Lecture 5 12
Introduction to Embedded Microcomputer Systems

EE319K Practice Exam 2 Merge

Page 1

First:_______________ Last:_____________________

Scoring Your grade will be based both on the numerical results returned by your program and on your programming style. In particular, write code that is easy to understand, easy to debug, easy to change. Please employ good labels, pretty structure, and good comments.

	Performance Score=

Run by TA at the checkout
	
	TA:

I promise to follow these rules

This is a closed book exam. You must develop the software solution using the Keil uVision simulator. You have 60 minutes, so allocate your time accordingly. You must bring a laptop and are allowed to bring only some pens and pencils (no books, cell phones, hats, disks, CDs, or notes). You will have to leave other materials up front. Each person works alone (no groups). You have full access to Keil uVision, with the Keil uVision help. You may use the Window’s calculator. You sit in front of a computer and edit/assemble/run/debug the programming assignment. You do NOT have access the book, internet or manuals. You may not take this paper, scratch paper, or rough drafts out of the room. You may not access your network drive or the internet. You are not allowed to discuss this exam with other EE319K students until Friday.

The following activities occurring during the exam will be considered scholastic dishonesty:

1) running any program from the PC other than Keil uVision, or a calculator,

2) communicating with other students by any means about this exam until Friday,

3) using material/equipment other than a pen/pencil.

Students caught cheating will be turned to the Dean of Students.

Signed: ____________________
date:____________

Procedure

First, you will log onto the computer and download files from the web as instructed by the TAs.

Web site
xxxx
user:

xxxx

password:
xxxx

Unzip the folder placing it in a temporary folder. You are not allowed to archive this exam. Within Keil uVision open the project, put your name on the first comment line of the file Exam2.s. Before writing any code, please build and run the system. You should get output like the figure above (but a much lower score). You may wish create backup versions of your program. If you wish to roll back to a previous version, simply open one of the backup versions.

My main program will call your subroutines multiple times, and will give your solution a performance score of 0 to 100. You should not modify my main program or my example data. Each time you add a block of code, you should run my main program, which will output the results to the UART#1 window. After you are finished, raise your hand and wait for a TA. The TA will direct you on how to complete the submission formalities. The TA will run your program in front of you and record your performance score on your exam cover sheet. The scoring page will not be returned to you.

Part a) [20pts] This part tests your knowledge of accessing arrays using pointers. The array contains 16-bit unsigned numbers. Your first subroutine, called:
 Init(unsigned short *buf, unsigned short val, unsigned long len),
should initialize the array buf (a pointer to which is passed in R0) of size len (in R2) by writing the given value val (given in R1) into each element of the array.

Part b) [35pts] Write a second subroutine named
 Insert(unsigned short *buf, unsigned long len, unsigned short val,
 unsigned short *answer),
which accepts an array pointer in R0, an array length in R1, an item to insert in R2, and a pointer to an output array in R3. The input array contains 16-bit unsigned numbers. For example, if register R1 equals 5, then register R0 points to five 16-bit numbers. The subroutine will write to the output array containing the value from register R2 followed by all the elements of the input array. The input array may be empty (register R1 equals 0), in which case the output array will be just length 1 (the value in register R2). A pointer to the output array is passed in R3, and you may assume the output array has room for all elements (enough room for all the test cases), so you can write to this output array without modifying other data in RAM.
Part c) [45pts] This part will test your overall programming skills and use of arrays. You will write a subroutine called
 Merge(unsigned short *buf1, unsigned short *buf2,
 unsigned long len1, unsigned long len2,
 unsigned short *answer),
which will take two sorted (smallest first) arrays and merge them into a single sorted array. Again, the output array is passed as a pointer to an empty place in RAM. Because there are five parameters, the first four are passed in registers R0 through R3, but the fifth is passed on the stack.

Important Notes:

· Your subroutines should work for all cases shown in the starter file.

· All data are 16-bit unsigned numbers.

· Handle the simple cases first and the special cases last.

Submission Guidelines (follow instructions given at the time of the exam):

· Log onto Blackboard and submit your Exam2.s source file into the Exam2 field. Be careful because only one submission will be allowed.

Memory access instructions

 LDR Rd, [Rn] ; load 32-bit number at [Rn] to Rd

 LDR Rd, [Rn,#off] ; load 32-bit number at [Rn+off] to Rd

 LDR Rd, =value ; set Rd equal to any 32-bit value (PC rel)
 LDRH Rd, [Rn] ; load unsigned 16-bit at [Rn] to Rd

 LDRH Rd, [Rn,#off] ; load unsigned 16-bit at [Rn+off] to Rd

 LDRSH Rd, [Rn] ; load signed 16-bit at [Rn] to Rd

 LDRSH Rd, [Rn,#off] ; load signed 16-bit at [Rn+off] to Rd

 LDRB Rd, [Rn] ; load unsigned 8-bit at [Rn] to Rd

 LDRB Rd, [Rn,#off] ; load unsigned 8-bit at [Rn+off] to Rd

 LDRSB Rd, [Rn] ; load signed 8-bit at [Rn] to Rd

 LDRSB Rd, [Rn,#off] ; load signed 8-bit at [Rn+off] to Rd

 STR Rt, [Rn] ; store 32-bit Rt to [Rn]

 STR Rt, [Rn,#off] ; store 32-bit Rt to [Rn+off]

 STRH Rt, [Rn] ; store least sig. 16-bit Rt to [Rn]

 STRH Rt, [Rn,#off] ; store least sig. 16-bit Rt to [Rn+off]

 STRB Rt, [Rn] ; store least sig. 8-bit Rt to [Rn]

 STRB Rt, [Rn,#off] ; store least sig. 8-bit Rt to [Rn+off]

 PUSH {Rt} ; push 32-bit Rt onto stack

 POP {Rd} ; pop 32-bit number from stack into Rd

 ADR Rd, label ; set Rd equal to the address at label
 MOV{S} Rd, <op2> ; set Rd equal to op2
 MOV Rd, #im16 ; set Rd equal to im16, im16 is 0 to 65535
 MVN{S} Rd, <op2> ; set Rd equal to -op2
Branch instructions

 B label ; branch to label Always

 BEQ label ; branch if Z == 1 Equal

 BNE label ; branch if Z == 0 Not equal

 BCS label ; branch if C == 1 Higher or same, unsigned ≥

 BHS label ; branch if C == 1 Higher or same, unsigned ≥

 BCC label ; branch if C == 0 Lower, unsigned <

 BLO label ; branch if C == 0 Lower, unsigned <

 BMI label ; branch if N == 1 Negative

 BPL label ; branch if N == 0 Positive or zero

 BVS label ; branch if V == 1 Overflow

 BVC label ; branch if V == 0 No overflow

 BHI label ; branch if C==1 and Z==0 Higher, unsigned >

 BLS label ; branch if C==0 or Z==1 Lower or same, unsigned ≤

 BGE label ; branch if N == V Greater than or equal, signed ≥

 BLT label ; branch if N != V Less than, signed <

 BGT label ; branch if Z==0 and N==V Greater than, signed >

 BLE label ; branch if Z==1 and N!=V Less than or equal, signed ≤
 BX Rm ; branch indirect to location specified by Rm

 BL label ; branch to subroutine at label
 BLX Rm ; branch to subroutine indirect specified by Rm
Interrupt instructions

 CPSIE I ; enable interrupts (I=0)
 CPSID I ; disable interrupts (I=1)

Logical instructions

 AND{S} {Rd,} Rn, <op2> ; Rd=Rn&op2 (op2 is 32 bits)
 ORR{S} {Rd,} Rn, <op2> ; Rd=Rn|op2 (op2 is 32 bits)
 EOR{S} {Rd,} Rn, <op2> ; Rd=Rn^op2 (op2 is 32 bits)
 BIC{S} {Rd,} Rn, <op2> ; Rd=Rn&(~op2) (op2 is 32 bits)
 ORN{S} {Rd,} Rn, <op2> ; Rd=Rn|(~op2) (op2 is 32 bits)

 LSR{S} Rd, Rm, Rs ; logical shift right Rd=Rm>>Rs (unsigned)

 LSR{S} Rd, Rm, #n ; logical shift right Rd=Rm>>n (unsigned)

 ASR{S} Rd, Rm, Rs ; arithmetic shift right Rd=Rm>>Rs (signed)

 ASR{S} Rd, Rm, #n ; arithmetic shift right Rd=Rm>>n (signed)

 LSL{S} Rd, Rm, Rs ; shift left Rd=Rm<<Rs (signed, unsigned)

 LSL{S} Rd, Rm, #n ; shift left Rd=Rm<<n (signed, unsigned)
Arithmetic instructions

 ADD{S} {Rd,} Rn, <op2> ; Rd = Rn + op2
 ADD{S} {Rd,} Rn, #im12 ; Rd = Rn + im12, im12 is 0 to 4095
 SUB{S} {Rd,} Rn, <op2> ; Rd = Rn - op2

 SUB{S} {Rd,} Rn, #im12 ; Rd = Rn - im12, im12 is 0 to 4095
 RSB{S} {Rd,} Rn, <op2> ; Rd = op2 - Rn

 RSB{S} {Rd,} Rn, #im12 ; Rd = im12 – Rn
 CMP Rn, <op2> ; Rn – op2 sets the NZVC bits

 CMN Rn, <op2> ; Rn - (-op2) sets the NZVC bits
 MUL{S} {Rd,} Rn, Rm ; Rd = Rn * Rm signed or unsigned

 MLA Rd, Rn, Rm, Ra ; Rd = Ra + Rn*Rm signed or unsigned
 MLS Rd, Rn, Rm, Ra ; Rd = Ra - Rn*Rm signed or unsigned

 UDIV {Rd,} Rn, Rm ; Rd = Rn/Rm unsigned

 SDIV {Rd,} Rn, Rm ; Rd = Rn/Rm signed
Notes Ra Rd Rm Rn Rt represent 32-bit registers
 value any 32-bit value: signed, unsigned, or address

 {S} if S is present, instruction will set condition codes

 #im12 any value from 0 to 4095

 #im16 any value from 0 to 65535
 {Rd,} if Rd is present Rd is destination, otherwise Rn

 #n any value from 0 to 31

 #off any value from -255 to 4095

 label any address within the ROM of the microcontroller

 op2 the value generated by <op2>

Examples of flexible operand <op2> creating the 32-bit number. E.g., Rd = Rn+op2
 ADD Rd, Rn, Rm ; op2 = Rm

 ADD Rd, Rn, Rm, LSL #n ; op2 = Rm<<n Rm is signed, unsigned

 ADD Rd, Rn, Rm, LSR #n ; op2 = Rm>>n Rm is unsigned

 ADD Rd, Rn, Rm, ASR #n ; op2 = Rm>>n Rm is signed

 ADD Rd, Rn, #constant ; op2 = constant, where X and Y are hexadecimal digits:

· produced by shifting an 8-bit unsigned value left by any number of bits

· in the form 0x00XY00XY
· in the form 0xXY00XY00
· in the form 0xXYXYXYXY
[image: image1.emf]R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (MSP)

R14 (LR)

R15 (PC)

Stack pointer

Link register

Program counter

General

purpose

registers

 [image: image2.wmf]2

5

6

k

F

l

a

s

h

R

O

M

6

4

k

R

A

M

I

/

O

p

o

r

t

s

I

n

t

e

r

n

a

l

I

/

O

P

P

B

0

x

0

0

0

0

.

0

0

0

0

0

x

0

0

0

3

.

F

F

F

F

0

x

2

0

0

0

.

0

0

0

0

0

x

2

0

0

0

.

F

F

F

F

0

x

4

0

0

0

.

0

0

0

0

0

x

4

1

F

F

.

F

F

F

F

0

x

E

0

0

0

.

0

0

0

0

0

x

E

0

0

4

.

0

F

F

F

Condition code bits

N	negative

Z	zero	

V	signed overflow

C	carry or

	unsigned overflow

03/24/13
Jonathan W. Valvano Practice Exam

