) (op2 is 32 bits)
 LSR{S} Rd, Rm, Rs ; logical shift right Rd=Rm>>Rs (unsigned)
 LSR{S} Rd, Rm, #n ; logical shift right Rd=Rm>>n (unsigned)
 ASR{S} Rd, Rm, Rs ; arithmetic shift right Rd=Rm>>Rs (signed)
 ASR{S} Rd, Rm, #n ; arithmetic shift right Rd=Rm>>n (signed)
 LSL{S} Rd, Rm, Rs ; shift left Rd=Rm<<Rs (signed, unsigned)
 LSL{S} Rd, Rm, #n ; shift left Rd=Rm<<n (signed, unsigned)
Arithmetic instructions
 ADD{S} {Rd,} Rn, <op2> ; Rd = Rn + op2
 ADD{S} {Rd,} Rn, #im12 ; Rd = Rn + im12, im12 is 0 to 4095
 SUB{S} {Rd,} Rn, <op2> ; Rd = Rn - op2
 SUB{S} {Rd,} Rn, #im12 ; Rd = Rn - im12, im12 is 0 to 4095
 RSB{S} {Rd,} Rn, <op2> ; Rd = op2 - Rn
 RSB{S} {Rd,} Rn, #im12 ; Rd = im12 – Rn
 CMP Rn, <op2> ; Rn – op2 sets the NZVC bits
 CMN Rn, <op2> ; Rn - (-op2) sets the NZVC bits
 MUL{S} {Rd,} Rn, Rm ; Rd = Rn * Rm signed or unsigned
 MLA Rd, Rn, Rm, Ra ; Rd = Ra + Rn*Rm signed or unsigned
 MLS Rd, Rn, Rm, Ra ; Rd = Ra - Rn*Rm signed or unsigned
 UDIV {Rd,} Rn, Rm ; Rd = Rn/Rm unsigned
 SDIV {Rd,} Rn, Rm ; Rd = Rn/Rm signed
Notes Ra Rd Rm Rn Rt represent 32-bit registers
 value any 32-bit value: signed, unsigned, or address
 {S} if S is present, instruction will set condition codes
 #im12 any value from 0 to 4095
 #im16 any value from 0 to 65535
 {Rd,} if Rd is present Rd is destination, otherwise Rn
 #n any value from 0 to 31
 #off any value from -255 to 4095
 label any address within the ROM of the microcontroller
 op2 the value generated by <op2>
Examples of flexible operand <op2> creating the 32-bit number. E.g., Rd = Rn+op2
 ADD Rd, Rn, Rm ; op2 = Rm
 ADD Rd, Rn, Rm, LSL #n ; op2 = Rm<<n Rm is signed, unsigned
 ADD Rd, Rn, Rm, LSR #n ; op2 = Rm>>n Rm is unsigned
 ADD Rd, Rn, Rm, ASR #n ; op2 = Rm>>n Rm is signed
 ADD Rd, Rn, #constant ; op2 = constant, where X and Y are hexadecimal digits:

 produced by shifting an 8-bit unsigned value left by any number of bits
 in the form 0x00XY00XY
 in the form 0xXY00XY00
 in the form 0xXYXYXYXY

EE319K (Gerstlauer), Spring 2013, Midterm 1 11

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12

R13 (MSP)
R14 (LR)
R15 (PC)

Stack pointer
Link register

Program counter

General
purpose
registers

256k Flash
ROM

64k RAM

I/O ports

Internal I/O
PPB

0x0000.0000

0x0003.FFFF

0x2000.0000

0x2000.FFFF

0x4000.0000

0x41FF.FFFF

0xE000.0000

0xE004.0FFF

Condition code bits
N negative
Z zero
V signed overflow
C carry or
 unsigned overflow

