EE319K Reference sheet

Memory access instructions

LDR Rd, [Rn] ; load 32-bit number at [Rn] to Rd
LDR Rd, [Rn,#off] ; load 32-bit number at [Rn+off] to Rd
LDR Rd, =value ; set Rd equal to any 32-bit value (PC rel)
LDRH Rd, [Rn] ; load unsigned 16-bit at [Rn] to Rd
LDRH Rd, [Rn,#0ff] ; load unsigned 16-bit at [Rn+off] to Rd
LDRSH Rd, [Rn] ; load signed 16-bit at [Rn] to Rd
LDRSH Rd, [Rn,#0ff] ; load signed 16-bit at [Rn+off] to Rd
LDRB Rd, [Rn] ; load unsigned 8-bit at [Rn] to Rd
LDRB Rd, [Rn,#0ff] ; load unsigned 8-bit at [Rn+off] to Rd
LDRSB Rd, [Rn] ; load signed 8-bit at [Rn] to Rd
LDRSB Rd, [Rn,#0ff] ; load signed 8-bit at [Rn+off] to Rd
STR Rt, [Rn] ; store 32-bit Rt to [Rn]
STR Rt, [Rn,#o0ff] ; store 32-bit Rt to [Rn+off]
STRH Rt, [Rn] ; store least sig. 16-bit Rt to [Rn]
STRH Rt, [Rn,#o0ff] ; store least sig. 16-bit Rt to [Rn+off]
STRB Rt, [Rn] ; store least sig. 8-bit Rt to [Rn]
STRB Rt, [Rn,#o0ff] ; store least sig. 8-bit Rt to [Rn+off]
PUSH {Rt} ; push 32-bit Rt onto stack
POP {Rd} ; pop 32-bit number from stack into Rd
ADR Rd, label ; set Rd equal to the address at label
MOV{S} Rd, <op2> ; set Rd equal to op2
MOV Rd, #imlé6 ; set Rd equal to iml6, imlé is 0 to 65535
MVN{S} Rd, <op2> ; set Rd equal to -op2
Branch instructions
B label ; branch to label Always
BEQ label ; branch if Z == 1 Equal
BNE label ; branch if Z == 0 Not equal
BCS label ; branch if C == 1 Higher or same, unsigned 2
BHS label ; branch if C == 1 Higher or same, unsigned 2
BCC 1label ; branch if C == 0 Lower, unsigned <
BLO label ; branch if C == 0 Lower, unsigned <
BMI label ; branch if N == 1 Negative
BPL label ; branch if N == 0 Positive or zero
BVS label ; branch if Vv == 1 Overflow
BVC 1label ; branch if Vv == 0 No overflow
BHI label ; branch if C==1 and Z==0 Higher, unsigned >
BLS label ; branch if C==0 or 2==1 Lower or same, unsigned <
BGE label ; branch if =V Greater than or equal, signed 2
BLT label ; branch if N !'=V Less than, signed <
BGT label ; branch if Z==0 and N==V Greater than, signed >
BLE label ; branch if Z==1 or N!=V Less than or equal, signed <
BX Rm ; branch indirect to location specified by Rm
BL label ; branch to subroutine at label, return address in LR
BLX Rm ; branch to subroutine indirect specified by Rm
Interrupt instructions
CPSIE I ; enable interrupts (I=0)
CPSID I ; disable interrupts (I=1)
Logical instructions
AND{S} {Rd,} Rn, <op2> ; Rd=Rné&op2 (op2 is 32 bits)
ORR{S} {Rd,} Rn, <op2> ; Rd=Rn|op2 (op2 is 32 bits)
EOR{S} {Rd,} Rn, <op2> ; Rd=Rn”op2 (op2 is 32 bits)
BIC{S} {Rd,} Rn, <op2> ; Rd=Rné& (~op2) (op2 is 32 bits)
ORN{S} {Rd,} Rn, <op2> ; Rd=Rn| (~op2) (op2 is 32 bits)
LSR{S} Rd, Rm, Rs ; logical shift right Rd=Rm>>Rs (unsigned)
LSR{S} Rd, Rm, #n ; logical shift right Rd=Rm>>n (unsigned)

EE319K Reference sheet

ASR{S} Rd, Rm, Rs ; arithmetic shift right Rd=Rm>>Rs (signed)
ASR{S} Rd, Rm, #n ; arithmetic shift right Rd=Rm>>n (signed)
LSL{S} Rd, Rm, Rs ; shift left RA=Rm<<Rs (signed, unsigned)
LSL{S} Rd, Rm, #n ; shift left Rd=Rm<<n (signed, unsigned)
Arithmetic instructions
ADD{S} {Rd,} Rn, <op2> ; Rd = Rn + op2
ADD{S} {Rd,} Rn, #iml2 ; Rd = Rn + iml2, iml2 is 0 to 4095
SUB{S} {Rd,} Rn, <op2> ; Rd = Rn - op2
SUB{S} {Rd,} Rn, #iml2 ; Rd = Rn - iml2, iml2 is 0 to 4095
RSB{S} {Rd,} Rn, <op2> ; Rd = op2 - Rn
RSB{S} {Rd,} Rn, #iml2 ; Rd = iml2 - Rn
CMP Rn, <op2> ; Rn — op2 sets the NZVC bits
CMN Rn, <op2> ; Rn - (-op2) sets the NZVC bits
MUL{S} {Rd,} Rn, Rm ; Rd = Rn * Rm signed or unsigned (sets NZ)
MLA Rd, Rn, Rm, Ra ; Rd = Ra + Rn*Rm signed or unsigned (no flags)
MLS Rd, Rn, Rm, Ra ; Rd = Ra - Rn*Rm signed or unsigned (no flags)
UDIV {Rd,} Rn, Rm ; Rd = Rn/Rm unsigned (no flags set)
SDIV {Rd,} Rn, Rm ; Rd = Rn/Rm signed (no flags set)
Notes Ra Rd Rm Rn Rt represent 32-bit registers
value any 32-bit value: signed, unsigned, or address
{S} if S is present, instruction will set condition codes NZVC
#iml2 any value from 0 to 4095
#imle any value from 0 to 65535
{Rd, } if Rd is present Rd is destination, otherwise Rn
#n any value from 0 to 31
#off any value from -255 to 4095
label any address within the ROM of the microcontroller
op2 the value generated by <op2>
Examples of flexible operand <op2> creating the 32-bit number. E.g.,, Rd = Rn+op2
ADD Rd, Rn, Rm ; op2 = Rm
ADD Rd, Rn, Rm, LSL #n ; op2 = Rm<<n Rm is signed, unsigned
ADD Rd, Rn, Rm, LSR #n ; op2 = Rm>>n Rm is unsigned
ADD Rd, Rn, Rm, ASR #n ; op2 = Rm>>n Rm is signed
ADD Rd, Rn, f#iconstant ; op2 = constant, where X and Y are hexadecimal digits:
e produced by shifting an 8-bit unsigned value left by any number of bits
e inthe form 0x00XY00XY
e inthe form 0xXY00XYO0O
e inthe form 0xXYXYXYXY
RO
S% 256k Flash 0x0000.0000
R3 Condition code bits ROM 0X0003.FEEF
R4 N negative)
General R5 Z zero
purpose gg V signed overflow 32k RAM | 0x2000.0000
registers RS C carry or 0x2000.7FFF
R9 unsigned overflow
Ei(l) 1/0 ports 0x4000.0000
Sgﬁfpommr Rl;ﬁﬁsp) 0x400F.FFFF
Link register
Program co%nter E%g g:;g; Internal 1/0 0xE000.0000
PPB
AREA |.text|,CODE,READONLY,ALIGN=2 ;put in ROM OXE004.1FFF
AREA DATA, ALIGN=2 ;put in RAM
DCB 1,2,3 ; allocates three 8-bit byte(s)
DCW 1,2,3 ; allocates three 16-bit halfwords
DCD ,2,3 ; allocates three 32-bit words
SPACE 4 ; reserves 4 bytes

