
EE319K Spring 2015 Exam 1 Page 1

Janapa Reddi, Telang, Tiwari, Valvano, Yerraballi Feb 26, 2015 7:00pm-8:15pm

Exam 1
Date: Feb 26, 2015

UT EID:

Printed Name:

Last, First

Your signature is your promise that you have not cheated and will not cheat on this exam, nor will you help others to
cheat on this exam:

Signature:

Instructions:
• Closed book and closed notes. No books, no papers, no data sheets (other than the last two pages of this

Exam)
• No devices other than pencil, pen, eraser (no calculators, no electronic devices), please turn cell phones off.
• Please be sure that your answers to all questions (and all supporting work that is required) are contained in

the space (boxes) provided. Anything outside the boxes/blanks will be ignored in grading. You may use the
back of the sheets for scratch work.

• You have 75 minutes, so allocate your time accordingly.
• For all questions, unless otherwise stated, find the most efficient (time, resources) solution.
• Unless otherwise stated, make all I/O accesses friendly.
• Please read the entire exam before starting.

Problem 1 10

Problem 2 6

Problem 3 14

Problem 4 10

Problem 5 20

Problem 6 5

Problem 7 5

Problem 8 15

Problem 9 15

Total 100

EE319K Spring 2015 Exam 1 Page 2

Janapa Reddi, Telang, Tiwari, Valvano, Yerraballi Feb 26, 2015 7:00pm-8:15pm

(10) Question 1. State the term, symbol, instruction or expression that best answers the question.

(1) Part a) The drawing with circles representing software modules. An
arrow from circle A to circle B means software in A invokes a function
in module B.

(1) Part b) This declaration is used to create a variable in C that can take
on the values from 20 to +40000. Pick the most efficient format.

(1) Part c) You are writing a function with exactly three input
parameters. According to ARM Architecture Procedure Call Standard,
how should you pass the three parameters?

(1) Part d) According to ARM Architecture Procedure Call Standard,
which registers must be preserved?

(1) Part e) The term used to define the amount of work that can be done.
Units are Joules.

(1) Part f) The term that defines the subset of a number system from
which all elements of that set can be derived.

(1) Part g) This C operator will perform the logic or of two Booleans
(the inputs and outputs are True or False).

(3) Part h) Write the assembly code to create a 16-bit signed variable called Num. Include the
details that will place the variable in RAM

EE319K Spring 2015 Exam 1 Page 3

Janapa Reddi, Telang, Tiwari, Valvano, Yerraballi Feb 26, 2015 7:00pm-8:15pm

(6) Question 2. Complete the following table. Each row in the table contains an equal value
expressed in binary, hexadecimal, unsigned decimal, and signed decimal. Assume each value is 8
bits.

Binary Hexadecimal Unsigned Decimal Signed Decimal
10000001

 0xFE
 212
 64

(14) Question 3

a. (4) Consider the following 8-bit addition (assume registers are 8 bits wide, and assume
the condition code bits are set in a way similar to the Cortex M4). What are the condition
code bits?

 Load 0x88 into R1
 Load 0xC8 into R2
 Adds R3 = R1+R2, setting the condition codes

N Z V C

b. (10) Complete the table below by marking with an X which branches will be taken or not

taken as a result of instructions below. Assume registers are 8 bits wide, and assume the
branch instructions and condition code bits are similar to the Cortex M4.

Load #100 into R1
Load #200 into R2
Subs R3 = R1-R2 ; setting the condition codes

Branch Instruction Taken Not Taken

B target

BL target

BEQ target

BNE target

BCS target

BCC target

BVS target

BVC target

BLO target

BLT target

EE319K Spring 2015 Exam 1 Page 4

Janapa Reddi, Telang, Tiwari, Valvano, Yerraballi Feb 26, 2015 7:00pm-8:15pm

(10) Question 4. Complete the assembly subroutine that initializes Port B. You should make
PB7 PB0 outputs, and make PB4 PB1 inputs. This subroutine is called once at the start of
execution of the system. All accesses to I/O registers must be friendly. Your subroutine will
set the clock, direction, and enable registers. In this question do not worry about AFSEL, PUR,
PDR, AMSEL, or PCTL. You must fill in the instruction or instructions for the following four
boxes. Each box may contain 0, 1, or 2 instructions. Do not assume DIR, DEN or DATA
registers have been cleared by the reset operation. Comments are not needed.

GPIO_PORTB_DATA_R EQU 0x400053FC
GPIO_PORTB_DIR_R EQU 0x40005400
GPIO_PORTB_DEN_R EQU 0x4000551C
SYSCTL_RCGCGPIO_R EQU 0x400FE608
PortB_Init
 PUSH {R4,R5}
 LDR R5, =SYSCTL_RCGCGPIO_R
 LDR R4, [R5]

 STR R4, [R5]
 NOP
 NOP
 LDR R5, =GPIO_PORTB_DIR_R
 LDR R4, [R5]

 STR R4, [R5]
 LDR R5, =GPIO_PORTB_DEN_R
 LDR R4, [R5]

 STR R4, [R5]

EE319K Spring 2015 Exam 1 Page 5

Janapa Reddi, Telang, Tiwari, Valvano, Yerraballi Feb 26, 2015 7:00pm-8:15pm

(20) Question 5. You have been hired to build a Morse code distress signal detector. The
detector monitors for a special SOS bit pattern "000111000" on Port B, Pin 7 (i.e., PB7).
Upon detecting the pattern you must activate an LED using negative logic on PB2. PB7 is
input and PB2 is output. Assume from Question 4 that the port has been activated, and that PB7
and PB2 are configured to be input and output, respectively. You may assume port registers
GPIO_PORTB_DATA_R EQU 0x400053FC
#define GPIO_PORTB_DATA_R (*((volatile uint32_t *)0x400053FC))
Part a) Write a subroutine in C or assembly called SOS_Detector that first reads PB7 nine times,
and then if the nine consecutive inputs match the pattern "000111000", the subroutine should
return a 1, otherwise it should return a 0. Subroutine SOS_Detector must be AAPCS compliant.

Part b) Integrate the SOS_Detector from above into a loop that turns on the LED (using the
logic specified above) whenever the SOS pattern is detected, waits two cycles and turns off the
LED and continues to check for the SOS signal. Execute these steps over and over. Be friendly.

EE319K Spring 2015 Exam 1 Page 6

Janapa Reddi, Telang, Tiwari, Valvano, Yerraballi Feb 26, 2015 7:00pm-8:15pm

(5) Question 6. You are to interface an external LED on Port A pin 0 that operates using
positive logic. You have an LED whose desired brightness requires an operating point of (Vd, Id)
= (3V, 15mA). Given the TM4C microcontroller output low VOL ranges between (0V,0.5V) and
output high VOH ranges between (2.4V,3.3V). The 7406 driver’s VOL is 0.5V. Show the
calculation used to find the resistor value needed and draw the circuit below by connecting the
needed elements:

(5) Question 7. You are to interface an external Switch on Port A pin 0 that operates using
negative logic by using the needed elements in the following figure. Given the TM4C
microcontroller limits the current flow into it to 2 µA calculate the voltage at Port A pin 0 when
the switch is open. Choose a value for R and specify its value.

R

 PA0

M i c r o c o n t r o l l e r

7 4 0 6

+ 3 . 3 V
+ 5 V

0 V

R

P A 0

M i c r o c o n t r o l l e r

7 4 0 6

+ 3 . 3 V
+ 5 V

0 V

R =

VPA0 =

R =

EE319K Spring 2015 Exam 1 Page 7

Janapa Reddi, Telang, Tiwari, Valvano, Yerraballi Feb 26, 2015 7:00pm-8:15pm

(15) Question 8. Given below is the assembly code for an AAPCS compliant subroutine
called func.

(8) Part a) Give an equivalent C function that achieves the same purpose as the given
assembly code in func.
Hint: Do not try to translate line-by-line, you have no access to the stack in C

Assembly code
func CMP R0, R1
 BLT L1
 PUSH {R1,LR}
 POP {R0,LR}
L1 BX LR

C code

(2) Part b) Briefly explain what the func subroutine does

(5) Part c) Write a C function ‘g’ to perform the following functionality:
Step1: Read the value from global variable input, divide it by two;
Step2: Call the function ‘func’ from (a) and pass it two inputs: the result of step 1 and

the constant value 50;
Step3: Update the value of the global variable output by adding the value returned by

the call in step 2 to it;
int32_t input;
int32_t output;
void g(void){

// Hint: Can be done in 1 line with no extra variables,
// however extra variables are allowed if implemented properly
}

EE319K Spring 2015 Exam 1 Page 8

Janapa Reddi, Telang, Tiwari, Valvano, Yerraballi Feb 26, 2015 7:00pm-8:15pm

(15) Question 9. This question deals with the stack.
Part a) In AAPCS, the fifth parameter is located on top of the stack. Please write the following
function in assembly using AAPCS. Your subroutine must balance the stack.
int32_t add_5(int32_t n1, int32_t n2, int32_t n3,
 int32_t n4, int32_t n5){
 return n1 + n2 + n3 + n4 + n5;}

Part b) Assume the stack pointer (SP) is initially equal to 0x20000200, and registers R0, R1, R2,
R3 are 7, 11, 15, and 19 respectively. Draw the contents of the stack and the values in registers
R0, R1, R2, R3 after these two instructions are executed. Also, label the new SP on the figure.
 PUSH {R0,R1,R2}
 POP {R3,R1}

0x200001F0
0x200001F4
0x200001F8
0x200001FC
0x20000200
0x20000204
0x20000208
0x2000020C
0x20000210

Initial SP

R0 7
R1 11
R2 15
R3 19

Put new R0-R3
values in these boxes

EE319K Spring 2015 Exam 1 Page 9

Janapa Reddi, Telang, Tiwari, Valvano, Yerraballi Feb 26, 2015 7:00pm-8:15pm

Memory access instructions
 LDR Rd, [Rn] ; load 32-bit number at [Rn] to Rd
 LDR Rd, [Rn,#off] ; load 32-bit number at [Rn+off] to Rd
 LDR Rd, =value ; set Rd equal to any 32-bit value (PC rel)
 LDRH Rd, [Rn] ; load unsigned 16-bit at [Rn] to Rd
 LDRH Rd, [Rn,#off] ; load unsigned 16-bit at [Rn+off] to Rd
 LDRSH Rd, [Rn] ; load signed 16-bit at [Rn] to Rd
 LDRSH Rd, [Rn,#off] ; load signed 16-bit at [Rn+off] to Rd
 LDRB Rd, [Rn] ; load unsigned 8-bit at [Rn] to Rd
 LDRB Rd, [Rn,#off] ; load unsigned 8-bit at [Rn+off] to Rd
 LDRSB Rd, [Rn] ; load signed 8-bit at [Rn] to Rd
 LDRSB Rd, [Rn,#off] ; load signed 8-bit at [Rn+off] to Rd
 STR Rt, [Rn] ; store 32-bit Rt to [Rn]
 STR Rt, [Rn,#off] ; store 32-bit Rt to [Rn+off]
 STRH Rt, [Rn] ; store least sig. 16-bit Rt to [Rn]
 STRH Rt, [Rn,#off] ; store least sig. 16-bit Rt to [Rn+off]
 STRB Rt, [Rn] ; store least sig. 8-bit Rt to [Rn]
 STRB Rt, [Rn,#off] ; store least sig. 8-bit Rt to [Rn+off]
 PUSH {Rt} ; push 32-bit Rt onto stack
 POP {Rd} ; pop 32-bit number from stack into Rd
 ADR Rd, label ; set Rd equal to the address at label
 MOV{S} Rd, <op2> ; set Rd equal to op2
 MOV Rd, #im16 ; set Rd equal to im16, im16 is 0 to 65535
 MVN{S} Rd, <op2> ; set Rd equal to -op2
Branch instructions
 B label ; branch to label Always
 BEQ label ; branch if Z == 1 Equal
 BNE label ; branch if Z == 0 Not equal
 BCS label ; branch if C == 1 Higher or same, unsigned ≥
 BHS label ; branch if C == 1 Higher or same, unsigned ≥
 BCC label ; branch if C == 0 Lower, unsigned <
 BLO label ; branch if C == 0 Lower, unsigned <
 BMI label ; branch if N == 1 Negative
 BPL label ; branch if N == 0 Positive or zero
 BVS label ; branch if V == 1 Overflow
 BVC label ; branch if V == 0 No overflow
 BHI label ; branch if C==1 and Z==0 Higher, unsigned >
 BLS label ; branch if C==0 or Z==1 Lower or same, unsigned ≤
 BGE label ; branch if N == V Greater than or equal, signed ≥
 BLT label ; branch if N != V Less than, signed <
 BGT label ; branch if Z==0 and N==V Greater than, signed >
 BLE label ; branch if Z==1 or N!=V Less than or equal, signed ≤
 BX Rm ; branch indirect to location specified by Rm
 BL label ; branch to subroutine at label, return address in LR
 BLX Rm ; branch to subroutine indirect specified by Rm
Interrupt instructions
 CPSIE I ; enable interrupts (I=0)
 CPSID I ; disable interrupts (I=1)

Logical instructions
 AND{S} {Rd,} Rn, <op2> ; Rd=Rn&op2 (op2 is 32 bits)
 ORR{S} {Rd,} Rn, <op2> ; Rd=Rn|op2 (op2 is 32 bits)
 EOR{S} {Rd,} Rn, <op2> ; Rd=Rn^op2 (op2 is 32 bits)
 BIC{S} {Rd,} Rn, <op2> ; Rd=Rn&(~op2) (op2 is 32 bits)
 ORN{S} {Rd,} Rn, <op2> ; Rd=Rn|(~op2) (op2 is 32 bits)
 LSR{S} Rd, Rm, Rs ; logical shift right Rd=Rm>>Rs (unsigned)
 LSR{S} Rd, Rm, #n ; logical shift right Rd=Rm>>n (unsigned)

EE319K Spring 2015 Exam 1 Page 10

Janapa Reddi, Telang, Tiwari, Valvano, Yerraballi Feb 26, 2015 7:00pm-8:15pm

 ASR{S} Rd, Rm, Rs ; arithmetic shift right Rd=Rm>>Rs (signed)
 ASR{S} Rd, Rm, #n ; arithmetic shift right Rd=Rm>>n (signed)
 LSL{S} Rd, Rm, Rs ; shift left Rd=Rm<<Rs (signed, unsigned)
 LSL{S} Rd, Rm, #n ; shift left Rd=Rm<<n (signed, unsigned)
Arithmetic instructions
 ADD{S} {Rd,} Rn, <op2> ; Rd = Rn + op2
 ADD{S} {Rd,} Rn, #im12 ; Rd = Rn + im12, im12 is 0 to 4095
 SUB{S} {Rd,} Rn, <op2> ; Rd = Rn - op2
 SUB{S} {Rd,} Rn, #im12 ; Rd = Rn - im12, im12 is 0 to 4095
 RSB{S} {Rd,} Rn, <op2> ; Rd = op2 - Rn
 RSB{S} {Rd,} Rn, #im12 ; Rd = im12 – Rn
 CMP Rn, <op2> ; Rn – op2 sets the NZVC bits
 CMN Rn, <op2> ; Rn - (-op2) sets the NZVC bits
 MUL{S} {Rd,} Rn, Rm ; Rd = Rn * Rm signed or unsigned
 MLA Rd, Rn, Rm, Ra ; Rd = Ra + Rn*Rm signed or unsigned
 MLS Rd, Rn, Rm, Ra ; Rd = Ra - Rn*Rm signed or unsigned
 UDIV {Rd,} Rn, Rm ; Rd = Rn/Rm unsigned
 SDIV {Rd,} Rn, Rm ; Rd = Rn/Rm signed
Notes Ra Rd Rm Rn Rt represent 32-bit registers
 value any 32-bit value: signed, unsigned, or address
 {S} if S is present, instruction will set condition codes
 #im12 any value from 0 to 4095
 #im16 any value from 0 to 65535
 {Rd,} if Rd is present Rd is destination, otherwise Rn
 #n any value from 0 to 31
 #off any value from -255 to 4095
 label any address within the ROM of the microcontroller
 op2 the value generated by <op2>
Examples of flexible operand <op2> creating the 32-bit number. E.g., Rd = Rn+op2
 ADD Rd, Rn, Rm ; op2 = Rm
 ADD Rd, Rn, Rm, LSL #n ; op2 = Rm<<n Rm is signed, unsigned
 ADD Rd, Rn, Rm, LSR #n ; op2 = Rm>>n Rm is unsigned
 ADD Rd, Rn, Rm, ASR #n ; op2 = Rm>>n Rm is signed
 ADD Rd, Rn, #constant ; op2 = constant, where X and Y are hexadecimal digits:

• produced by shifting an 8-bit unsigned value left by any number of bits
• in the form 0x00XY00XY
• in the form 0xXY00XY00
• in the form 0xXYXYXYXY

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12

R13 (MSP)
R14 (LR)
R15 (PC)

Stack pointer
Link register

Program counter

General
purpose
registers

Condition code bits
N negative
Z zero
V signed overflow
C carry or
 unsigned overflow

256k Flash
ROM

32k RAM

I/O ports

Internal I/O
PPB

0x0000.0000

0x0003.FFFF

0x2000.0000

0x2000.7FFF

0x4000.0000

0x400F.FFFF

0xE000.0000

0xE004.1FFF

	Exam 1
	UT EID:
	Instructions:
	LDRSH Rd, [Rn,#off] ; load signed 16-bit at [Rn+off] to Rd
	LDRSB Rd, [Rn,#off] ; load signed 8-bit at [Rn+off] to Rd
	Branch instructions
	Interrupt instructions
	Logical instructions
	BIC{S} {Rd,} Rn, <op2> ; Rd=Rn&(~op2) (op2 is 32 bits)
	ORN{S} {Rd,} Rn, <op2> ; Rd=Rn|(~op2) (op2 is 32 bits)
	Arithmetic instructions
	ADD{S} {Rd,} Rn, <op2> ; Rd = Rn + op2
	ADD{S} {Rd,} Rn, #im12 ; Rd = Rn + im12, im12 is 0 to 4095
	SUB{S} {Rd,} Rn, <op2> ; Rd = Rn - op2
	SUB{S} {Rd,} Rn, #im12 ; Rd = Rn - im12, im12 is 0 to 4095
	RSB{S} {Rd,} Rn, <op2> ; Rd = op2 - Rn
	RSB{S} {Rd,} Rn, #im12 ; Rd = im12 – Rn
	Notes Ra Rd Rm Rn Rt represent 32-bit registers
	ADD Rd, Rn, Rm ; op2 = Rm
	ADD Rd, Rn, Rm, LSL #n ; op2 = Rm<<n Rm is signed, unsigned
	ADD Rd, Rn, Rm, LSR #n ; op2 = Rm>>n Rm is unsigned
	ADD Rd, Rn, Rm, ASR #n ; op2 = Rm>>n Rm is signed
	ADD Rd, Rn, #constant ; op2 = constant, where X and Y are hexadecimal digits:

