
EE319K Spring 2014 Exam 1 Modified Page 1

Reddi, Telang, Yerraballi February 20, 2013 7:00pm-8:15pm

Exam 1

Date: February 20, 2014

UT EID:

Printed Name:

Last, First

Your signature is your promise that you have not cheated and will not cheat on this exam, nor will you help others to cheat
on this exam:

Signature:

Instructions:
 Closed book and closed notes. No books, no papers, no data sheets (other than the last two pages of this Exam)
 No devices other than pencil, pen, eraser (no calculators, no electronic devices), please turn cell phones off.
 Please be sure that your answers to all questions (and all supporting work that is required) are contained in the

space (boxes) provided. Anything outside the boxes/blanks will be ignored in grading. You may use the back of
the sheets for scratch work.

 You have 75 minutes, so allocate your time accordingly.
 For all questions, unless otherwise stated, find the most efficient (time, resources) solution.
 Unless otherwise stated, make all I/O accesses friendly.
 Please read the entire exam before starting.

Problem 1 10

Problem 2 10

Problem 3 10

Problem 4 10

Problem 5 10

Problem 6 15

Problem 7 25

Problem 8 10

Total 100

EE319K Spring 2014 Exam 1 Modified Page 2

Reddi, Telang, Yerraballi February 20, 2013 7:00pm-8:15pm

(10) Question 1. Place your answers in the boxes.

Part a) The total addressable memory on the ARM Cortex M processor is
these many bytes. Give the total possible, not the actual number on TM4C123.

Part b) This C operator is used to perform a bit-wise NOT operation is.

Part c) We access device registers just like we access memory. The term used
for this kind of I/O is.

Part d) In conditional C expressions, a Zero value is interpreted as False. What
is interpreted a True?

Part e) What LED parameter (Voltage or Current) determines whether we
need a 7406 driver.

Part f) A big-endian machine will interpret a byte 0x28 as having a value of
(2*16+8) = 40, whereas a little-endian machine will interpret 0x28 as (8*16+2)
= 130. True or False.

Part g) What is the term “addressing mode” associated with, Instructions or
Operands?

Part h) This data-type is the most appropriate one to create a variable in C
that can take values in the range -200 to +200.

Part i) Which three registers or the ARM Cortex processor are initialized on
Reset?

Part j) Give an example of a non-intrusive debugging tool.

EE319K Spring 2014 Exam 1 Modified Page 3

Reddi, Telang, Yerraballi February 20, 2013 7:00pm-8:15pm

(10) Question 2
Consider the following arithmetic operation. Assume that all registers are 8-bit.

R0 100
R1 227
R2 R0 – R1

What are the numbers in registers R1 and R2 in unsigned decimal and signed decimal?

[R1] = ________________ (unsigned decimal)
[R1] = ________________ (signed decimal)

[R2] = ________________ (unsigned decimal)
[R2] = ________________ (signed decimal)

What are the values of the condition code bits: N, Z, V, C ?
N = _________
Z = _________
V = _________
C = _________

EE319K Spring 2014 Exam 1 Modified Page 4

Reddi, Telang, Yerraballi February 20, 2013 7:00pm-8:15pm

(10) Question 3

A programmer wants to make make pins PB1, PB4, PB7 outputs and make pin PB0 an input. So he
writes the below code in sequence as shown. He claims it does not work. Your job as an expert is to
identify the mistake(s). First, start by commenting what is the purpose of each statement in the code.
Second, after each statement, please write either OK or explain what is wrong and provide the
necessary corrections to make things work as expected. You are free to add, remove or modify the
sequence, as well as the code. Assume that you have access to the following correct definitions:

#define GPIO_PORTB_DATA_R (*((volatile unsigned long *)0x400053FC))
#define GPIO_PORTB_DIR_R (*((volatile unsigned long *)0x40005400))
#define GPIO_PORTB_AFSEL_R (*((volatile unsigned long *)0x40005420))
#define GPIO_PORTB_DEN_R (*((volatile unsigned long *)0x4000551C))
#define SYSCTL_RCGCGPIO_R (*((volatile unsigned long *)0x400FE608))

SYSCTL_RCGCGPIO_R = 0x02;

GPIO_PORTB_DATA_R = 0x00;

GPIO_PORTB_DIR_R |= 0x92;

GPIO_PORTB_DIR_R &= 0x01;

GPIO_PORTB_AFSEL_R &= ~0x93;

EE319K Spring 2014 Exam 1 Modified Page 5

Reddi, Telang, Yerraballi February 20, 2013 7:00pm-8:15pm

(10) Question 4.

(a) Interface a switch using a 10 kΩ resistor to port PA5 using positive logic. You may assume PA5
has been configured as an input port. Also assume that no current can flow into and out of the port pin
and the switch is ideal. Find the current through the switch and the voltage across the resistor.
Complete the table below the figure.

Switch configuration Current through switch Voltage across the

resistor
Switch open

Switch closed

(b) Interface an LED through a resistor to port PA4 using negative logic. You may assume PA4 has
been configured as an output port. The operating point of this LED is 1.5V at 1.8mA. The VOL and
VOH of the TM4C123 is 0.3V and 3.3V resp., and the maximum current that PA4 can source or sink is
8mA. Find the value of the resistor R that needs to be connected, and show the circuit diagram. What
is the current through the LED and the voltage across the resistor? Complete the table below the
figure.

TM4C123

PA5

+3.3V

EE319K Spring 2014 Exam 1 Modified Page 6

Reddi, Telang, Yerraballi February 20, 2013 7:00pm-8:15pm

PA4 output Current through LED Voltage across the resistor
Logic level 1
Logic level 0

(10) Question 5. Write an assembly subroutine, called SwapLT, that swaps the contents of two global
variables ying and yang only if ying is less than yang. Assume that variables are 16-bit signed numbers
located in global RAM. You may use Registers R0-R3, or R12 as scratch registers without saving and
restoring them. Don’t worry about how the variables are initialized.

TM4C123

PA4

+3.3V

 AREA DATA, ALIGN=2
ying SPACE 2
yang SPACE 2
 AREA |.text|, CODE, READONLY, ALIGN=2

EE319K Spring 2014 Exam 1 Modified Page 7

Reddi, Telang, Yerraballi February 20, 2013 7:00pm-8:15pm

(15) Question 6. You are given the assembly Subroutine Max3 below that takes three inputs and
returns the maximum of the three inputs. one two three are input parameters, and max is the return
parameter. There are no bugs in this subroutine, but it is not AAPCS compliant.
Part a) Make changes to anything inside the box so Max3 becomes AAPCS compliant.

Assume these global variables
uint32_t result,w,x,y,z;

Part b) Write one line of C code that calls the Max3 assembly subroutine passing the values 7000,
1134, and 4556 storing the result in global variable result.

Part c) Write one line of C code that calls the Max3 assembly subroutine passing the contents of
global variables x, y, and z storing the result in global variable w.

one RN 1
two RN 2
three RN 3
max RN 5
 EXPORT Max3
Max3
 PUSH {R4}
 CMP one,two
 BHI C13
 CMP two,three
 BHI Mx2
 B Mx3
C13 CMP one,three
 BLO Mx3
 MOV max,one
 B Done
Mx2 MOV max,two
 B Done
Mx3 MOV max,three
Done
 POP {R4}
 BX LR

EE319K Spring 2014 Exam 1 Modified Page 8

Reddi, Telang, Yerraballi February 20, 2013 7:00pm-8:15pm

(25) Question 7. You are asked to write a software module that controls the child-lock feature on car
door. An indicator light (connected to PortA pin 1 on the microcontroller) on the dashboard shows
whether the child-lock feature is engaged or not. A switch (connected to PortA pin 0) controls whether
the feature is enabled or disabled. There is some external hardware in the form of a weight sensor that
sends an 8-bit input value on PortB indicating the weight of the person/object in the seat. If the child-
lock feature is enabled by turning the switch (PA0) to ON, you have to read the weight from PortB and
check it to see if the indicator light must be turned on. The indicator light (on PA1) must be turned on
when the weight (8-bit value on PortB) is between 10 (GPIO_PORTB_DATA_R=0x0A) and 35
(GPIO_PORTB_DATA_R=0x23) and the child-lock feature is enabled (PA0 is 1). Otherwise, it must be
off.
You may assume the hardware is already connected, and all initializations except setting/clearing the
Direction register for Port B, are done. You have access to registers GPIO_PORTB_DIR_R,
GPIO_PORTA_DATA_R, and GPIO_PORTB_DATA_R to complete your code. Write assembly code
that manipulates the direction registers first and then continuously checks the switch and weight and
updates the LED state accordingly.
Suggestion: It might help if you visualize the solution using a flowchart
… ; Declarations already in place for GPIO registers
Start
 …; Code for GPIO initialization you are not responsible for is here
 ; *** Code you are responsible for follows ****

 ; Port B Direction register initialization

 ; Logic to check inputs and produce appropriate outputs follows

Loop

EE319K Spring 2014 Exam 1 Modified Page 9

Reddi, Telang, Yerraballi February 20, 2013 7:00pm-8:15pm

 B Loop
 ALIGN
 END

(10) Question 8. Show the contents of the stack after the two marked points in the execution of the
following code. The initial stack pointer is 0x20001008.
0x00002000 MOV R0,#3 Sub
0x00002002 MUL R4,R0,R0 PUSH {LR,R4,R5,R6}
0x00002004 ADD R5,R4,#1 MUL R4,R4,R0 ; <---- A
0x00002006 ADD R6,R4,#2 POP {R4,R5,R6,PC}
0x00002008 BL Sub
0x0000200A ADD R4,R5,R6
 ; <---- B
a) (4 points) Give the state of the stack (SP and contents) after execution point A:

0x20000FF4
0x20000FF8
0x20000FFC
0x20001000
0x20001004
0x20001008
0x2000100C

Initial SP

b) (6 points) Give the state of the stack (SP and contents) after execution point B and the value stored in R4:

0x20000FF4
0x20000FF8
0x20000FFC
0x20001000
0x20001004
0x20001008
0x2000100C

Initial SP

R4 =

EE319K Spring 2014 Exam 1 Modified Page 10

Reddi, Telang, Yerraballi February 20, 2013 7:00pm-8:15pm

Memory access instructions
 LDR Rd, [Rn] ; load 32-bit number at [Rn] to Rd
 LDR Rd, [Rn,#off] ; load 32-bit number at [Rn+off] to Rd
 LDR Rd, =value ; set Rd equal to any 32-bit value (PC rel)
 LDRH Rd, [Rn] ; load unsigned 16-bit at [Rn] to Rd
 LDRH Rd, [Rn,#off] ; load unsigned 16-bit at [Rn+off] to Rd
 LDRSH Rd, [Rn] ; load signed 16-bit at [Rn] to Rd
 LDRSH Rd, [Rn,#off] ; load signed 16-bit at [Rn+off] to Rd
 LDRB Rd, [Rn] ; load unsigned 8-bit at [Rn] to Rd
 LDRB Rd, [Rn,#off] ; load unsigned 8-bit at [Rn+off] to Rd
 LDRSB Rd, [Rn] ; load signed 8-bit at [Rn] to Rd
 LDRSB Rd, [Rn,#off] ; load signed 8-bit at [Rn+off] to Rd
 STR Rt, [Rn] ; store 32-bit Rt to [Rn]
 STR Rt, [Rn,#off] ; store 32-bit Rt to [Rn+off]
 STRH Rt, [Rn] ; store least sig. 16-bit Rt to [Rn]
 STRH Rt, [Rn,#off] ; store least sig. 16-bit Rt to [Rn+off]
 STRB Rt, [Rn] ; store least sig. 8-bit Rt to [Rn]
 STRB Rt, [Rn,#off] ; store least sig. 8-bit Rt to [Rn+off]
 PUSH {Rt} ; push 32-bit Rt onto stack
 POP {Rd} ; pop 32-bit number from stack into Rd
 ADR Rd, label ; set Rd equal to the address at label
 MOV{S} Rd, <op2> ; set Rd equal to op2
 MOV Rd, #im16 ; set Rd equal to im16, im16 is 0 to 65535
 MVN{S} Rd, <op2> ; set Rd equal to -op2
Branch instructions
 B label ; branch to label Always
 BEQ label ; branch if Z == 1 Equal
 BNE label ; branch if Z == 0 Not equal
 BCS label ; branch if C == 1 Higher or same, unsigned ≥
 BHS label ; branch if C == 1 Higher or same, unsigned ≥
 BCC label ; branch if C == 0 Lower, unsigned <
 BLO label ; branch if C == 0 Lower, unsigned <
 BMI label ; branch if N == 1 Negative
 BPL label ; branch if N == 0 Positive or zero
 BVS label ; branch if V == 1 Overflow
 BVC label ; branch if V == 0 No overflow
 BHI label ; branch if C==1 and Z==0 Higher, unsigned >
 BLS label ; branch if C==0 or Z==1 Lower or same, unsigned ≤
 BGE label ; branch if N == V Greater than or equal, signed ≥
 BLT label ; branch if N != V Less than, signed <
 BGT label ; branch if Z==0 and N==V Greater than, signed >
 BLE label ; branch if Z==1 or N!=V Less than or equal, signed ≤
 BX Rm ; branch indirect to location specified by Rm
 BL label ; branch to subroutine at label
 BLX Rm ; branch to subroutine indirect specified by Rm
Interrupt instructions
 CPSIE I ; enable interrupts (I=0)
 CPSID I ; disable interrupts (I=1)

Logical instructions
 AND{S} {Rd,} Rn, <op2> ; Rd=Rn&op2 (op2 is 32 bits)
 ORR{S} {Rd,} Rn, <op2> ; Rd=Rn|op2 (op2 is 32 bits)
 EOR{S} {Rd,} Rn, <op2> ; Rd=Rn^op2 (op2 is 32 bits)
 BIC{S} {Rd,} Rn, <op2> ; Rd=Rn&(~op2) (op2 is 32 bits)
 ORN{S} {Rd,} Rn, <op2> ; Rd=Rn|(~op2) (op2 is 32 bits)
 LSR{S} Rd, Rm, Rs ; logical shift right Rd=Rm>>Rs (unsigned)

EE319K Spring 2014 Exam 1 Modified Page 11

Reddi, Telang, Yerraballi February 20, 2013 7:00pm-8:15pm

 LSR{S} Rd, Rm, #n ; logical shift right Rd=Rm>>n (unsigned)
 ASR{S} Rd, Rm, Rs ; arithmetic shift right Rd=Rm>>Rs (signed)
 ASR{S} Rd, Rm, #n ; arithmetic shift right Rd=Rm>>n (signed)
 LSL{S} Rd, Rm, Rs ; shift left Rd=Rm<<Rs (signed, unsigned)
 LSL{S} Rd, Rm, #n ; shift left Rd=Rm<<n (signed, unsigned)
Arithmetic instructions
 ADD{S} {Rd,} Rn, <op2> ; Rd = Rn + op2
 ADD{S} {Rd,} Rn, #im12 ; Rd = Rn + im12, im12 is 0 to 4095
 SUB{S} {Rd,} Rn, <op2> ; Rd = Rn - op2
 SUB{S} {Rd,} Rn, #im12 ; Rd = Rn - im12, im12 is 0 to 4095
 RSB{S} {Rd,} Rn, <op2> ; Rd = op2 - Rn
 RSB{S} {Rd,} Rn, #im12 ; Rd = im12 – Rn
 CMP Rn, <op2> ; Rn – op2 sets the NZVC bits
 CMN Rn, <op2> ; Rn - (-op2) sets the NZVC bits
 MUL{S} {Rd,} Rn, Rm ; Rd = Rn * Rm signed or unsigned
 MLA Rd, Rn, Rm, Ra ; Rd = Ra + Rn*Rm signed or unsigned
 MLS Rd, Rn, Rm, Ra ; Rd = Ra - Rn*Rm signed or unsigned
 UDIV {Rd,} Rn, Rm ; Rd = Rn/Rm unsigned
 SDIV {Rd,} Rn, Rm ; Rd = Rn/Rm signed
Notes Ra Rd Rm Rn Rt represent 32-bit registers
 value any 32-bit value: signed, unsigned, or address
 {S} if S is present, instruction will set condition codes
 #im12 any value from 0 to 4095
 #im16 any value from 0 to 65535
 {Rd,} if Rd is present Rd is destination, otherwise Rn
 #n any value from 0 to 31
 #off any value from -255 to 4095
 label any address within the ROM of the microcontroller
 op2 the value generated by <op2>
Examples of flexible operand <op2> creating the 32-bit number. E.g., Rd = Rn+op2
 ADD Rd, Rn, Rm ; op2 = Rm
 ADD Rd, Rn, Rm, LSL #n ; op2 = Rm<<n Rm is signed, unsigned
 ADD Rd, Rn, Rm, LSR #n ; op2 = Rm>>n Rm is unsigned
 ADD Rd, Rn, Rm, ASR #n ; op2 = Rm>>n Rm is signed
 ADD Rd, Rn, #constant ; op2 = constant, where X and Y are hexadecimal digits:

 produced by shifting an 8-bit unsigned value left by any number of bits
 in the form 0x00XY00XY
 in the form 0xXY00XY00
 in the form 0xXYXYXYXY

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12

R13 (MSP)
R14 (LR)
R15 (PC)

Stack pointer
Link register

Program counter

General
purpose
registers

Condition code bits
N negative
Z zero
V signed overflow
C carry or
 unsigned overflow

256k Flash
ROM

32k RAM

I/O ports

Internal I/O
PPB

0x0000.0000

0x0003.FFFF

0x2000.0000

0x2000.7FFF

0x4000.0000

0x400F.FFFF

0xE000.0000

0xE004.1FFF

