Final Exam Solutions

Date: December 11, 2013

UT EID:		Circle one: Gerstlauer or Valvano+Yer	<u>raballi</u>
Printed Name:	Last,	First	
Your signature is on this exam:	your promise that you have not cheated and v	vill not cheat on this exam, nor will you help ot	hers to cheat
Signature:			

Instructions:

- Closed book and closed notes. No books, no papers, no data sheets (other than the last two pages of this Exam)
- No devices other than pencil, pen, eraser (no calculators, no electronic devices), please turn cell phones off.
- Please be sure that your answers to all questions (and all supporting work that is required) are contained in the space (boxes) provided. *Anything outside the boxes will be ignored in grading*.
- You have 180 minutes, so allocate your time accordingly.
- For all questions, unless otherwise stated, find the most efficient (time, resources) solution.
- Unless otherwise stated, make all I/O accesses friendly.
- Please read the entire exam before starting.

Problem 1	10	
Problem 2	10	
Problem 3	15	
Problem 4	10	
Problem 5	10	
Problem 6	15	
Problem 7	10	
Problem 8	10	
Problem 9	10	
Total	100	

(10) Question 1 (Equations/relations you should know).

a) Consider a UART with one start bit, 1 stop bit, n data bits and no parity bits. The bus frequency is 80 MHz. Give the relationship between baud rate (BR) and maximum possible bandwidth (BW), assuming both are in bits/sec.

b) Consider a resistor used to build your DAC in Lab 6. Avogadro's Number is about 6.022*10²³. Give the relationship between resistance (R, in k Ω), voltage (V in volts), and current (I in mA).

V = I R

c) Consider the sampling rate chosen for the ADC in Lab 8. Give the relationship for the slowest possible sampling rate (f_s , in Hz), given these parameters: ADC resolution (ΔV , in volts), number of ADC bits (n, in bits, e.g., 12 bits) and rate at which one moves the slide pot (r, in oscillations per sec).

 $f_s > 2 r$

d) Sketch the current versus voltage curve of an LED like the ones used in lab. Include the (2V,10mA) operating point, but roughing sketch the other points from 0 to 3 volts (0,0) (1,0) (2,10) (3, off scale)

 15^{-1} current 10 (mA)5 0 ➤ voltage (V)

e) Consider a two-dimensional array of half words (16 bits each), with n rows and m columns. The bus frequency is 80 MHz. The base address of the array is b, and the array is defined in row major order What is the address of the element in row *i* and column *j*?

Address = b+2*(m*i+i)

(10) Question 2 (Local Variables). The assembly subroutine below uses *three* local variables. Demonstrate your understanding of local variables in assembly by answering the following questions. You may assume the initial stack pointer is 0x20001008, no registers other than R0-R3 are used, and all three local variables are allocated on the stack.

		Assembly	C Equivalent					
XXX	equ	aa	void Locals(void) {					
ууу	equ	bb	long xxx;					
zzz	equ	cc	long yyy;					
Loca	ls		long zzz;					
	; Bc	ody of subroutine	// Body of subroutine					
	BX I	JR	}					

- a) (2 points) Which of the following is *not* relevant to the use of local variables?
 - **i.** Binding using equ pseudo-ops
 - **ii.** Allocation on stack
 - **iii.** Parameter-passing to the subroutine (answer)
 - iv. Indexed access of the stack with SP as the base.
 - v. Deallocation by restoring the SP
- **b**) (2 points) What will the value of the SP be after allocating space for all three?
- c) (3 points) Assuming that the three variables are allocated space in the order in which they appear **xxx** at higher address, **yyy** in the middle and **zzz** at the lower address. Lower address means smaller value than higher address. The values of **aa**, **bb** and **cc** are:
 - **i. aa** is 8; **bb** is 4; **cc** is 0 (answer)
 - **ii. aa** is 0; **bb** is 1; **cc** is 2
 - **iii. aa** is 2; **bb** is 1; **cc** is 0
 - **iv. aa** is 0; **bb** is 4; **cc** is 8
 - **v. aa** is 1; **bb** is 2; **cc** is 4
 - vi. None of the above
- d) (3 points) Assuming that the correct values for **bb** is set. Which of the sequences of instructions will add 1 to the local variable **yyy**.
 - i. LDRSB R0,[SP,#yyy]; ADD R0,R0,#1; STRB R0,[SP,#yyy]
 - ii. LDR R0,[SP,yyy]; ADD R0,R0,#1; STR R0,[SP,yyy]
 - **iii.** ADD [SP, #yyy], #1;
 - iv. LDRSH R0,[SP,yyy]; ADD R0,R0,#1; STRH R0,[SP,yyy]
 - **v.** None of the above (answer)

(15) Question 3 (C Programming with struct). Given the following struct declaration for a student, complete the subroutine which (a) calculates each student's grade as 'P' or 'F' depending on whether the score is higher than or equal to 75, and (b) returns the average class score;

```
#define SIZE 64
struct Student {
   unsigned long id;
   unsigned long score;
   unsigned char grade; // you will enter 'P' or 'F'
};
typedef struct Student STyp;
unsigned long Grades(STyp class[SIZE]){
int i; unsigned long sum=0;
  for(i=0; i<SIZE; i++) {</pre>
    sum = sum + class[i].score;
    if(class[i].score >= 75){
      class[i].grade = 'P';
    } else{
      class[i].grade = 'F';
    }
  }
  return sum/SIZE;
}
```

(10) Question 4 (Interrupts).

a) (3 points) An Interrupt Service Routine executes the last line of its code, a return statement (BX LR). Which of the following registers are *not* popped from the stack? Put all the letters in the box that apply. For example, if you think i,ii are not popped, but iii,iv,v are popped, enter i+ii.

- i. R0-R3
- ii. R12
- iii. LR
- iv. PC, SP, PSR
- v. R4-R11 (answer)

b) (5 points) Assume the bus clock is operating at 80 MHz. The SysTick initialization executes these instructions. SysTick will be used to generate a periodic interrupt with an interrupt period of 100µs (which is 10 kHz.) What assembly instructions go in the ???? (a) ???? (b) ???? places?

SysTick_Init

LDR R1,=NVIC_ST_RELOAD_R

	????(a)???? LDR R0,=7999
STR R0,[R1]	
LDR R1,=NVIC_ST_CTRL_R	
	???? (b) ???? MOV R1, #7
STR R2,[R1]	

BX LR

c) (2 points) All Interrupt Service Routines with the exception of SysTick Handler must do this:

- i. Explicitly pop the SP before returning from the interrupt
- ii. Not use the Stack
- iii. Write to a FIF0
- iv. Explicitly acknowledge the Interrupt (answer)
- v. Write to a mailbox
- vi. None of the above

a) (2 points) A programmer set the UARTO_IBRD_R to 50 and UARTO_FBRD_R to 0. If the Bus clock frequency is 80MHz, what is the baud rate? (bps stands for bits per second)

- i. 80 kbps
- ii. 100 kbps (answer)
- iii. 1 Mbps
- iv. 120 kbps
- v. 16 kbps
- vi. None of the above

b) (5 points) Assume a serial port operating with a baud rate of 2000 bits per second. The protocol is 1 start, 8 data and 1 stop bit. Draw the waveform when the decimal value 204 is transmitted. You may assume the channel is idle before and after the frame. Time flows from left to right. (204 = 0xCC = start, 0, 0, 1, 1, 0, 0, 1, 1, stop)

c) (3 points) Assume the serial port is setup as in part b) (2000 bps, 1 stop, 8 data, 1 start bit) and the serial receive interrupt is set to trigger when the UART receive FIFO is half full. Furthermore, the receive interrupt handler empties the UART FIFO every time it is invoked. How long can interrupts at most be disabled to guarantee that no UART overflow (OE bit set) will occur.

(9 frames = 9*10 bit times = 45 ms) better answer (8 frames = 8*10 bits*0.5 ms/bit = 40 ms, give full credit for 35 to 45 ms

(15) Question 6. (Hardware)

a) (5 points) Design a 6-bit DAC using the binary-weighted configuration. The DAC is controlled by six output port pins, PE5-0. Carefully label the signal which is the DAC output, and specify the values for any resistors used

Any set of resistors, one per output, other side connected with 1,2,4,6,16,32 ratio, R0 smallest, R5 largest

b) (5 points) The desired LED operating point is 1V, 1mA. Assume the V_{OL} of the 7406 is 0.5V. Assume the microcontroller output voltages are $V_{OH} = 3.1V$ and $V_{OL} = 0.2V$. Interface this LED to PA2 using positive logic. Full credit for the solution uses the fewest components, and partial credit if it works. Specify values for any resistors needed. Show equations of your calculations used to select resistor values.

c) (5 points) Interface a switch to PA3 such that if the switch is pressed the software sees a logic 0 and if the switch is not pressed the software sees a logic one. Specify values for any resistors needed. The software will clear both the internal pullup and pulldown registers.

(10) Question 7 (ADC). Assume the ADC has already been initialized to use sequencer 3 with a software trigger and channel 1. Write a C function that starts the ADC, waits for it to complete, reads the 12-bit result, clears the flag and returns a value as a voltage with units of mV. For example if the input is 1.234V then the software will return 1234. The prototype for this function is

```
unsigned long ADC0_InSeq3(void);
```

```
unsigned long ADC0 InSeq3(void) { unsigned long result;
  ADC0 PSSI R = 0 \times 0008;
  while ((ADC0 RIS R& 0x08) == 0) {}
  result = ADC0 SSFIF03 R & 0x3FF;
  ADC0 ISC R = 0 \times 0008;
  return (result*3000)>>12;
}
```

(10) Question 8 (FIFO).

a) (**2** points) Why is the first in first out (FIFO) queue really important for interfacing I/O devices? i) They can store data permanently, which is important because embedded systems are used in safety critical situations, and we need to know what the data was during operation.

ii) They are a way to store data in the cloud. FIFOs provide backup and sharing.

iii) The software and hardware can operate at variable speeds and data are temporarily spooled into the FIFO as it passes between them. (answer)

iv) It can store an arbitrarily large amount of data. This is important

because the size and complexity of embedded systems is growing.

```
v) None of the above.
```

vi) All of the above.

b) (5 points) Circle all the bugs in this FIFO implementation, and show the corrections needed to make this FIFO functional.

```
(answer change 0x1F to 0x0F)
unsigned char static PutI;
unsigned char static GetI;
short static FIFO[16]; // 16 halfwords or 32 bytes of data
void Fifo Init(void) {
  PutI = GetI = 5;
}
int Fifo Put(short data) {
  if(((PutI+1)&0x1F) == GetI) return 0;
  FIFO[PutI] = data;
  PutI = (PutI+1) \& 0x1F;
  return 1;
}
int Fifo Get(short *datapt) {
  if(PutI == GetI) return 0;
  *datapt = FIFO[GetI];
  GetI = (GetI+1) \& 0x1F;
  return 1;
}
```

c) (3 points) Assuming a SysTick handler calls Fifo_Put() every 1 ms and the main() is able to process one item every 2 ms. If the main() is processing the first item right after the first SysTick puts it into the FIFO at time 0, does the FIFO ever overflow and if so, at what time? (full at time 28, overflows at time 30)

(10) Question 9 (FSM).

a) (4 points) Assume we start in the happy state. The input starts and remains 3. What sequence of outputs will occur?
i) start and remain at 10
ii) 10, 12, 0 (and remain at 0) (answer)
iii) 10, 0, 10, 0, 10, 0, 10, 0, 10, over and over
iv) 10, 12, 10, 12, 10, 12, 10, 12, 10, over and over
v) None of the above

b) (6 points) Consider this FSM, the 6-bit output is on Port B (PB5-0) and the 2-bit input on Port E (PE1-0). You may call the SysTick function SysTick_Wait10ms(n); to wait n*10msec. struct State {

Write C code that completes this main program such that the FSM runs in the foreground. Write friendly code.

```
while(1){
    GPIO_PORTB_DATA_R = (GPIO_PORTB_DATA_R&0xC0)+(Pt->Out);
    SysTick_Wait10ms(Pt->Time);
    Input = (GPIO_PORTE_DATA_R&0x03); // read sensors
    Pt = Pt->Next[Input];
  }
}
```

Memory access instructions

	LDR	Rd,	[Rn]	;	load 32-b	it number at [Rn] to H	Rd
	LDR	Rd,	[Rn,#off]	;	load 32-b	it number at [Rn+off]	to Rd
	LDR	Rd,	=value	;	set Rd ea	al to any 32-bit valu	ue (PC rel)
	LDRH	Rd.	[Rn]		load unsid	med 16-bit at [Bn] to	
	LDRH	Rd	[Rn #off]	΄.	load unsid	med 16-bit at [Rn+of	fl to Rd
	TUDGH	Pd	[Pn]	΄.	load sign	ad $16-bit$ at [Pn] to I	
	TDDCU	Pd	[Rn #off]	΄.	load sign	= a io bit at [Rii] to i	to Pd
	TDESU	Ru, Dd	[RI, #OII]	<i>.</i>	load unait	a id-bit at [Mi+OII]	
	TDKR	Ra,		;	load unsig	gned 8-bit at [Rh] to	RO DI
	LDRB	ка,	[Rn,#orr]	;	load unsig	gned 8-bit at [Rn+oir]	to Ra
	LDRSB	Rd,	[Rn]	;	load signe	ed 8-bit at [Rn] to Ro	1
	LDRSB	Rd,	[Rn,#off]	;	load signe	ed 8-bit at [Rn+off] t	co Rd
	STR	Rt,	[Rn]	;	store 32-1	oit Rt to [Rn]	
	STR	Rt,	[Rn,#off]	;	store 32-1	oit Rt to [Rn+off]	
	STRH	Rt,	[Rn]	;	store leas	st sig. 16-bit Rt to	[Rn]
	STRH	Rt,	[Rn,#off]	;	store leas	st sig. 16-bit Rt to	[Rn+off]
	STRB	Rt,	[Rn]	;	store leas	st sig. 8-bit Rt to [H	Rn]
	STRB	Rt,	[Rn,#off]	;	store leas	st sig. 8-bit Rt to [H	Rn+off]
	PUSH	{Rt}		;	push 32-b:	it Rt onto stack	
	POP	{Rd}		;	- pop 32-bi [,]	t number from stack in	nto Rd
	ADR	Rd.	label	:	set Rd ea	al to the address at	label
	MOV(S)	Rd	<on2></on2>	΄.	set Rd ea	a_1 to c_2	10001
	MOV	Pd	#im16	΄.	set Pd em	121 ± 0 $121 $) to 65535
		Pd		΄.	set Rd equ	$\frac{1}{121} + \frac{1}{120} = \frac{1}{120}$	
n	MVN (S)	Ku,		'	set Ku eqi		
Bra	inch instr	uctions	5 . h		1-4-1	71	
	B 1	abei	; branch	1 to		Always	
	BEQ I	abel	; branch	1 1İ	z == 1	Equal	
	BNE 1	abel	; branch	l if	z == 0	Not equal	
	BCS 1	abel	; branch	n if	C == 1	Higher or same, unsig	ned ≥
	BHS 1	abel	; branch	ı if	C == 1	Higher or same, unsig	ned ≥
	BCC 1	abel	; branch	ı if	C == 0	Lower, unsigned <	
	BLO 1	abel	; branch	ı if	C == 0	Lower, unsigned <	
	BMI 1	abel	; branch	ı if	N == 1	Negative	
	BPL 1	abel	; branch	ı if	N == 0	Positive or zero	
	BVS 1	abel	; branch	ı if	V == 1	Overflow	
	BVC 1	abel	; branch	n if	V == 0	No overflow	
	BHI 1	abel	; branch	n if	C==1 and	Z==0 Higher, unsigne	ed >
	BLS 1	abel	; branch	if	C == 0 or	Z==1 Lower or same.	unsigned ≤
	BGE 1	abel	· branch	 1 if	N == V	Greater than or equal	signed >
	BUT 1	abol	, branch	. <u>.</u>	N = V	Loss than signed <	, signed -
		abel	, branci		$\mathbf{N} := \mathbf{V}$	N=-V Crostor than	i anod >
		abel	; branci	1 II . : c	Z = -0 and $Z = -1$ or 1	NV Greater than, s	signed >
		aber	; branci	1 11		Niev Less than of equ	al, signed s
	BX R		; branch	ı in	direct to	location specified by	y Rm
	вг т	abel	; brancr	1 to	subroutin	ne at label	-
	BLX R	m	; branch	ı to	subrouti	ne indirect specified	by Rm
Into	errupt ins	structio	ons				
	CPSIE	I		;	enable in	nterrupts (I=0)	
	CPSID	I		;	disable :	interrupts (I=1)	
Log	gical instr	uction	8				
- 6	AND {S}	{Rd,	} Rn, <002	2> ;	Rd=Rn&op:	2 (op2 is 32 bits)	
	ORR {S}	{Rd	} Rn, <002	2> ;	Rd=Rn op:	2 (op2 is 32 bits)	
	EOR(S)	{Rd	Rn, < con 2	2> :	Rd=Rn^op	2 (op2 is 32 bits)	
	BIC(S)	{Rd	Rn < con2	2> •	Rd=Rn&(~	$(0p^2 is 32 bits)$	
	OBMIGI	(PA	Rn < cp2	· · ·		(0p2 is 32 bits)	
	TGD(G)	DA	$p_m P_2$			shift right Dd-Dm//Da	(uneigned)
	194(9)	ĸa,	ruit, KS	;	rogrear s	SHITL LIGHT RO-RH/SKS	(unsigned)

LSR{S} Rd, Rm, #n ; logical shift right Rd=Rm>>n (unsigned) ASR{S} Rd, Rm, Rs ; arithmetic shift right Rd=Rm>>Rs (signed) ; arithmetic shift right Rd=Rm>>n (signed) ASR{S} Rd, Rm, #n LSL{S} Rd, Rm, Rs ; shift left Rd=Rm<<Rs (signed, unsigned)</pre> LSL{S} Rd, Rm, #n ; shift left Rd=Rm<<n (signed, unsigned) **Arithmetic instructions** ADD{S} {Rd,} Rn, $\langle op2 \rangle$; Rd = Rn + op2 $ADD{S} {Rd}, Rn, \#im12$; Rd = Rn + im12, im12 is 0 to 4095 $SUB{S} {Rd}, Rn, <op2>; Rd = Rn - op2$ $SUB{S} {Rd}, Rn, \#im12$; Rd = Rn - im12, im12 is 0 to 4095 $RSB{S} {Rd}, Rn, <op2>; Rd = op2 - Rn$ $RSB{S} {Rd_{,}} Rn_{,} \#im12 ; Rd = im12 - Rn$; Rn – op2 CMP Rn, <op2> sets the NZVC bits CMN Rn, <op2>; Rn - (-op2) sets the NZVC bits ; Rd = Rn * Rm MUL{S} {Rd,} Rn, Rm signed or unsigned Rd, Rn, Rm, Ra; Rd = Ra + Rn*Rmsigned or unsigned MLA MLS Rd, Rn, Rm, Ra ; Rd = Ra - Rn*Rm signed or unsigned UDIV {Rd,} Rn, Rm ; Rd = Rn/Rmunsigned SDTV {Rd,} Rn, Rm ; Rd = Rn/Rmsigned Notes Ra Rd Rm Rn Rt represent 32-bit registers any 32-bit value: signed, unsigned, or address value if S is present, instruction will set condition codes {S} #im12 any value from 0 to 4095 #im16 any value from 0 to 65535 if Rd is present Rd is destination, otherwise Rn {Rd, } #n any value from 0 to 31 #off any value from -255 to 4095 any address within the ROM of the microcontroller label the value generated by <op2> op2 Examples of flexible operand **<op2>** creating the 32-bit number. E.g., **Rd = Rn+op2** ADD Rd, Rn, Rm ; op2 = RmADD Rd, Rn, Rm, LSL #n ; op2 = Rm<<n Rm is signed, unsigned ADD Rd, Rn, Rm, LSR #n ; op2 = Rm>>n Rm is unsigned ADD Rd, Rn, Rm, ASR #n ; op2 = Rm>>n Rm is signed ADD Rd, Rn, #constant ; op2 = constant, where X and Y are hexadecimal digits: ٠ produced by shifting an 8-bit unsigned value left by any number of bits in the form **0x00xy00xy** • in the form **0xXY00XY00** in the form **0xXYXYXYX** R0 0x0000.0000 R1 256k Flash R2 ROM 0x0003.FFFF **Condition code bits** <u>R</u>3 N negative R4 0x2000.0000 R5 64k RAM General Z zero purpose -R6 V signed overflow 0x2000.FFFF R7 registers C carry or R8 0x4000.0000 R9 unsigned overflow I/O ports R10 0x41FF.FFFF R11 R12 0xE000.0000 Stack pointer R13 (MSP) Internal I/O Link register R14 (LR) PPB 0xE004.0FFF Program counter R15 (PC)

DCB 1,2,3 ; allocates three 8-bit byte(s)
DCW 1,2,3 ; allocates three 16-bit halfwords

Address	7	6	5	4	3	2	1	0	Name
\$400F.E108			GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA	SYSCTL_RCGC2_R
\$4000.43FC	DATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA	GPIO_PORTA_DATA_R
\$4000.4400	DIR	DIR	DIR	DIR	DIR	DIR	DIR	DIR	GPIO_PORTA_DIR_R
\$4000.4420	SEL	SEL	SEL	SEL	SEL	SEL	SEL	SEL	GPIO_PORTA_AFSEL_R
\$4000.451C	DEN	DEN	DEN	DEN	DEN	DEN	DEN	DEN	GPIO_PORTA_DEN_R

DCD 1,2,3 ; allocates three 32-bit words SPACE 4 ; reserves 4 bytes

Table 4.5. Some TM4C123/LM4F120 parallel ports. Each register is 32 bits wide. Bits 31 – 8 are zero.

Address	31	30	29-7	6	5	4	3	2	1	0	Name
0xE000E100		F		UART1	UART0	Е	D	С	В	Α	NVIC_EN0_R

Address	31-24	23-17	16	15-3	2	1	0	Name
\$E000E010	0	0	COUNT	0	CLK_SRC	INTEN	ENABLE	NVIC_ST_CTRL_R
\$E000E014	0			NVIC_ST_RELOAD_R				
\$E000E018	0		24-bit CU	NVIC_ST_CURRENT_R				

Address	31-29	28-24	23-21	20-8	7-5	4-0	Name
\$E000ED20	SYSTICK	0	PENDSV	0	DEBUG	0	NVIC_SYS_PRI3_R

Table 9.6. SysTick registers.

Table 9.6 shows the SysTick registers used to create a periodic interrupt. SysTick has a 24-bit counter that decrements at the bus clock frequency. Let f_{BUS} be the frequency of the bus clock, and let *n* be the value of the **RELOAD** register. The frequency of the periodic interrupt will be $f_{BUS}/(n+1)$. First, we clear the **ENABLE** bit to turn off SysTick during initialization. Second, we set the **RELOAD** register. Third, we write to the **NVIC_ST_CURRENT_R** value to clear the counter. Lastly, we write the desired mode to the control register, **NVIC_ST_CTRL_R**. To turn on the SysTick, we set the **ENABLE** bit. We must set **CLK_SRC=**1, because **CLK_SRC=**0 external clock mode is not implemented on the LM3S/LM4F family. We set **INTEN** to enable interrupts. The standard name for the SysTick ISR is **SysTick_Handler**.

Address	31-17	16	15-10	9	8	7-0			Name	
\$400F.E000		ADC		MAXA	ADCSPD				SYSCTL_RCGC0_R	
	31-14	13-12	11-10	9-8	7-6	5-4	3-2	1-0		
\$4003.8020		SS3		SS2		SS1		SS0	ADC_SSPRI_R	
		31-	-16		15-12	11-8	7-4	3-0		
\$4003.8014					EM3	EM2	EM1	EM0	ADC_EMUX_R	
		31	-4		3	2	1	0		
\$4003.8000					ASEN3	ASEN2	ASEN1	ASEN0	ADC_ACTSS_R	
\$4003.80A0						MUX0			ADC_SSMUX3_R	
\$4003.80A4					TS0	IE0	END0	D0	ADC_SSCTL3_R	
\$4003.8028					SS3	SS2	SS1	SS0	ADC_PSSI_R	
\$4003.8004					INR3	INR2	INR1	INR0	ADC_RIS_R	
\$4003.8008					MASK3	MASK2	MASK1	MASK0	ADC_IM_R	
\$4003.800C					IN3	IN2	IN1	IN0	ADC_ISC_R	
		31-	-10			11-	-0			
\$4003 80A8						12-hit I	λάτα		ADC SSEIFO3	

Table 10.3. The TM4C123/LM4F120ADC registers. Each register is 32 bits wide.

Set MAXADCSPD to 00 for slow speed operation. The ADC has four sequencers, but we will use only sequencer 3. We set the ADC_SSPRI_R register to 0x3210 to make sequencer 3 the lowest priority. Because we are using just one sequencer, we just need to make sure each sequencer has a unique priority. We set bits 15–12 (EM3) in the ADC_EMUX_R register to specify how the ADC will be triggered. If we specify software start (EM3=0x0), then the software writes an 8 (SS3) to the ADC_PSSI_R to initiate a conversion on sequencer 3. Bit 3 (INR3) in the ADC_RIS_R register will be set when the conversion is complete. We can enable and disable the sequencers using the ADC_ACTSS_R

register. There are 11 on the TM4C123/LM4F120. Which channel we sample is configured by writing to the ADC_SSMUX3_R register. The ADC_SSCTL3_R register specifies the mode of the ADC sample. Clear TS0. We set IE0 so that the INR3 bit is set on ADC conversion, and clear it when no flags are needed. We will set IE0 for both interrupt and busy-wait synchronization. When using sequencer 3, there is only one sample, so END0 will always be set, signifying this sample is the end of the sequence. Clear the D0 bit. The ADC_RIS_R register has flags that are set when the conversion is complete, assuming the IE0 bit is set. Do not set bits in the ADC_IM_R register because we do not want interrupts.

UARTO pins are on PA1 (transmit) and PA0 (receive). The **UARTO_IBRD_R** and **UARTO_FBRD_R** registers specify the baud rate. The baud rate **divider** is a 22-bit binary fixed-point value with a resolution of 2^{-6} . The **Baud16** clock is created from the system bus clock, with a frequency of (Bus clock frequency)/**divider**. The baud rate is

Baud rate = Baud16/16 = (Bus clock frequency)/(16*divider)

We set bit 4 of the **UARTO_LCRH_R** to enable the hardware FIFOs. We set both bits 5 and 6 of the **UARTO_LCRH_R** to establish an 8-bit data frame. The **RTRIS** is set on a receiver timeout, which is when the receiver FIFO is not empty and no incoming frames have occurred in a 32-bit time period. The arm bits are in the **UARTO_IM_R** register. To acknowledge an interrupt (make the trigger flag become zero), software writes a 1 to the corresponding bit in the **UARTO_IC_R** register. We set bit 0 of the **UARTO_CTL_R** to enable the UART. Writing to **UARTO_DR_R** register will output on the UART. This data is placed in a 16-deep transmit hardware FIFO. Data are transmitted first come first serve. Received data are place in a 16-deep receive hardware FIFO. Reading from **UARTO_DR_R** register will get one data from the receive hardware FIFO. The status of the two FIFOs can be seen in the **UARTO_FR_R** register (FF is FIFO full, FE is FIFO empty). The standard name for the UARTO ISR is **UARTO_Handler**. RXIFLSEL specifies the receive FIFO level that causes an interrupt (010 means interrupt on $\geq \frac{1}{2}$ full, or 7 to 8 characters). TXIFLSEL specifies the transmit FIFO level that causes an interrupt (010 means interrupt on $\leq \frac{1}{2}$ full, or 9 to 8 characters).

	31-12	11	10	9	8			Name	
\$4000.C000		OE	BE	PE	FE		DATA	1	UART0_DR_R
		31-	-3		3	2	1	0	-
\$4000.C004					OE	BE	PE	FE	UART0_RSR_R
		_		_				• •	
	31-8	7	6	5	4	3		2-0	
\$4000.C018		TXFE	RXFF	TXFF	RXFE	BUSY			UART0_FR_R
	31 16				15 0				
\$4000 C024	51-10	1			DIVIN	Г			LIARTO IBRD R
\$4000.0024					DIVINI				UARTO_IDRD_R
		31-	-6				5-0		
\$4000.C028			-			UART0 FBRD R			
					•				
	31-8	7	6 – 5	4	3	2	1	0	_
\$4000.C02C		SPS	WPEN	FEN	STP2	EPS	PEN	BRK	UART0_LCRH_R
	31-10	9	8	7	6–3	2	1	0	_
\$4000.C030		RXE	TXE	LBE		SIRLP	SIREN	UARTEN	UART0_CTL_R
					_				
		31-	-6		5-	3		2-0	-
\$4000.C034					RXIFI	LSEL	TX	IFLSEL	UART0_IFLS_R
	21.11	10	0	0	-	6	~		
A 4000 G020	31-11	10	9	8	/	6	5	4	
\$4000.C038		OEIM	BEIM	PEIM	FEIM	RTIM	TXIM	RXIM	UARTO_IM_R
\$4000.C03C		OERIS	BERIS	PERIS	FERIS	RTRIS	TXRIS	RXRIS	UART0_RIS_R
\$4000.C040		OEMIS	BEMIS	PEMIS	FEMIS	RTMIS	TXMIS	RXMIS	UART0_MIS_R
\$4000.C044		OEIC	BEIC	PEIC	FEIC	RTIC	TXIC	RXIC	UART0_IC_R
.									

Table 11.2. UART0 registers. Each register is 32 bits wide. Shaded bits are zero.