
EE319K Spring 2016 Exam 1 Solution Page 1

Janapa Reddi, Tiwari, Valvano, Yerraballi Feb 25, 2016 7:00pm-8:15pm

Exam 1
Date: Feb 25, 2016

UT EID: Solution Professor (circle): Janapa Reddi, Tiwari, Valvano, Yerraballi

Printed Name:

Last, First

Your signature is your promise that you have not cheated and will not cheat on this exam, nor will you help others to
cheat on this exam:

Signature:

Instructions:
• Closed book and closed notes. No books, no papers, no data sheets (other than the last two pages of this

Exam)
• No devices other than pencil, pen, eraser (no calculators, no electronic devices), please turn cell phones off.
• Please be sure that your answers to all questions (and all supporting work that is required) are contained in

the space (boxes) provided. Anything outside the boxes/blanks will be ignored in grading. You may use the
back of the sheets for scratch work.

• You have 75 minutes, so allocate your time accordingly.
• For all questions, unless otherwise stated, find the most efficient (time, resources) solution.
• Unless otherwise stated, make all I/O accesses friendly.
• Please read the entire exam before starting.

Problem 1 10

Problem 2 6

Problem 3 16

Problem 4 15

Problem 5 10

Problem 6 16

Problem 7 12

Problem 8 15

Total 100

EE319K Spring 2016 Exam 1 Solution Page 2

Janapa Reddi, Tiwari, Valvano, Yerraballi Feb 25, 2016 7:00pm-8:15pm

(10) Question 1. State the term, symbol, instruction or expression that best answers the question.

(1) Part a) What bit gets set during the execution of the ADDS
instruction to signify unsigned overflow?

(1) Part b) Mathematical relationship between the voltage across, the
current through, and the dissipated power for an LED.

(1) Part c) This data-type is the most appropriate one to create a variable
in C that can take values in the range -40,000 to +40,000.

(1) Part d) According to ARM Architecture Procedure Call Standard,
which registers can the callee function modify (without saving and
restoring)?

(1) Part e) A type of circuit that has two output states, low and off.

(1) Part f) The name given to describe 1,024 (210) bytes.

(1) Part g) Addressing mode used in this instruction:

LDR R0,=GPIO_PORTA_DATA_R

(1) Part h) What is the difference between these two instructions?

PUSH {R1,R2,R3} and PUSH {R3,R2,R1}

(1) Part i) If you multiply an n-bit signed number by an m-bit signed number,
what is the maximum number of bits in the product? Assume n ≥ m.

(1) Part j) What is the C operator that performs a Boolean AND. In other
words it takes true/false inputs and generates a true/false output?

(3) Part j) Write assembly code to create a 32-bit global variable called count in RAM, and a
8-bit constant called Max in ROM with a value of 255.

P = V*I

long or int32_t

R0, R1, R2, R3,R12

Open collector or
7406

C bit

indexed or PC relative

kibibyte

Nothing, they are the
same

n+m

&&

 AREA |.text|,CODE,READONLY,ALIGN=2
Max DCB 255

 AREA DATA,ALIGN=2
count SPACE 4

EE319K Spring 2016 Exam 1 Solution Page 3

Janapa Reddi, Tiwari, Valvano, Yerraballi Feb 25, 2016 7:00pm-8:15pm

(6) Question 2. Assume the value is 8 bits. The binary is 11000001.
What is the value as unsigned hexadecimal?

What is the value as unsigned decimal?

What is the value as signed decimal?

(8) Question 3a Assume Data is an 8-bit signed variable in RAM. Write assembly code that
divides the value of this variable by 8 using the shift operation, storing the result back in Data.

 LDR R0,=Data ; pointer to Data
 LDRSB R1,[R0] ; value of Data, promoted to 32 bits
 ASR R1,R1,#3 ; signed shift right
 STRB R1,[R0] ; store back

(8) Question 3b Write an assembly subroutine called Decr, which has one input and one output.
Pass parameters using AAPCS. Assume the input is a 32-bit signed number. The function should
decrement the input value with the exception that it will not decrement if the input is already at
the smallest possible negative number, -2,147,483,648. This exception prevents the error where
decrementing a negative value would have resulted in a positive number. The function returns
the 32-bit signed result.

Decr CMP R0,# -2147483648
 BEQ skip
 SUB R0,R0,#1
skip BX LR

Decr SUBS R0,R0,#1
 BVC ok
 ADD R0,R0,#1
ok BX LR

0xC1

128+64+1 = 193

-128+64+1 = -63

EE319K Spring 2016 Exam 1 Solution Page 4

Janapa Reddi, Tiwari, Valvano, Yerraballi Feb 25, 2016 7:00pm-8:15pm

(15) Question 4. Consider the following C function with one input and one output.
int32_t x;
int32_t func(int32_t in){
 int32_t out=0;
 while(in >= 0){
 out = out + in;
 in = in - 2;
 }
 return out;
}
(5) Part a) If we were to execute x=func(5); what would be the value of x?
in out (at the out += in)
5 5
3 8
1 9

(10) Part b) Write func in assembly using AAPCS

;Common mistakes:
; 1) AAPCS input parameter in R0, output parameter in R0
; 2) this is a while loop (must check first then do body)
; if input were 0 or -2, then output should have been 0

func MOV R1,#0 ; R1= out=0
loop CMP R0,#0 ; R0= in
 BLT done ; must be signed branch
 ADD R1,R1,R0 ; out = out+in
 SUB R0,R0,#2 ; in = in-2
 B loop
done MOV R0,R1 ; AAPCS return in R0
 BX LR

func MOV R1,R0 ; R1=in
 MOV R0,#0 ; R0=out=0
loop CMP R1,#0
 BLT done ; must be signed branch
 ADD R0,R0,R1 ; out = out+in
 SUB R1,R1,#2 ; in = in-2
 B loop
done BX LR ; AAPCS return in R0

x = 9

EE319K Spring 2016 Exam 1 Solution Page 5

Janapa Reddi, Tiwari, Valvano, Yerraballi Feb 25, 2016 7:00pm-8:15pm

(10) Question 5. You are to write a friendly port initialization subroutine in assembly or C, for
an embedded system that uses all pins of Port A. Pins 0-3 of Port A are interfaced to negative
logic input switches and pins 4-7 are interfaced to positive logic output LEDs. The device
registers that are given to you are (you may not need all):

SYSCTL_RCGCGPIO_R EQU 0x400FE608
GPIO_PORTA_DATA_R EQU 0x400043FC
GPIO_PORTA_DIR_R EQU 0x40004400
GPIO_PORTA_AFSEL_R EQU 0x40004420
GPIO_PORTA_PUR_R EQU 0x40004510
GPIO_PORTA_PDR_R EQU 0x40004514
GPIO_PORTA_DEN_R EQU 0x4000451C

Note that you are given four appropriately sized external resistors for the LEDs but no external
resistors for the switches. You do not have to set AMSEL or PCTL.

void PortA_Init(){
 volatile uint32_t delay;
 SYSCTL_RCGCGPIO_R |= 0x01;
 delay = 10;
 GPIO_PORTA_DIR_R = 0xF0;
 GPIO_PORTA_AFSEL_R = 0x00;
 GPIO_PORTA_PUR_R = 0x0F;
 GPIO_PORTA_DEN_R = 0xFF;
}

EE319K Spring 2016 Exam 1 Solution Page 6

Janapa Reddi, Tiwari, Valvano, Yerraballi Feb 25, 2016 7:00pm-8:15pm

(16) Question 6. Assume the value of the Stack pointer (SP) is 0x20001000 when the following
code sequence starts execution (i.e., PC=0x00001000). The initial stack contents are given on
the right.

0x00001000 POP {R0-R2}
0x00001004 ADD R4,R0,R1
0x00001008 BL Func B
0x0000100C ...
...
0x00002000 Func PUSH {LR,R4} A
0x00002004 MOV R4,R2
0x00002008 MUL R0,R1
0x0000200C ADD R0,R4
0x00002010 POP {R4,PC}

0x20000FF4 1
0x20000FF8 2
0x20000FFC 3
0x20001000 4
0x20001004 5
0x20001008 6
0x2000100C 7

(6) Part a) Give the state of the stack (SP and contents) after executing of the PUSH instruction, as
shown by arrow A:

0x20000FF4 1
0x20000FF8 2
0x20000FFC 3
0x20001000 4
0x20001004 9
0x20001008 0x0000100C
0x2000100C 7

(10) Part b) Give the state of the stack (SP and contents) while executing the instruction at memory
location 0x0000100C as shown by the arrow B and the values stored in R0, R1, R2 and R4.

0x20000FF4 1
0x20000FF8 2
0x20000FFC 3
0x20001000 4
0x20001004 9
0x20001008 0x0000100C
0x2000100C 7

SP = 0x20001004

SP = 0x2000100C

R0 = 26

R1 = 5

R2 = 6

R4 = 9

EE319K Spring 2016 Exam 1 Solution Page 7

Janapa Reddi, Tiwari, Valvano, Yerraballi Feb 25, 2016 7:00pm-8:15pm

(12) Question 7. Interface the LED to Port B bit 7 (PB7) using positive logic. Connect a switch
to PB6 using negative logic. The microcontroller’s output voltage high is 3.3V. The LED is
operating point is 2.4V at 6mA. The VOL for the 7406 driver is 0.6V. Pick resistors appropriately
and assume you have 5V, 3.3V, and ground to which you can connect your components. The
symbols for each part are given below for your convenience – use the minimum number of parts
to construct the interfaced system.

PB7

Microcontroller

7406

+3.3V
+5V

0V

PB6

(15) Question 8. You are hired to design communication software for an embedded system.
Your job is to implement the software logic for transmitting data using “Manchester encoding,” a
method to transmit bits between sender and receiver systems using edge transitions. You are
given a “transmission Clock” (an input to the controller, separate from the CPU clock) and a
Data value (e.g., 10100111). You have to generate a Manchester Output waveform on a port pin.
In general Manchester encoding follows Clock XOR Data = Manchester Output

Clock

Data

Manchester

1 0 1 0 0 1 1 1

Switch uses internal resistor,

LED resistor is
R=(3.3-2.4V)/6mA
 = 0.9V/6mA = 150 ohms

EE319K Spring 2016 Exam 1 Solution Page 8

Janapa Reddi, Tiwari, Valvano, Yerraballi Feb 25, 2016 7:00pm-8:15pm

(3) Part a) Assuming you want to transmit the 8-bit data sequence 01110001, draw a similar
diagram to the above showing the corresponding Manchester output.

0 1 1 1 0 0 0 1

Clock

Data

Manchester

(12) Part b) You will write a routine that transmits 8 bits of data in C. The input to this function
is an 8-bit unsigned byte containing the data to be transmitted. The Clock input is connected to
PA1, and the Manchester output is connected to PA0. Assume software has already initialized
PA1 and PA0 as input and output respectively. To send one bit, wait for the Clock to go from
low to high, set the PA0 output to be (Data XOR Clock), wait for the Clock to go low, and then
set the PA0 output to be (Data XOR Clock). To send one byte repeat this procedure 8 times,
once for each bit. Output the most significant bit first. Your code need not be friendly.

void Manchester(uint8_t data){
 int i; uint32_t bit;
 for(i=7; i>=0; i--){ // 8 bits

 while((GPIO_PORTA_DATA_R&0x02)==0){}; // wait for rise
 bit = (data>>i)&0x01; // most significant first
 GPIO_PORTA_DATA_R = bit^0x01;
 while((GPIO_PORTA_DATA_R&0x02)==0x02){}; // wait for fall
 GPIO_PORTA_DATA_R = bit;

 }

}

EE319K Spring 2016 Exam 1 Solution Page 9

Janapa Reddi, Tiwari, Valvano, Yerraballi Feb 25, 2016 7:00pm-8:15pm

Memory access instructions
 LDR Rd, [Rn] ; load 32-bit number at [Rn] to Rd
 LDR Rd, [Rn,#off] ; load 32-bit number at [Rn+off] to Rd
 LDR Rd, =value ; set Rd equal to any 32-bit value (PC rel)
 LDRH Rd, [Rn] ; load unsigned 16-bit at [Rn] to Rd
 LDRH Rd, [Rn,#off] ; load unsigned 16-bit at [Rn+off] to Rd
 LDRSH Rd, [Rn] ; load signed 16-bit at [Rn] to Rd
 LDRSH Rd, [Rn,#off] ; load signed 16-bit at [Rn+off] to Rd
 LDRB Rd, [Rn] ; load unsigned 8-bit at [Rn] to Rd
 LDRB Rd, [Rn,#off] ; load unsigned 8-bit at [Rn+off] to Rd
 LDRSB Rd, [Rn] ; load signed 8-bit at [Rn] to Rd
 LDRSB Rd, [Rn,#off] ; load signed 8-bit at [Rn+off] to Rd
 STR Rt, [Rn] ; store 32-bit Rt to [Rn]
 STR Rt, [Rn,#off] ; store 32-bit Rt to [Rn+off]
 STRH Rt, [Rn] ; store least sig. 16-bit Rt to [Rn]
 STRH Rt, [Rn,#off] ; store least sig. 16-bit Rt to [Rn+off]
 STRB Rt, [Rn] ; store least sig. 8-bit Rt to [Rn]
 STRB Rt, [Rn,#off] ; store least sig. 8-bit Rt to [Rn+off]
 PUSH {Rt} ; push 32-bit Rt onto stack
 POP {Rd} ; pop 32-bit number from stack into Rd
 ADR Rd, label ; set Rd equal to the address at label
 MOV{S} Rd, <op2> ; set Rd equal to op2
 MOV Rd, #im16 ; set Rd equal to im16, im16 is 0 to 65535
 MVN{S} Rd, <op2> ; set Rd equal to -op2
Branch instructions
 B label ; branch to label Always
 BEQ label ; branch if Z == 1 Equal
 BNE label ; branch if Z == 0 Not equal
 BCS label ; branch if C == 1 Higher or same, unsigned ≥
 BHS label ; branch if C == 1 Higher or same, unsigned ≥
 BCC label ; branch if C == 0 Lower, unsigned <
 BLO label ; branch if C == 0 Lower, unsigned <
 BMI label ; branch if N == 1 Negative
 BPL label ; branch if N == 0 Positive or zero
 BVS label ; branch if V == 1 Overflow
 BVC label ; branch if V == 0 No overflow
 BHI label ; branch if C==1 and Z==0 Higher, unsigned >
 BLS label ; branch if C==0 or Z==1 Lower or same, unsigned ≤
 BGE label ; branch if N == V Greater than or equal, signed ≥
 BLT label ; branch if N != V Less than, signed <
 BGT label ; branch if Z==0 and N==V Greater than, signed >
 BLE label ; branch if Z==1 or N!=V Less than or equal, signed ≤
 BX Rm ; branch indirect to location specified by Rm
 BL label ; branch to subroutine at label, return address in LR
 BLX Rm ; branch to subroutine indirect specified by Rm
Interrupt instructions
 CPSIE I ; enable interrupts (I=0)
 CPSID I ; disable interrupts (I=1)

Logical instructions
 AND{S} {Rd,} Rn, <op2> ; Rd=Rn&op2 (op2 is 32 bits)
 ORR{S} {Rd,} Rn, <op2> ; Rd=Rn|op2 (op2 is 32 bits)
 EOR{S} {Rd,} Rn, <op2> ; Rd=Rn^op2 (op2 is 32 bits)
 BIC{S} {Rd,} Rn, <op2> ; Rd=Rn&(~op2) (op2 is 32 bits)
 ORN{S} {Rd,} Rn, <op2> ; Rd=Rn|(~op2) (op2 is 32 bits)
 LSR{S} Rd, Rm, Rs ; logical shift right Rd=Rm>>Rs (unsigned)
 LSR{S} Rd, Rm, #n ; logical shift right Rd=Rm>>n (unsigned)

EE319K Spring 2016 Exam 1 Solution Page 10

Janapa Reddi, Tiwari, Valvano, Yerraballi Feb 25, 2016 7:00pm-8:15pm

 ASR{S} Rd, Rm, Rs ; arithmetic shift right Rd=Rm>>Rs (signed)
 ASR{S} Rd, Rm, #n ; arithmetic shift right Rd=Rm>>n (signed)
 LSL{S} Rd, Rm, Rs ; shift left Rd=Rm<<Rs (signed, unsigned)
 LSL{S} Rd, Rm, #n ; shift left Rd=Rm<<n (signed, unsigned)
Arithmetic instructions
 ADD{S} {Rd,} Rn, <op2> ; Rd = Rn + op2
 ADD{S} {Rd,} Rn, #im12 ; Rd = Rn + im12, im12 is 0 to 4095
 SUB{S} {Rd,} Rn, <op2> ; Rd = Rn - op2
 SUB{S} {Rd,} Rn, #im12 ; Rd = Rn - im12, im12 is 0 to 4095
 RSB{S} {Rd,} Rn, <op2> ; Rd = op2 - Rn
 RSB{S} {Rd,} Rn, #im12 ; Rd = im12 – Rn
 CMP Rn, <op2> ; Rn – op2 sets the NZVC bits
 CMN Rn, <op2> ; Rn - (-op2) sets the NZVC bits
 MUL{S} {Rd,} Rn, Rm ; Rd = Rn * Rm signed or unsigned
 MLA Rd, Rn, Rm, Ra ; Rd = Ra + Rn*Rm signed or unsigned
 MLS Rd, Rn, Rm, Ra ; Rd = Ra - Rn*Rm signed or unsigned
 UDIV {Rd,} Rn, Rm ; Rd = Rn/Rm unsigned
 SDIV {Rd,} Rn, Rm ; Rd = Rn/Rm signed
Notes Ra Rd Rm Rn Rt represent 32-bit registers
 value any 32-bit value: signed, unsigned, or address
 {S} if S is present, instruction will set condition codes
 #im12 any value from 0 to 4095
 #im16 any value from 0 to 65535
 {Rd,} if Rd is present Rd is destination, otherwise Rn
 #n any value from 0 to 31
 #off any value from -255 to 4095
 label any address within the ROM of the microcontroller
 op2 the value generated by <op2>
Examples of flexible operand <op2> creating the 32-bit number. E.g., Rd = Rn+op2
 ADD Rd, Rn, Rm ; op2 = Rm
 ADD Rd, Rn, Rm, LSL #n ; op2 = Rm<<n Rm is signed, unsigned
 ADD Rd, Rn, Rm, LSR #n ; op2 = Rm>>n Rm is unsigned
 ADD Rd, Rn, Rm, ASR #n ; op2 = Rm>>n Rm is signed
 ADD Rd, Rn, #constant ; op2 = constant, where X and Y are hexadecimal digits:

• produced by shifting an 8-bit unsigned value left by any number of bits
• in the form 0x00XY00XY
• in the form 0xXY00XY00
• in the form 0xXYXYXYXY

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12

R13 (MSP)
R14 (LR)
R15 (PC)

Stack pointer
Link register

Program counter

General
purpose

registers

Condition code bits
N negative
Z zero
V signed overflow
C carry or
 unsigned overflow

256k Flash
ROM

32k RAM

I/O ports

Internal I/O
PPB

0x0000.0000

0x0003.FFFF

0x2000.0000

0x2000.7FFF

0x4000.0000

0x400F.FFFF

0xE000.0000

0xE004.1FFF

	Exam 1
	UT EID: Solution Professor (circle): Janapa Reddi, Tiwari, Valvano, Yerraballi
	Instructions:
	LDRSH Rd, [Rn,#off] ; load signed 16-bit at [Rn+off] to Rd
	LDRSB Rd, [Rn,#off] ; load signed 8-bit at [Rn+off] to Rd
	Branch instructions
	Interrupt instructions
	Logical instructions
	BIC{S} {Rd,} Rn, <op2> ; Rd=Rn&(~op2) (op2 is 32 bits)
	ORN{S} {Rd,} Rn, <op2> ; Rd=Rn|(~op2) (op2 is 32 bits)
	Arithmetic instructions
	ADD{S} {Rd,} Rn, <op2> ; Rd = Rn + op2
	ADD{S} {Rd,} Rn, #im12 ; Rd = Rn + im12, im12 is 0 to 4095
	SUB{S} {Rd,} Rn, <op2> ; Rd = Rn - op2
	SUB{S} {Rd,} Rn, #im12 ; Rd = Rn - im12, im12 is 0 to 4095
	RSB{S} {Rd,} Rn, <op2> ; Rd = op2 - Rn
	RSB{S} {Rd,} Rn, #im12 ; Rd = im12 – Rn
	Notes Ra Rd Rm Rn Rt represent 32-bit registers
	ADD Rd, Rn, Rm ; op2 = Rm
	ADD Rd, Rn, Rm, LSL #n ; op2 = Rm<<n Rm is signed, unsigned
	ADD Rd, Rn, Rm, LSR #n ; op2 = Rm>>n Rm is unsigned
	ADD Rd, Rn, Rm, ASR #n ; op2 = Rm>>n Rm is signed
	ADD Rd, Rn, #constant ; op2 = constant, where X and Y are hexadecimal digits:

