
EE319K Fall 2012 Final Exam Page 1 of 14

Jonathan Valvano December 15, 2012

First:________________ Last:____________________

This is a closed book exam. You must put your answers in the boxes provided. You have 3 hours, so
allocate your time accordingly. Please read the entire exam before starting.

Please read and affirm our honor code:
 “The core values of The University of Texas at Austin are learning, discovery, freedom, leadership,
individual opportunity, and responsibility. Each member of the university is expected to uphold these
values through integrity, honesty, trust, fairness, and respect toward peers and community.”

 Signature ______________________________________

5a)

5b)

5c)

5d)

5e)

5f)

5g)

5h)

5i)

5j)

6a)

6b)

6c)

6d)

7a)

7b)

8a)

8b) 8c) 8d) 8e) 8f)

9) 11a) 10)

11b) 11c)

11d)

11e)

12)

13)

EE319K Fall 2012 Final Exam Page 2 of 14

Jonathan Valvano December 15, 2012

14)

15a)

15b)

16a)

16b)

17a)

17b)

17c)

18a)

18c)

18b)

EE319K Fall 2012 Final Exam Page 3 of 14

Jonathan Valvano December 15, 2012

(10) Question 1. Write two debugging functions in C. Your debugging instrument will record the
values observed on Port A. You may assume someone else will initialize Port A. The main program
will call your function Init once at the start of the experiment. At strategic times during the
experiment, someone else will call your function Record to capture Port A data. Your system will
save the last N values in RAM, where N is defined like this
#define N 10
To change N one only needs to edit the above line and recompile the code. After N data values are
collected, your debugging instrument will record the next data by discarding the oldest data. After that,
your system maintains a record of the last N measurements.

Part a) Show the C code you would place in the header file (Debug.h). Comments will be graded.

Part b) Show the C code you would place in the code file (Debug.c). Comments are not required for
this part. There is no particular requirement about the order of how the data is saved; you just need to
be able to save the last N measurements. Show the implementations of Init and Record.

EE319K Fall 2012 Final Exam Page 4 of 14

Jonathan Valvano December 15, 2012

(5) Question 2. Interface a switch to PA0. Implement the interface in negative logic. Assume the port
pin is initialized as an input with internal pull-up. Minimize cost of the interface. Show hardware
connections; no software is required.

PA0

Microcontroller

(5) Question 3. Interface an LED to PA1. Implement the interface in positive logic. The desired LED
operating point is 1V 1mA. The VOH is 3.0V and VOL = 0.1V. Minimize cost of the interface. Show
hardware connections; no software is required.

PA1

Microcontroller

(5) Problem 4. Assume the UART0 has been initialized. Use busy-wait synchronization to implement a C
function with the following steps
 1) Wait for new serial port input
 2) Read the new 8-bit data
 3) Echo the data by transmitting the same 8-bit data just received
 4) Return by value the one byte received.
Define a function in C that performs these four steps. Be careful to define the input and output parameters in an
appropriate manner.

EE319K Fall 2012 Final Exam Page 5 of 14

Jonathan Valvano December 15, 2012

(10) Question 5. State the term that is best described by each definition.
Part a) You are given a DAC to test. You increment the input to the DAC stepping through all
possible values. For each change in input you notice that the change in output voltage, V, is always
positive.
Part b) A property of RAM such that data is lost if power is removed and then restored.
Part c) A UART transmission communicates 8 bits of information, but each frame is 10 bits wide.
What are the other two bits? Give there names as words rather than as numbers.
Part d) A subset of a number system from which all values in the set can be constructed.
Part e) A characteristic of a debugger when the presence of the collection of information itself has a
small but unimportant effect on the parameters being measured.
Part f) A synchronization method used to link a background thread to a foreground thread. No data is
being passed. The foreground thread spins waiting for a condition to occur. The background thread
triggers this condition. After the trigger, the foreground is released so it will continue.
Part g) A type of software variable where the scope of access is restricted.
Part h) A debugging process that allows you to determine what software is being run and when it runs.
Part i) The name given to describe 1,024 bytes.
Part j) A type of digital logic where the voltage representing true is less than the voltage representing
false.

(4) Question 6. List four limitations occurring when analog signals are converted into digital numbers
using an ADC. Give your answer as one word or a short phrase.

(6) Question 7. This circuit is a 2-bit DAC using the R-2R configuration. The DAC is controlled by
two output port pins, PE1 and PE0. Assume VOH is 3.0V and VOL = 0V.

Iout

2k

PE1PE0

1k

2k 2k 2k

Part a) What is the output current Iout when PE1 is high, and PE0 is low?
Part b) What is the output current Iout when PE1 is low, and PE0 is high?

EE319K Fall 2012 Final Exam Page 6 of 14

Jonathan Valvano December 15, 2012

(6) Question 8. Consider the following file with one function and 6 variables. Which type are v1–v6?
Each selection A-F may be used zero, one, or more times.
A) A public permanently-allocated variable
B) A public temporarily-allocated variable
C) A temporary variable private to the function Fun_Init
D) A permanently-allocated variable private to the function Fun_Init
E) A permanently-allocated variable, private to the file Fun.c.
F) A syntax error causing this code to not compile
It is possible one letter code could be used multiple times, while other codes might not be used.

// This is the first line of the Fun.c code file
long v1;
volatile long v2;
static long v3;
void Fun_Init(int in){ // code
long v4;
static long v5;
 v4 = 0;
long v6;
 if(in==0) {
 v1 = 0;
 }
 v2 = 10;
}
// this is the last line of the Fun.c code file
Part a) What is the best classification for the variable v1? Specify a letter from A to F.
Part b) What is the best classification for the variable v2? Specify a letter from A to F.
Part c) What is the best classification for the variable v3? Specify a letter from A to F.
Part d) What is the best classification for the variable v4? Specify a letter from A to F.
Part e) What is the best classification for the variable v5? Specify a letter from A to F.
Part f) What is the best classification for the variable v6? Specify a letter from A to F.

(1) Question 9. If R0 and R1 both equal 2*109 will the instruction ADDS R2,R1,R0 set the V bit?
Answer Yes or No.

(3) Question 10. Assume there is a buffer is defined in assembly with the equivalent size and type.
;assembly
Buffer SPACE 400

// C
long Buffer[100];

Show the assembly code that sets element number 50 to the value -1. This will be 2 to 4 assembly
instructions. I.e., your assembly code is equivalent to the following C.
 Buffer[50] = -1;

EE319K Fall 2012 Final Exam Page 7 of 14

Jonathan Valvano December 15, 2012

(10) Question 11. In this question, the subroutine implements a call by value parameter passed on the
stack. There are no return parameters. Call by value means the data itself is pushed on the stack. A
typical calling sequence is
 AREA |.text|, CODE, READONLY, ALIGN=2
Data DCD 100 ;32-bit information
Main LDR R0,=Data
 LDR R0,[R0]
 PUSH {R0} ;the value of the Data is pushed
 MOV R0,#0 ;no cheating, parameter not in R0, on stack
 BL Subroutine
 ADD SP,SP,#4 ;discard parameter
The subroutine allocates two 32-bit local variables, L1 L2, and uses SP stack pointer addressing to
access the local variables and the parameter. The binding for these three are
In EQU ??(a)?? ;32-bit value that is the input parameter
L1 EQU ??(b)?? ;32-bit local variable
L2 EQU ??(c)?? ;32-bit local variable
Subroutine
 PUSH {R10,R11,LR}
 (d)* ;allocate L1, L2
;---------start of body-------------------
 LDR R11,[SP,#In] ;Reg R11 is the input parameter data
 STR R11,[SP,#L2] ;save parameter into local L1
;---------end of body---------------------
 ???(e)??? ;deallocate L1,L2
 POP {R10,R11,PC}
Part a) Show the binding for In. I.e., give the value that goes in the ???(a)??? spot.
Part b) Show the binding for L1. I.e., give the value that goes in the ???(b)??? spot.
Part c) Show the binding for L2. I.e., give the value that goes in the ???(c)??? spot.
Part d) Show the allocation instruction(s) for the ???(d)??? in the above program.
Part e) Show the deallocation instruction(s) for the ???(e)??? in the above program.

(5) Question 12. Consider a system similar to Lab 9 but with these specifications. The bus cycle is
50MHz. The baud rate is 50,000 bits/sec. The SysTick interrupt rate is 100 Hz. Each interrupt the 10-
bit ADC is sampled and the information is transmitted as an 8 byte message. What is the actual
bandwidth of the communication system? I am not asking the peak possible bandwidth.

EE319K Fall 2012 Final Exam Page 8 of 14

Jonathan Valvano December 15, 2012

(5) Question 13. Consider this FIFO put function. There are no bugs in the C implementation, but
there is one bug in the assembly implementation. In other words, you can edit one of the assembly
lines to make the assembly function operational. Specify the line number and the corrected code.
Fifo_Put LDR R1,=PutPt ;1
 LDR R2,[R1] ;2
 ADD R3,R2,#1 ;3
 LDR R12,=Fifo+20 ;4
 CMP R3,R12 ;5
 BNE NoWrap ;6
 LDR R3,=Fifo ;7
NoWrap LDR R12,=GetPt ;8
 LDR R12,[R12] ;9
 CMP R3,R12 ;10
 BNE NotFull ;11
 MOV R0,#0 ;12
 BX LR ;13
NotFull STRH R0,[R2] ;14
 STR R3,[R1] ;15
 MOV R0,#1 ;16
 BX LR ;17

#define FIFO_SIZE 10
int Fifo_Put(short data){
short *tempPt;
 tempPt = PutPt+1;

if(tempPt==&Fifo[FIFO_SIZE]){
 tempPt = &Fifo[0];
 }
 if(tempPt == GetPt){
 return(0);
 }
 else{
 *PutPt = data;
 PutPt = tempPt;
 return(1);
 }
}

(4) Problem 14. The Stellaris LM4F120 has a 0 to 3V 12-bit ADC. What will be the digital output of
the ADC if the input voltage is 1 V?

(5) Question 15. Assume the bus clock is operating at 50 MHz. The SysTick initialization executes
these instructions. SysTick will be used with busy-wait synchronization to create time delays
SysTick_Init
 LDR R1,=NVIC_ST_RELOAD_R
 ????(a)????
 STR R0,[R1]
 LDR R1,=NVIC_ST_CTRL_R
 ????(b)????
 STR R2,[R1]
 BX LR
What assembly instructions go in the ????(a)???? and ????(b)???? places?

EE319K Fall 2012 Final Exam Page 9 of 14

Jonathan Valvano December 15, 2012

(5) Question 16. Consider the following Mealy FSM
struct State {
 unsigned long Out[2];
 unsigned long Delay;
 const struct State *Next[2];};
typedef const struct State STyp;
#define Stop &FSM[0]
#define Go &FSM[1]
#define PA0 (*((volatile unsigned long *)0x40004004))
#define PA21 (*((volatile unsigned long *)0x40004018))
STyp FSM[2]={
 {{2,0},10,{Stop,Go}},
 {{0,1},10,{Stop,Go}}};
int main(void){ STyp *Pt; // state pointer
 unsigned long Input;
 PLL_Init(); // configure for 50 MHz clock
 SYSCTL_RCGC2_R |= SYSCTL_RCGC2_GPIOA; // activate port A
 SysTick_Init(); // initialize SysTick timer
 GPIO_PORTA_DIR_R &= ~0x01; // make PA0 in
 GPIO_PORTA_DIR_R |= 0x06; // make PA2-1 out
 GPIO_PORTA_AFSEL_R &= ~0x07; // disable alt func on PA3-0
 GPIO_PORTA_DEN_R |= 0x07; // enable digital I/O on PA3-0
 Pt = Stop; // initial state: stopped
 while(1){
 ????(a)????? // get new input from Control
 ????(b)????? // output to Brake and Gas
 SysTick_Wait10ms(Pt->Delay);// wait 10 ms * Delay value
 Pt = Pt->Next[Input]; // transition to next state
 }
}
Fill in the missing C code that first inputs from PA0, and second outputs the appropriate value to the
PA2, PA1 pins. The input stage should set the variable Input to 0 or 1 depending on PA0. For
example, if then input on PA0 is 1, then your software will make the Input variable 1. For example, if
the motor controller FSM wished to output 2, then your software makes PA2=1 and PA1=0. Your code
must be friendly.

EE319K Fall 2012 Final Exam Page 10 of 14

Jonathan Valvano December 15, 2012

(6) Question 17. Consider the following SysTick ISR. Assume SysTick is initialized to interrupt every
50s. The SysTick is armed and enabled. Assume Port G bit 2 has been configured as an output.
Assume also the main program was running when SysTick interrupts are triggered. 0x40026010 is the
bit-specific address for the PG2 pin.
 AREA DATA, ALIGN=2
Counts SPACE 4 ; records number of SysTick interrupts
 AREA |.text|, CODE, READONLY, ALIGN=2
GPIO_PORTG2 EQU 0x40026010
SysTick_Handler
 LDR R1,=GPIO_PORTG2 ; LED
 MOV R0,#0
 STR R0,[R1]
 EOR R0,R0,#0x04
 LDR R2,=Counts
 LDR R3,[R2]
 ADD R3,R3,#1 ; Counts = Counts + 1
 STR R3,[R2]
 STR R0,[R1]
 BX LR
Part a) What is in LR during the execution of the ISR?
Part b) What gets pushed on the stack during the invocation of the ISR?
Part c) Sketch the output voltage versus time on PG2

(10) Question 18. A distance is represented as a signed decimal fixed-point number with resolution of
0.001 cm. Assume the variable integer is 32 bits and signed. Assume the variable integer is passed by
value into a subroutine using Register R0. Calculate the cost = (2.5 dollars/cm)*distance. The cost is
represented as a signed decimal fixed-point number with resolution of $0.01. The function should
return the variable integer representing cost in Register R0.
Part a) For example if the distance is 1.20 cm. The cost will be (2.5 dollars/cm)*1.20 cm = 3 dollars.
Given this example what do you expect the input value to be in Register R0? Give your answer in
decimal (not binary, not hexadecimal).

Part b) Given the example data from part a), what output value should the function return in Register
R0? Give your answer in decimal (not binary, not hexadecimal).

Part c) Write the assembly subroutine that converts distance to cost. Verify that the input given in a)
results in the output you gave for b). Optimize for speed, eliminate overflow, and minimize dropout.

EE319K Fall 2012 Final Exam Page 11 of 14

Jonathan Valvano December 15, 2012

Memory access instructions
 LDR Rd, [Rn] ; load 32-bit number at [Rn] to Rd
 LDR Rd, [Rn,#off] ; load 32-bit number at [Rn+off] to Rd
 LDR Rd, =value ; set Rd equal to any 32-bit value (PC rel)
 LDRH Rd, [Rn] ; load unsigned 16-bit at [Rn] to Rd
 LDRH Rd, [Rn,#off] ; load unsigned 16-bit at [Rn+off] to Rd
 LDRSH Rd, [Rn] ; load signed 16-bit at [Rn] to Rd
 LDRSH Rd, [Rn,#off] ; load signed 16-bit at [Rn+off] to Rd
 LDRB Rd, [Rn] ; load unsigned 8-bit at [Rn] to Rd
 LDRB Rd, [Rn,#off] ; load unsigned 8-bit at [Rn+off] to Rd
 LDRSB Rd, [Rn] ; load signed 8-bit at [Rn] to Rd
 LDRSB Rd, [Rn,#off] ; load signed 8-bit at [Rn+off] to Rd
 STR Rt, [Rn] ; store 32-bit Rt to [Rn]
 STR Rt, [Rn,#off] ; store 32-bit Rt to [Rn+off]
 STRH Rt, [Rn] ; store least sig. 16-bit Rt to [Rn]
 STRH Rt, [Rn,#off] ; store least sig. 16-bit Rt to [Rn+off]
 STRB Rt, [Rn] ; store least sig. 8-bit Rt to [Rn]
 STRB Rt, [Rn,#off] ; store least sig. 8-bit Rt to [Rn+off]
 PUSH {Rt} ; push 32-bit Rt onto stack
 POP {Rd} ; pop 32-bit number from stack into Rd
 ADR Rd, label ; set Rd equal to the address at label
 MOV{S} Rd, <op2> ; set Rd equal to op2
 MOV Rd, #im16 ; set Rd equal to im16, im16 is 0 to 65535
 MVN{S} Rd, <op2> ; set Rd equal to -op2
Branch instructions
 B label ; branch to label Always
 BEQ label ; branch if Z == 1 Equal
 BNE label ; branch if Z == 0 Not equal
 BCS label ; branch if C == 1 Higher or same, unsigned ≥
 BHS label ; branch if C == 1 Higher or same, unsigned ≥
 BCC label ; branch if C == 0 Lower, unsigned <
 BLO label ; branch if C == 0 Lower, unsigned <
 BMI label ; branch if N == 1 Negative
 BPL label ; branch if N == 0 Positive or zero
 BVS label ; branch if V == 1 Overflow
 BVC label ; branch if V == 0 No overflow
 BHI label ; branch if C==1 and Z==0 Higher, unsigned >
 BLS label ; branch if C==0 or Z==1 Lower or same, unsigned ≤
 BGE label ; branch if N == V Greater than or equal, signed ≥
 BLT label ; branch if N != V Less than, signed <
 BGT label ; branch if Z==0 and N==V Greater than, signed >
 BLE label ; branch if Z==1 and N!=V Less than or equal, signed ≤
 BX Rm ; branch indirect to location specified by Rm
 BL label ; branch to subroutine at label
 BLX Rm ; branch to subroutine indirect specified by Rm
Interrupt instructions
 CPSIE I ; enable interrupts (I=0)
 CPSID I ; disable interrupts (I=1)

Logical instructions
 AND{S} {Rd,} Rn, <op2> ; Rd=Rn&op2 (op2 is 32 bits)
 ORR{S} {Rd,} Rn, <op2> ; Rd=Rn|op2 (op2 is 32 bits)
 EOR{S} {Rd,} Rn, <op2> ; Rd=Rn^op2 (op2 is 32 bits)
 BIC{S} {Rd,} Rn, <op2> ; Rd=Rn&(~op2) (op2 is 32 bits)
 ORN{S} {Rd,} Rn, <op2> ; Rd=Rn|(~op2) (op2 is 32 bits)

EE319K Fall 2012 Final Exam Page 12 of 14

Jonathan Valvano December 15, 2012

 LSR{S} Rd, Rm, Rs ; logical shift right Rd=Rm>>Rs (unsigned)
 LSR{S} Rd, Rm, #n ; logical shift right Rd=Rm>>n (unsigned)
 ASR{S} Rd, Rm, Rs ; arithmetic shift right Rd=Rm>>Rs (signed)
 ASR{S} Rd, Rm, #n ; arithmetic shift right Rd=Rm>>n (signed)
 LSL{S} Rd, Rm, Rs ; shift left Rd=Rm<<Rs (signed, unsigned)
 LSL{S} Rd, Rm, #n ; shift left Rd=Rm<<n (signed, unsigned)
Arithmetic instructions
 ADD{S} {Rd,} Rn, <op2> ; Rd = Rn + op2
 ADD{S} {Rd,} Rn, #im12 ; Rd = Rn + im12, im12 is 0 to 4095
 SUB{S} {Rd,} Rn, <op2> ; Rd = Rn - op2
 SUB{S} {Rd,} Rn, #im12 ; Rd = Rn - im12, im12 is 0 to 4095
 RSB{S} {Rd,} Rn, <op2> ; Rd = op2 - Rn
 RSB{S} {Rd,} Rn, #im12 ; Rd = im12 – Rn
 CMP Rn, <op2> ; Rn – op2 sets the NZVC bits
 CMN Rn, <op2> ; Rn - (-op2) sets the NZVC bits
 MUL{S} {Rd,} Rn, Rm ; Rd = Rn * Rm signed or unsigned
 MLA Rd, Rn, Rm, Ra ; Rd = Ra + Rn*Rm signed or unsigned
 MLS Rd, Rn, Rm, Ra ; Rd = Ra - Rn*Rm signed or unsigned
 UDIV {Rd,} Rn, Rm ; Rd = Rn/Rm unsigned
 SDIV {Rd,} Rn, Rm ; Rd = Rn/Rm signed
Notes Ra Rd Rm Rn Rt represent 32-bit registers
 value any 32-bit value: signed, unsigned, or address
 {S} if S is present, instruction will set condition codes
 #im12 any value from 0 to 4095
 #im16 any value from 0 to 65535
 {Rd,} if Rd is present Rd is destination, otherwise Rn
 #n any value from 0 to 31
 #off any value from -255 to 4095
 label any address within the ROM of the microcontroller
 op2 the value generated by <op2>
Examples of flexible operand <op2> creating the 32-bit number. E.g., Rd = Rn+op2
 ADD Rd, Rn, Rm ; op2 = Rm
 ADD Rd, Rn, Rm, LSL #n ; op2 = Rm<<n Rm is signed, unsigned
 ADD Rd, Rn, Rm, LSR #n ; op2 = Rm>>n Rm is unsigned
 ADD Rd, Rn, Rm, ASR #n ; op2 = Rm>>n Rm is signed
 ADD Rd, Rn, #constant ; op2 = constant, where X and Y are hexadecimal digits:

 produced by shifting an 8-bit unsigned value left by any number of bits
 in the form 0x00XY00XY
 in the form 0xXY00XY00
 in the form 0xXYXYXYXY

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12

R13 (MSP)
R14 (LR)
R15 (PC)

Stack pointer
Link register

Program counter

General
purpose
registers

256k Flash
ROM

64k RAM

I/O ports

Internal I/O
PPB

0x0000.0000

0x0003.FFFF

0x2000.0000

0x2000.FFFF

0x4000.0000

0x41FF.FFFF

0xE000.0000

0xE004.0FFF

Condition code bits
N negative
Z zero
V signed overflow
C carry or
 unsigned overflow

EE319K Fall 2012 Final Exam Page 13 of 14

Jonathan Valvano December 15, 2012

Address 7 6 5 4 3 2 1 0 Name
$400F.E108 GPIOH GPIOG GPIOF GPIOE GPIOD GPIOC GPIOB GPIOA SYSCTL_RCGC2_R
$4000.43FC DATA DATA DATA DATA DATA DATA DATA DATA GPIO_PORTA_DATA_R
$4000.4400 DIR DIR DIR DIR DIR DIR DIR DIR GPIO_PORTA_DIR_R
$4000.4420 SEL SEL SEL SEL SEL SEL SEL SEL GPIO_PORTA_AFSEL_R
$4000.451C DEN DEN DEN DEN DEN DEN DEN DEN GPIO_PORTA_DEN_R

Table 4.5. Some LM3S1968 parallel ports. Each register is 32 bits wide. Bits 31 – 8 are zero.

We set the direction register (e.g., GPIO_PORTA_DIR_R) to specify which pins are input (0) and which are output (1).
We will set bits in the alternative function register when we wish to activate the alternate functions (not GPIO). We use the
data register (e.g., GPIO_PORTA_DATA_R) to perform input/output on the port. For each I/O pin we wish to use whether
GPIO or alternate function we must enable the digital circuits by setting the bit in the enable register (e.g.,
GPIO_PORTA_DEN_R).

Address 31 30 29-7 6 5 4 3 2 1 0 Name
0xE000E100 G F … UART1 UART0 E D C B A NVIC_EN0_R
0xE000E104 … UART2 H NVIC_EN1_R

Address 31-24 23-17 16 15-3 2 1 0 Name
$E000E010 0 0 COUNT 0 CLK_SRC INTEN ENABLE NVIC_ST_CTRL_R
$E000E014 0 24-bit RELOAD value NVIC_ST_RELOAD_R
$E000E018 0 24-bit CURRENT value of SysTick counter NVIC_ST_CURRENT_R

Address 31-29 28-24 23-21 20-8 7-5 4-0 Name
$E000ED20 TICK 0 PENDSV 0 DEBUG 0 NVIC_SYS_PRI3_R

Table 9.6. SysTick registers.

Table 9.6 shows the SysTick registers used to create a periodic interrupt. SysTick has a 24-bit counter that decrements at
the bus clock frequency. Let fBUS be the frequency of the bus clock, and let n be the value of the RELOAD register. The
frequency of the periodic interrupt will be fBUS/(n+1). First, we clear the ENABLE bit to turn off SysTick during
initialization. Second, we set the RELOAD register. Third, we write to the NVIC_ST_CURRENT_R value to clear the
counter. Lastly, we write the desired mode to the control register, NVIC_ST_CTRL_R. To turn on the SysTick, we set the
ENABLE bit. We must set CLK_SRC=1, because CLK_SRC=0 external clock mode is not implemented on the
LM3S/LM4F family. We set INTEN to enable interrupts. The standard name for the SysTick ISR is SysTick_Handler.

Address 31-17 16 15-10 9 8 7-0 Name
$400F.E000 ADC MAXADCSPD SYSCTL_RCGC0_R

 31-14 13-12 11-10 9-8 7-6 5-4 3-2 1-0
$4003.8020 SS3 SS2 SS1 SS0 ADC_SSPRI_R

 31-16 15-12 11-8 7-4 3-0
$4003.8014 EM3 EM2 EM1 EM0 ADC_EMUX_R

 31-4 3 2 1 0
$4003.8000 ASEN3 ASEN2 ASEN1 ASEN0 ADC_ACTSS_R
$4003.80A0 MUX0 ADC_SSMUX3_R
$4003.80A4 TS0 IE0 END0 D0 ADC_SSCTL3_R
$4003.8028 SS3 SS2 SS1 SS0 ADC_PSSI_R
$4003.8004 INR3 INR2 INR1 INR0 ADC_RIS_R
$4003.8008 MASK3 MASK2 MASK1 MASK0 ADC_IM_R
$4003.800C IN3 IN2 IN1 IN0 ADC_ISC_R

 31-10 9-0
$4003.80A8 DATA ADC_SSFIFO3

Table 10.3. The LM3S ADC registers. Each register is 32 bits wide.

EE319K Fall 2012 Final Exam Page 14 of 14

Jonathan Valvano December 15, 2012

Set MAXADCSPD to 00 for slow speed operation. The ADC has four sequencers, but we will use only sequencer 3. We
set the ADC_SSPRI_R register to 0x3210 to make sequencer 3 the lowest priority. Because we are using just one
sequencer, we just need to make sure each sequencer has a unique priority. We set bits 15–12 (EM3) in the
ADC_EMUX_R register to specify how the ADC will be triggered. If we specify software start (EM3=0x0), then the
software writes an 8 (SS3) to the ADC_PSSI_R to initiate a conversion on sequencer 3. Bit 3 (INR3) in the ADC_RIS_R
register will be set when the conversion is complete. We can enable and disable the sequencers using the ADC_ACTSS_R
register. There are eight on the LM3S1968. Which channel we sample is configured by writing to the ADC_SSMUX3_R
register. The ADC_SSCTL3_R register specifies the mode of the ADC sample. Clear TS0. We set IE0 so that the INR3
bit is set on ADC conversion, and clear it when no flags are needed. We will set IE0 for both interrupt and busy-wait
synchronization. When using sequencer 3, there is only one sample, so END0 will always be set, signifying this sample is
the end of the sequence. Clear the D0 bit. The ADC_RIS_R register has flags that are set when the conversion is complete,
assuming the IE0 bit is set. Do not set bits in the ADC_IM_R register because we do not want interrupts.

UART0 pins are on PA1 (transmit) and PA0 (receive). The UART0_IBRD_R and UART0_FBRD_R registers specify the
baud rate. The baud rate divider is a 22-bit binary fixed-point value with a resolution of 2-6. The Baud16 clock is created
from the system bus clock, with a frequency of (Bus clock frequency)/divider. The baud rate is
 Baud rate = Baud16/16 = (Bus clock frequency)/(16*divider)
We set bit 4 of the UART0_LCRH_R to enable the hardware FIFOs. We set both bits 5 and 6 of the UART0_LCRH_R to
establish an 8-bit data frame. The RTRIS is set on a receiver timeout, which is when the receiver FIFO is not empty and no
incoming frames have occurred in a 32-bit time period. The arm bits are in the UART0_IM_R register. To acknowledge an
interrupt (make the trigger flag become zero), software writes a 1 to the corresponding bit in the UART0_IC_R register.
We set bit 0 of the UART0_CTL_R to enable the UART. Writing to UART0_DR_R register will output on the UART. This
data is placed in a 16-deep transmit hardware FIFO. Data are transmitted first come first serve. Received data are place in a
16-deep receive hardware FIFO. Reading from UART0_DR_R register will get one data from the receive hardware FIFO.
The status of the two FIFOs can be seen in the UART0_FR_R register (FF is FIFO full, FE is FIFO empty). The standard
name for the UART0 ISR is UART0_Handler. RXIFLSEL specifies the receive FIFO level that causes an interrupt (010
means interrupt on ≥ ½ full, or 7 to 8 characters). TXIFLSEL specifies the transmit FIFO level that causes an interrupt (010
means interrupt on ≤ ½ full, or 9 to 8 characters).
 31–12 11 10 9 8 7–0 Name
$4000.C000 OE BE PE FE DATA UART0_DR_R

 31–3 3 2 1 0
$4000.C004 OE BE PE FE UART0_RSR_R

 31–8 7 6 5 4 3 2–0
$4000.C018 TXFE RXFF TXFF RXFE BUSY UART0_FR_R

 31–16 15–0
$4000.C024 DIVINT UART0_IBRD_R

 31–6 5–0
$4000.C028 DIVFRAC UART0_FBRD_R

 31–8 7 6 – 5 4 3 2 1 0
$4000.C02C SPS WPEN FEN STP2 EPS PEN BRK UART0_LCRH_R

 31–10 9 8 7 6–3 2 1 0
$4000.C030 RXE TXE LBE SIRLP SIREN UARTEN UART0_CTL_R

 31–6 5-3 2-0
$4000.C034 RXIFLSEL TXIFLSEL UART0_IFLS_R

 31-11 10 9 8 7 6 5 4
$4000.C038 OEIM BEIM PEIM FEIM RTIM TXIM RXIM UART0_IM_R
$4000.C03C OERIS BERIS PERIS FERIS RTRIS TXRIS RXRIS UART0_RIS_R
$4000.C040 OEMIS BEMIS PEMIS FEMIS RTMIS TXMIS RXMIS UART0_MIS_R
$4000.C044 OEIC BEIC PEIC FEIC RTIC TXIC RXIC UART0_IC_R

Table 11.2. UART0 registers. Each register is 32 bits wide. Shaded bits are zero.

