
EE319K Fall 2013 Final Exam 1A Page 1

Final Exam
Date: December 11, 2013

UT EID: Circle one: Gerstlauer or Valvano+Yerraballi

Printed Name:

Last, First

Your signature is your promise that you have not cheated and will not cheat on this exam, nor will you help others to cheat
on this exam:

Signature:

Instructions:
• Closed book and closed notes. No books, no papers, no data sheets (other than the last two pages of this Exam)
• No devices other than pencil, pen, eraser (no calculators, no electronic devices), please turn cell phones off.
• Please be sure that your answers to all questions (and all supporting work that is required) are contained in the

space (boxes) provided. Anything outside the boxes will be ignored in grading.
• You have 180 minutes, so allocate your time accordingly.
• For all questions, unless otherwise stated, find the most efficient (time, resources) solution.
• Unless otherwise stated, make all I/O accesses friendly.
• Please read the entire exam before starting.

Problem 1 10

Problem 2 10

Problem 3 15

Problem 4 10

Problem 5 10

Problem 6 15

Problem 7 10

Problem 8 10

Problem 9 10

Total 100

Gerstlauer, Valvano, Yerraballi December 11, 2013 7:00pm-10:00pm

EE319K Fall 2013 Final Exam 1A Page 2

(10) Question 1 (Equations/relations you should know).
a) Consider a UART with one start bit, 1 stop bit, n data bits and no parity bits. The bus frequency is
80 MHz. Give the relationship between baud rate (BR) and maximum possible bandwidth (BW),
assuming both are in bits/sec.

b) Consider a resistor used to build your DAC in Lab 6. Avogadro’s Number is about 6.022*1023. Give
the relationship between resistance (R, in kΩ), voltage (V in volts), and current (I in mA).

c) Consider the sampling rate chosen for the ADC in Lab 8. Give the relationship for the slowest
possible sampling rate (fs, in Hz), given these parameters: ADC resolution (ΔV, in volts), number of
ADC bits (n, in bits, e.g., 12 bits) and rate at which one moves the slide pot (r, in oscillations per sec).

d) Sketch the current versus voltage curve of an LED like the ones used in lab. Include the (2V,10mA)
operating point, but roughing sketch the other points from 0 to 3 volts

0 1 2 3

15

10

5

0

current
(mA)

voltage (V)

e) Consider a two-dimensional array of half words (16 bits each), with n rows and m columns. The bus
frequency is 80 MHz. The base address of the array is b, and the array is defined in row major order
What is the address of the element in row i and column j?

Gerstlauer, Valvano, Yerraballi December 11, 2013 7:00pm-10:00pm

EE319K Fall 2013 Final Exam 1A Page 3

(10) Question 2 (Local Variables). The assembly subroutine below uses three local variables.
Demonstrate your understanding of local variables in assembly by answering the following questions.
You may assume the initial stack pointer is 0x20001008, no registers other than R0-R3 are used, and all
three local variables are allocated on the stack.

Assembly C Equivalent
xxx equ aa
yyy equ bb
zzz equ cc
Locals
 ; Body of subroutine

 BX LR

void Locals(void) {
 long xxx;
 long yyy;
 long zzz;
// Body of subroutine

}

a) (2 points) Which of the following is not relevant to the use of local variables?
i. Binding using equ pseudo-ops

ii. Allocation on stack
iii. Parameter-passing to the subroutine
iv. Indexed access of the stack with SP as the base.
v. Deallocation by restoring the SP

b) (2 points) What will the value of the SP be after allocating space for all three?

SP = 0x20001001

c) (3 points) Assuming that the three variables are allocated space in the order in which they appear xxx
at higher address, yyy in the middle and zzz at the lower address. Lower address means smaller value
than higher address. The values of aa, bb and cc are:

i. aa is 8; bb is 4; cc is 0
ii. aa is 0; bb is 1; cc is 2 

iii. aa is 2; bb is 1; cc is 0
iv. aa is 0; bb is 4; cc is 8
v. aa is 1; bb is 2; cc is 4

vi. None of the above
d) (3 points) Assuming that the correct values for bb is set. Which of the sequences of instructions will

add 1 to the local variable yyy.
i. LDRSB R0,[SP,#yyy]; ADD R0,R0,#1; STRB R0,[SP,#yyy]

ii. LDR R0,[SP,yyy]; ADD R0,R0,#1; STR R0,[SP,yyy]
iii. ADD [SP,#yyy],#1; 
iv. LDRSH R0,[SP,yyy]; ADD R0,R0,#1; STRH R0,[SP,yyy]
v. None of the above

Gerstlauer, Valvano, Yerraballi December 11, 2013 7:00pm-10:00pm

EE319K Fall 2013 Final Exam 1A Page 4

(15) Question 3 (C Programming with struct). Given the following struct declaration for a
student, complete the subroutine which (a) calculates each student’s grade as 'P' or 'F' depending on
whether the score is higher than or equal to 75, and (b) returns the average class score;
#define SIZE 64
struct Student {
 unsigned long id;
 unsigned long score;
 unsigned char grade; // you will enter 'P' or 'F'
};
typedef struct Student STyp;

unsigned long Grades(STyp class[SIZE]){
 long i, avg=0;
 for(i=0; i <size; i++){
 if (class[i].score >= 70){
 class[i].grade = ‘P’;
 } else {
 Class[i].grade = ‘F’;
 }
 avg += class[i].score;
 }
 return(avg>>6);

}

Gerstlauer, Valvano, Yerraballi December 11, 2013 7:00pm-10:00pm

EE319K Fall 2013 Final Exam 1A Page 5

(10) Question 4 (Interrupts).

a) (3 points) An Interrupt Service Routine executes the last line of its code, a return statement (BX
LR). Which of the following registers are not popped from the stack? Put all the letters in the box that
apply. For example, if you think i,ii are not popped, but iii,iv,v are popped, enter i+ii.

i. R0-R3
ii. R12

iii. LR 
iv. PC, SP, PSR
v. R4-R11

b) (5 points) Assume the bus clock is operating at 80 MHz. The SysTick initialization executes these
instructions. SysTick will be used to generate a periodic interrupt with an interrupt period of 100μs
(which is 10 kHz.) What assembly instructions go in the ????(a)???? and ????(b)???? places?

SysTick_Init
 LDR R1,=NVIC_ST_RELOAD_R

 ????(a)????

 STR R0,[R1]
 LDR R1,=NVIC_ST_CTRL_R

 ????(b)????

 STR R2,[R1]
 BX LR

c) (2 points) All Interrupt Service Routines with the exception of SysTick_Handler must do this:

i. Explicitly pop the SP before returning from the interrupt
ii. Not use the Stack

iii. Write to a FIF0
iv. Explicitly acknowledge the Interrupt
v. Write to a mailbox

vi. None of the above

Gerstlauer, Valvano, Yerraballi December 11, 2013 7:00pm-10:00pm

EE319K Fall 2013 Final Exam 1A Page 6

5V

0V

Time1ms 2ms 3ms 4ms 5ms

(10) Question 5 (UART).

a) (2 points) A programmer set the UART0_IBRD_R to 50 and UART0_FBRD_R to 0. If the Bus
clock frequency is 80MHz, what is the baud rate? (bps stands for bits per second)

i. 80 kbps
ii. 100 kbps

iii. 1 Mbps
iv. 120 kbps
v. 16 kbps

vi. None of the above

b) (5 points) Assuming now a serial port operating with a baud rate of 2000 bits per second. The
protocol is 1 start, 8 data and 1 stop bit. Draw the waveform when the decimal value 204 is transmitted.
You may assume the channel is idle before and after the frame. Time flows from left to right.

c) (3 points) Assume the serial port is setup as in part b) (2000 bps, 1 stop, 8 data, 1 start bit) and the
serial receive interrupt is set to trigger when the UART receive FIFO is half full. Furthermore, the
receive interrupt handler empties the UART FIFO every time it is invoked. How long can interrupts at
most be disabled to guarantee that no UART overflow (OE bit set) will occur.

Gerstlauer, Valvano, Yerraballi December 11, 2013 7:00pm-10:00pm

EE319K Fall 2013 Final Exam 1A Page 7

(15) Question 6. (Hardware)
a) (5 points) Design a 6-bit DAC using the binary-weighted configuration. The DAC is controlled by
six output port pins, PE5-0, where PE0 is the least significant and PE5 is the most significant bit.
Carefully label the signal which is the DAC output, and specify the values for any resistors used

PE5

PE4

PE3

PE2

PE1

PE0

Microcontroller

DACout

b) (5 points) The desired LED operating point is 1V, 1mA. Assume the VOL of the 7406 is 0.5V.
Assume the microcontroller output voltages are VOH = 3.1V and VOL = 0.2V. Interface this LED to
PA2 using positive logic. Full credit for the solution uses the fewest components, and partial credit if it
works. Specify values for any resistors needed. Show equations of your calculations used to select
resistor values.

7406

PA2

Microcontroller

c) (5 points) Interface a switch to PA3 such that if the switch is pressed the software sees a logic 0 and
if the switch is not pressed the software sees a logic one. Specify values for any resistors needed. The
software will clear both the internal pullup and pulldown registers.

PA3

Microcontroller

Gerstlauer, Valvano, Yerraballi December 11, 2013 7:00pm-10:00pm

EE319K Fall 2013 Final Exam 1A Page 8

(10) Question 7 (ADC). Assume the ADC has already been initialized to use sequencer 3 with a
software trigger and channel 1. Write a C function that starts the ADC, waits for it to complete, reads
the 12-bit result, clears the flag and returns the measured voltage (in the ADC’s range of 0-3V) as a
value with units of mV. For example if the input is 1.234V then the software will return 1234. The
prototype for this function is

unsigned long ADC0_InSeq3(void);

Gerstlauer, Valvano, Yerraballi December 11, 2013 7:00pm-10:00pm

EE319K Fall 2013 Final Exam 1A Page 9

 (10) Question 8 (FIFO).

a) (2 points) Why is the first in first out (FIFO) queue really important for interfacing I/O devices?
i) They can store data permanently, which is important because embedded systems are used in safety
critical situations, and we need to know what the data was during operation.
ii) They are a way to store data in the cloud. FIFOs provide backup and sharing.
iii) The software and hardware can operate at variable speeds and data are temporarily spooled into the
FIFO as it passes between them.
iv) It can store an arbitrarily large amount of data. This is important
because the size and complexity of embedded systems is growing.
v) None of the above.
vi) All of the above.

b) (5 points) Circle all the bugs in this FIFO implementation, and show the corrections needed to make
this FIFO functional.

unsigned char static PutI;
unsigned char static GetI;
short static FIFO[16]; // 16 halfwords or 32 bytes of data
void Fifo_Init(void){
 PutI = GetI = 5;
}
int Fifo_Put(short data){
 if(((PutI+1)&0x1F) == GetI) return 0;
 FIFO[PutI] = data;
 PutI = (PutI+1)&0x1F;
 return 1;
}
int Fifo_Get(short *datapt){
 if(PutI == GetI) return 0;
 *datapt = FIFO[GetI];
 GetI = (GetI+1)&0x1F;
 return 1;
}

c) (3 points) Assuming a SysTick handler calls Fifo_Put() every 1 ms and the main() is able to
process one item every 2 ms. If the main() is processing the first item right after the first SysTick puts
it into the FIFO at time 0, does the FIFO ever overflow and if so, at what time?

Gerstlauer, Valvano, Yerraballi December 11, 2013 7:00pm-10:00pm

EE319K Fall 2013 Final Exam 1A Page 10

(10) Question 9 (FSM).

a) (4 points) Assume we start in the happy state. The input starts and
remains 3. What sequence of outputs will occur?
i) start and remain at 10
ii) 10, 12, 0 (and remain at 0)
iii) 10, 0, 10, 0, 10, 0, 10, 0, 10, over and over
iv) 10, 12, 10, 12, 10, 12, 10, 12, 10, over and over
v) None of the above

b) (6 points) Consider this FSM, the 6-bit output is on Port B (PB5-0) and the 2-bit input on Port E
(PE1-0). You may call the SysTick function SysTick_Wait10ms(n); to wait n*10msec.
struct State {
 unsigned long Out;
 unsigned long Time;
 const struct State *Next[4];};
typedef const struct State STyp;
#define goN &FSM[0]
#define waitN &FSM[1]
#define goE &FSM[2]
#define waitE &FSM[3]
STyp FSM[4]={
 {0x21,3000,{goN,waitN,goN,waitN}},
 {0x22, 500,{goE,goE,goE,goE}},
 {0x0C,3000,{goE,goE,waitE,waitE}},
 {0x14, 500,{goN,goN,goN,goN}}};
STyp *Pt;
int main(void){
 SysTick_Init(); // this function is given which initializes SysTick
 Port_Init(); // this function is given which initializes B E
 Pt = goN;
Write C code that completes this main program such that the FSM runs in the foreground. Write
friendly code. You can assume that GPIO_PORTB_DATA_R and GPIO_PORTE_DATA_R have been
defined.

happy
10 hungry

0

sleepy
12

0

1
2

3

0

1

2
3

0 1
2

3

goN

30

Next if input is 01 or 11

100001

Wait time

01,1100,10
waitN

5
100010

goE

30
001100

waitE

5
010100

00,01,
10,11 10,11

00,01

00,01,10,11

Output

Gerstlauer, Valvano, Yerraballi December 11, 2013 7:00pm-10:00pm

EE319K Fall 2013 Final Exam 1A Page 11

Memory access instructions
 LDR Rd, [Rn] ; load 32-bit number at [Rn] to Rd
 LDR Rd, [Rn,#off] ; load 32-bit number at [Rn+off] to Rd
 LDR Rd, =value ; set Rd equal to any 32-bit value (PC rel)
 LDRH Rd, [Rn] ; load unsigned 16-bit at [Rn] to Rd
 LDRH Rd, [Rn,#off] ; load unsigned 16-bit at [Rn+off] to Rd
 LDRSH Rd, [Rn] ; load signed 16-bit at [Rn] to Rd
 LDRSH Rd, [Rn,#off] ; load signed 16-bit at [Rn+off] to Rd
 LDRB Rd, [Rn] ; load unsigned 8-bit at [Rn] to Rd
 LDRB Rd, [Rn,#off] ; load unsigned 8-bit at [Rn+off] to Rd
 LDRSB Rd, [Rn] ; load signed 8-bit at [Rn] to Rd
 LDRSB Rd, [Rn,#off] ; load signed 8-bit at [Rn+off] to Rd
 STR Rt, [Rn] ; store 32-bit Rt to [Rn]
 STR Rt, [Rn,#off] ; store 32-bit Rt to [Rn+off]
 STRH Rt, [Rn] ; store least sig. 16-bit Rt to [Rn]
 STRH Rt, [Rn,#off] ; store least sig. 16-bit Rt to [Rn+off]
 STRB Rt, [Rn] ; store least sig. 8-bit Rt to [Rn]
 STRB Rt, [Rn,#off] ; store least sig. 8-bit Rt to [Rn+off]
 PUSH {Rt} ; push 32-bit Rt onto stack
 POP {Rd} ; pop 32-bit number from stack into Rd
 ADR Rd, label ; set Rd equal to the address at label
 MOV{S} Rd, <op2> ; set Rd equal to op2
 MOV Rd, #im16 ; set Rd equal to im16, im16 is 0 to 65535
 MVN{S} Rd, <op2> ; set Rd equal to -op2
Branch instructions
 B label ; branch to label Always
 BEQ label ; branch if Z == 1 Equal
 BNE label ; branch if Z == 0 Not equal
 BCS label ; branch if C == 1 Higher or same, unsigned ≥
 BHS label ; branch if C == 1 Higher or same, unsigned ≥
 BCC label ; branch if C == 0 Lower, unsigned <
 BLO label ; branch if C == 0 Lower, unsigned <
 BMI label ; branch if N == 1 Negative
 BPL label ; branch if N == 0 Positive or zero
 BVS label ; branch if V == 1 Overflow
 BVC label ; branch if V == 0 No overflow
 BHI label ; branch if C==1 and Z==0 Higher, unsigned >
 BLS label ; branch if C==0 or Z==1 Lower or same, unsigned ≤
 BGE label ; branch if N == V Greater than or equal, signed ≥
 BLT label ; branch if N != V Less than, signed <
 BGT label ; branch if Z==0 and N==V Greater than, signed >
 BLE label ; branch if Z==1 or N!=V Less than or equal, signed ≤
 BX Rm ; branch indirect to location specified by Rm
 BL label ; branch to subroutine at label
 BLX Rm ; branch to subroutine indirect specified by Rm
Interrupt instructions
 CPSIE I ; enable interrupts (I=0)
 CPSID I ; disable interrupts (I=1)

Logical instructions
 AND{S} {Rd,} Rn, <op2> ; Rd=Rn&op2 (op2 is 32 bits)
 ORR{S} {Rd,} Rn, <op2> ; Rd=Rn|op2 (op2 is 32 bits)
 EOR{S} {Rd,} Rn, <op2> ; Rd=Rn^op2 (op2 is 32 bits)
 BIC{S} {Rd,} Rn, <op2> ; Rd=Rn&(~op2) (op2 is 32 bits)
 ORN{S} {Rd,} Rn, <op2> ; Rd=Rn|(~op2) (op2 is 32 bits)
 LSR{S} Rd, Rm, Rs ; logical shift right Rd=Rm>>Rs (unsigned)
 LSR{S} Rd, Rm, #n ; logical shift right Rd=Rm>>n (unsigned)
 ASR{S} Rd, Rm, Rs ; arithmetic shift right Rd=Rm>>Rs (signed)

Gerstlauer, Valvano, Yerraballi December 11, 2013 7:00pm-10:00pm

EE319K Fall 2013 Final Exam 1A Page 12

 ASR{S} Rd, Rm, #n ; arithmetic shift right Rd=Rm>>n (signed)
 LSL{S} Rd, Rm, Rs ; shift left Rd=Rm<<Rs (signed, unsigned)
 LSL{S} Rd, Rm, #n ; shift left Rd=Rm<<n (signed, unsigned)
Arithmetic instructions
 ADD{S} {Rd,} Rn, <op2> ; Rd = Rn + op2
 ADD{S} {Rd,} Rn, #im12 ; Rd = Rn + im12, im12 is 0 to 4095
 SUB{S} {Rd,} Rn, <op2> ; Rd = Rn - op2
 SUB{S} {Rd,} Rn, #im12 ; Rd = Rn - im12, im12 is 0 to 4095
 RSB{S} {Rd,} Rn, <op2> ; Rd = op2 - Rn
 RSB{S} {Rd,} Rn, #im12 ; Rd = im12 – Rn
 CMP Rn, <op2> ; Rn – op2 sets the NZVC bits
 CMN Rn, <op2> ; Rn - (-op2) sets the NZVC bits
 MUL{S} {Rd,} Rn, Rm ; Rd = Rn * Rm signed or unsigned
 MLA Rd, Rn, Rm, Ra ; Rd = Ra + Rn*Rm signed or unsigned
 MLS Rd, Rn, Rm, Ra ; Rd = Ra - Rn*Rm signed or unsigned
 UDIV {Rd,} Rn, Rm ; Rd = Rn/Rm unsigned
 SDIV {Rd,} Rn, Rm ; Rd = Rn/Rm signed
Notes Ra Rd Rm Rn Rt represent 32-bit registers
 value any 32-bit value: signed, unsigned, or address
 {S} if S is present, instruction will set condition codes
 #im12 any value from 0 to 4095
 #im16 any value from 0 to 65535
 {Rd,} if Rd is present Rd is destination, otherwise Rn
 #n any value from 0 to 31
 #off any value from -255 to 4095
 label any address within the ROM of the microcontroller
 op2 the value generated by <op2>
Examples of flexible operand <op2> creating the 32-bit number. E.g., Rd = Rn+op2
 ADD Rd, Rn, Rm ; op2 = Rm
 ADD Rd, Rn, Rm, LSL #n ; op2 = Rm<<n Rm is signed, unsigned
 ADD Rd, Rn, Rm, LSR #n ; op2 = Rm>>n Rm is unsigned
 ADD Rd, Rn, Rm, ASR #n ; op2 = Rm>>n Rm is signed
 ADD Rd, Rn, #constant ; op2 = constant, where X and Y are hexadecimal digits:

• produced by shifting an 8-bit unsigned value left by any number of bits
• in the form 0x00XY00XY
• in the form 0xXY00XY00
• in the form 0xXYXYXYXY

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12

R13 (MSP)
R14 (LR)
R15 (PC)

Stack pointer
Link register

Program counter

General
purpose

registers

256k Flash
ROM

64k RAM

I/O ports

Internal I/O
PPB

0x0000.0000

0x0003.FFFF

0x2000.0000

0x2000.FFFF

0x4000.0000

0x41FF.FFFF

0xE000.0000

0xE004.0FFF

 DCB 1,2,3 ; allocates three 8-bit byte(s)
 DCW 1,2,3 ; allocates three 16-bit halfwords
 DCD 1,2,3 ; allocates three 32-bit words
 SPACE 4 ; reserves 4 bytes

Condition code bits
N negative
Z zero
V signed overflow
C carry or
 unsigned overflow

Gerstlauer, Valvano, Yerraballi December 11, 2013 7:00pm-10:00pm

EE319K Fall 2013 Final Exam 1A Page 13

Address 7 6 5 4 3 2 1 0 Name
$400F.E108 GPIOF GPIOE GPIOD GPIOC GPIOB GPIOA SYSCTL_RCGC2_R
$4000.43FC DATA DATA DATA DATA DATA DATA DATA DATA GPIO_PORTA_DATA_R
$4000.4400 DIR DIR DIR DIR DIR DIR DIR DIR GPIO_PORTA_DIR_R
$4000.4420 SEL SEL SEL SEL SEL SEL SEL SEL GPIO_PORTA_AFSEL_R
$4000.451C DEN DEN DEN DEN DEN DEN DEN DEN GPIO_PORTA_DEN_R

Table 4.5. Some TM4C123/LM4F120 parallel ports. Each register is 32 bits wide. Bits 31 – 8 are zero.

Address 31 30 29-7 6 5 4 3 2 1 0 Name
0xE000E100 F … UART1 UART0 E D C B A NVIC_EN0_R

Address 31-24 23-17 16 15-3 2 1 0 Name
$E000E010 0 0 COUNT 0 CLK_SRC INTEN ENABLE NVIC_ST_CTRL_R
$E000E014 0 24-bit RELOAD value NVIC_ST_RELOAD_R
$E000E018 0 24-bit CURRENT value of SysTick counter NVIC_ST_CURRENT_R

Address 31-29 28-24 23-21 20-8 7-5 4-0 Name
$E000ED20 SYSTICK 0 PENDSV 0 DEBUG 0 NVIC_SYS_PRI3_R

Table 9.6. SysTick registers.

Table 9.6 shows the SysTick registers used to create a periodic interrupt. SysTick has a 24-bit counter that decrements at the
bus clock frequency. Let fBUS be the frequency of the bus clock, and let n be the value of the RELOAD register. The
frequency of the periodic interrupt will be fBUS/(n+1). First, we clear the ENABLE bit to turn off SysTick during
initialization. Second, we set the RELOAD register. Third, we write to the NVIC_ST_CURRENT_R value to clear the
counter. Lastly, we write the desired mode to the control register, NVIC_ST_CTRL_R. To turn on the SysTick, we set the
ENABLE bit. We must set CLK_SRC=1, because CLK_SRC=0 external clock mode is not implemented on the
LM3S/LM4F family. We set INTEN to enable interrupts. The standard name for the SysTick ISR is SysTick_Handler.

Address 31-17 16 15-10 9 8 7-0 Name
$400F.E000 ADC MAXADCSPD SYSCTL_RCGC0_R

 31-14 13-12 11-10 9-8 7-6 5-4 3-2 1-0
$4003.8020 SS3 SS2 SS1 SS0 ADC_SSPRI_R

 31-16 15-12 11-8 7-4 3-0
$4003.8014 EM3 EM2 EM1 EM0 ADC_EMUX_R

 31-4 3 2 1 0
$4003.8000 ASEN3 ASEN2 ASEN1 ASEN0 ADC_ACTSS_R
$4003.80A0 MUX0 ADC_SSMUX3_R
$4003.80A4 TS0 IE0 END0 D0 ADC_SSCTL3_R
$4003.8028 SS3 SS2 SS1 SS0 ADC_PSSI_R
$4003.8004 INR3 INR2 INR1 INR0 ADC_RIS_R
$4003.8008 MASK3 MASK2 MASK1 MASK0 ADC_IM_R
$4003.800C IN3 IN2 IN1 IN0 ADC_ISC_R

 31-10 11-0
$4003.80A8 12-bit DATA ADC_SSFIFO3

Table 10.3. The TM4C123/LM4F120ADC registers. Each register is 32 bits wide.

Set MAXADCSPD to 00 for slow speed operation. The ADC has four sequencers, but we will use only sequencer 3. We set
the ADC_SSPRI_R register to 0x3210 to make sequencer 3 the lowest priority. Because we are using just one sequencer,
we just need to make sure each sequencer has a unique priority. We set bits 15–12 (EM3) in the ADC_EMUX_R register
to specify how the ADC will be triggered. If we specify software start (EM3=0x0), then the software writes an 8 (SS3) to
the ADC_PSSI_R to initiate a conversion on sequencer 3. Bit 3 (INR3) in the ADC_RIS_R register will be set when the
conversion is complete. We can enable and disable the sequencers using the ADC_ACTSS_R register. There are 11 on the
TM4C123/LM4F120. Which channel we sample is configured by writing to the ADC_SSMUX3_R register. The
ADC_SSCTL3_R register specifies the mode of the ADC sample. Clear TS0. We set IE0 so that the INR3 bit is set on
ADC conversion, and clear it when no flags are needed. We will set IE0 for both interrupt and busy-wait synchronization.

Gerstlauer, Valvano, Yerraballi December 11, 2013 7:00pm-10:00pm

EE319K Fall 2013 Final Exam 1A Page 14

When using sequencer 3, there is only one sample, so END0 will always be set, signifying this sample is the end of the
sequence. Clear the D0 bit. The ADC_RIS_R register has flags that are set when the conversion is complete, assuming the
IE0 bit is set. Do not set bits in the ADC_IM_R register because we do not want interrupts.

UART0 pins are on PA1 (transmit) and PA0 (receive). The UART0_IBRD_R and UART0_FBRD_R registers specify the
baud rate. The baud rate divider is a 22-bit binary fixed-point value with a resolution of 2-6. The Baud16 clock is created
from the system bus clock, with a frequency of (Bus clock frequency)/divider. The baud rate is
 Baud rate = Baud16/16 = (Bus clock frequency)/(16*divider)
We set bit 4 of the UART0_LCRH_R to enable the hardware FIFOs. We set both bits 5 and 6 of the UART0_LCRH_R to
establish an 8-bit data frame. The RTRIS is set on a receiver timeout, which is when the receiver FIFO is not empty and no
incoming frames have occurred in a 32-bit time period. The arm bits are in the UART0_IM_R register. To acknowledge an
interrupt (make the trigger flag become zero), software writes a 1 to the corresponding bit in the UART0_IC_R register. We
set bit 0 of the UART0_CTL_R to enable the UART. Writing to UART0_DR_R register will output on the UART. This data
is placed in a 16-deep transmit hardware FIFO. Data are transmitted first come first serve. Received data are place in a 16-
deep receive hardware FIFO. Reading from UART0_DR_R register will get one data from the receive hardware FIFO. The
status of the two FIFOs can be seen in the UART0_FR_R register (FF is FIFO full, FE is FIFO empty). The standard name
for the UART0 ISR is UART0_Handler. RXIFLSEL specifies the receive FIFO level that causes an interrupt (010 means
interrupt on ≥ ½ full, or 7 to 8 characters). TXIFLSEL specifies the transmit FIFO level that causes an interrupt (010 means
interrupt on ≤ ½ full, or 9 to 8 characters).
 31–12 11 10 9 8 7–0 Name
$4000.C000 OE BE PE FE DATA UART0_DR_R

 31–3 3 2 1 0
$4000.C004 OE BE PE FE UART0_RSR_R

 31–8 7 6 5 4 3 2–0
$4000.C018 TXFE RXFF TXFF RXFE BUSY UART0_FR_R

 31–16 15–0
$4000.C024 DIVINT UART0_IBRD_R

 31–6 5–0
$4000.C028 DIVFRAC UART0_FBRD_R

 31–8 7 6 – 5 4 3 2 1 0
$4000.C02C SPS WPEN FEN STP2 EPS PEN BRK UART0_LCRH_R

 31–10 9 8 7 6–3 2 1 0
$4000.C030 RXE TXE LBE SIRLP SIREN UARTEN UART0_CTL_R

 31–6 5-3 2-0
$4000.C034 RXIFLSEL TXIFLSEL UART0_IFLS_R

 31-11 10 9 8 7 6 5 4
$4000.C038 OEIM BEIM PEIM FEIM RTIM TXIM RXIM UART0_IM_R
$4000.C03C OERIS BERIS PERIS FERIS RTRIS TXRIS RXRIS UART0_RIS_R
$4000.C040 OEMIS BEMIS PEMIS FEMIS RTMIS TXMIS RXMIS UART0_MIS_R
$4000.C044 OEIC BEIC PEIC FEIC RTIC TXIC RXIC UART0_IC_R

Table 11.2. UART0 registers. Each register is 32 bits wide. Shaded bits are zero.

Gerstlauer, Valvano, Yerraballi December 11, 2013 7:00pm-10:00pm

