
EE319K Fall 2014 Final Exam Page 1

Erez, Valvano, Yerraballi Dec 11, 2014 2:00pm-5:00pm

Final Exam

Date: December 11, 2014

UT EID: Circle one: ME, JV, RY

Printed Name:

Last, First

Your signature is your promise that you have not cheated and will not cheat on this exam, nor will you help others to cheat
on this exam. You will not reveal the contents of this exam to others who are taking the makeup thereby giving them an
undue advantage:

Signature:

Instructions:
 Closed book and closed notes. No books, no papers, no data sheets (other than the last four pages of this Exam)
 No devices other than pencil, pen, eraser (no calculators, no electronic devices), please turn cell phones off.
 Please be sure that your answers to all questions (and all supporting work that is required) are contained in the

space (boxes) provided. Anything outside the boxes will be ignored in grading.
 You have 180 minutes, so allocate your time accordingly.
 For all questions, unless otherwise stated, find the most efficient (time, resources) solution.
 Unless otherwise stated, make all I/O accesses friendly.
 Please read the entire exam before starting. See supplement pages for Device I/O registers.

Problem 1 20

Problem 2 10

Problem 3 10

Problem 4 10

Problem 5 10

Problem 6 10

Problem 7 20

Problem 8 10

Total 100

EE319K Fall 2014 Final Exam Page 2

Erez, Valvano, Yerraballi Dec 11, 2014 2:00pm-5:00pm

(20) Question 1 (Miscellaneous)
(3) Part a) This Interrupt Service Routine modifies registers R0 and R1 but the ISR does not save R0
and R1, why?

(5) Part b) A DAC is used to output a sine wave using SysTick Interrupts and a sine-wave table.
Assume the DAC has 7 bits, the DAC output is connected to a speaker, the SysTick ISR executes at
32kHz, the sine table has 256 elements, and one DAC output occurs each interrupt. The DAC output
range is 0 to 3.3V. The bus clock is 80 MHz. The ADC maximum rate is 125 kHz. What frequency
sound is produced, in Hz?

(3) Part c) A DAC has a range of 0 to 3V and needs a resolution of 1mV. How many bits are
required? In other words, what is the smallest number of DAC bits that would satisfy the requirements?

(3) Part d) An embedded system will use an ADC to capture electrocardiogram (EKG) data. The
frequency range of the human EKG spans from 0.1 Hz to 100 Hz. What is the slowest rate at which we
could sample the ADC and still have a faithful representation of the EKG in the digital samples? Give
your answer as the time between samples. (Hint: this is not the Valvano Postulate.)

(3) Part e) An 8-bit ADC (different from the TM4C123) has an input range of 0 to +10 volts and an
output range of 0 to 255. What digital value will be returned when an input of +7.5 volts is sampled?
Give your answer as a decimal number.

(3) Part f) A serial port (UART1) is configured with one start, 8 data bits, one stop and a baud rate of
50,000 bits/sec. What is the maximum possible bandwidth of this port in bytes/sec?

SysTick_Handler
 LDR R1, =GPIO_PORTF_DATA_R
 LDR R0, [R1]
 EOR R0, R0, #0x04
 STR R0, [R1]
 BX LR

EE319K Fall 2014 Final Exam Page 3

Erez, Valvano, Yerraballi Dec 11, 2014 2:00pm-5:00pm

(10) Question 2 (FSM). You will design a pacemaker using a Moore FSM. There is one input and one
output. The input will be high if the heart is beating on its own. The input will be low if the heart is not
beating on its own. If the heart is not beating your machine should pace the heart. If the heart is beating
on its own, the input will be high and your output should be low. However, if the input is low, you
should pace the heart by giving a 10 ms output pulse every 1000 ms. PB0 is output, PB1 is input.

(5) Part a) Show the FSM graph in Moore format. Full credit for the solution with the fewest states.

(5) Part b) The structure and the main program are fixed. Show the C code that places the FSM in
ROM, and specify the initial state in the box.

const struct State{
 uint32_t out;
 uint32_t wait;
 uint32_t next[2];
};
typedef const struct State State_t;
uint32_t s;

void main(void){ PORTB_Init();
 SysTick_Init();

 s = ;

 while(1){
 GPIO_PORTB_DATA_R = FSM[s].out;
 SysTick_Wait1ms(FSM[s].wait);
 Input = (GPIO_PORTB_DATA_R&0x02)>>1;
 s = FSM[s].next[Input];
 }}

Input

Output

exactly 10ms

exactly 1s

exactly 10ms

about 1s

EE319K Fall 2014 Final Exam Page 4

Erez, Valvano, Yerraballi Dec 11, 2014 2:00pm-5:00pm

(10) Question 3. Interface a multicolor LED to the microcontroller. Each color is controlled by a
separate diode with an operating point of 2V, 25mA. You can use any number of 7406 inverters, and
any number of resistors. Assume the VOL of the 7406 is 0.5V. Assume the microcontroller output
voltages are VOH = 3.0V and VOL = 0.1V. Specify values for any resistors needed. Show equations of
your calculations used to select resistor values. Make each output control one color, positive logic.

(10) Question 4 (DAC). What are the maximum voltage, precision, and resolution of this DAC?
Assume the microcontroller output voltages are VOH = 3.2V and VOL = 0.0V.

Maximum voltage Precision Resolution

PB2

PB1

PB0

Microcontroller

Red Green Blue

PE1

PE0

Microcontroller
2k

4k DACout

4k

EE319K Fall 2014 Final Exam Page 5

Erez, Valvano, Yerraballi Dec 11, 2014 2:00pm-5:00pm

(10) Question 5 (UART).
(5) Part a) Write two C functions that send an 8-byte message using UART1. Assume the UART1 is
already initialized for busy-wait synchronization. The 7 bytes of payload are passed by reference to
your function. You will send an 8th byte that is an error-checking code (ECC), which will be the bit-
wise exclusive or of the 7-byte data.
 ECC = str[0] ^ str[1] ^ str[2] ^ str[3] ^ str[4] ^ str[5] ^ str[6]
Your UART1_OutMessage function should call your UART1_ OutChar function.
// Input: str is a pointer to a 7-byte array of data to be transmitted
void UART1_OutMessage(const uint8_t str[7]){

// Input: 8-bit data to be transmitted
void UART1_OutChar(const uint8_t data){

(5) Part b) Assume you have received the 8-byte message from the UART1 on the other
microcontroller, and the message has been placed in this array of 8 bytes:
Message SPACE 8
Write an assembly subroutine that checks the ECC to determine if an error has occurred. Return R0=0
if the message is ok, and return R0≠0 if the ECC does not match. The subroutine will access the global
array called Message. Hint: what should the following calculation be if there is no error?

 Message[0]^Message[1]^Message [2]^Message [3]^Message [4]^Message [5]^Message [6]^Message[7]

CheckMessage

EE319K Fall 2014 Final Exam Page 6

Erez, Valvano, Yerraballi Dec 11, 2014 2:00pm-5:00pm

(10) Question 6 (debugging). Consider the FIFO code, which declares one global data structure and
implements two functions that manipulate the structure. The compiler will initialize all variables to 0.
Note that the code has many bugs.
(8) Part a) Write down as many bugs as you can find and for each bug propose a solution. Use the
boxes below to describe each bug, the lines affected by it (possibly multiple lines with same type of
bug), and a solution. If a bug is missing lines of code, mark down the two line numbers between which
your solution code needs to be inserted and just write the extra code in the “Solution” column. For
example, lines 6 and 11 are missing a semi-colon as marked below.

Line(s) Description Solution

6, 11 Missing ; Add ;

(2) Part b) What is the purpose of the return value of the function Fifo_Put() and the function
Fifo_Get()?

Lines(s) Description Solution

1: #include <stdint.h>
2: struct fifo {
3: char data[512];
4: uint8_t x, y, z;};
5: typedef struct fifo fifo_t;

6: fifo_t myData

7: int8_t Fifo_Put(char c) {
8: if (myData.z == 512) {
9: return(-1);
10: }
11: myData.data[myData.x] = c
12: myData.x = [myData.x + 1] % 511;
13: myData.z = myData.z + 1;
14: }

15: int8_t Fifo_Get(char* c) {
16: c = myData ->data[myData->y];
17: myData->y = (myData->y + 1) % 511;
18: myData->z = myData->z + 1;
19: }

EE319K Fall 2014 Final Exam Page 7

Erez, Valvano, Yerraballi Dec 11, 2014 2:00pm-5:00pm

(20) Question 7 (Local Variables, AAPCS and Parameter-passing)
Answer the questions that follow with reference to the code given below. Assume initially that R3=3,
R4=4, R5=5, R11=11, and LR = 0x30F.

// Main.c
extern uint32_t Func(uint32_t, uint16_t *); //[1]

int main(void){
 uint16_t glob;
 uint32_t param = 14;

 glob=42;
 param = Func(param,&glob); //[A]
 glob += param; //[C]
}

; Func.s
 EXPORT Func ;[2]
 AREA |.text|, CODE, READONLY, ALIGN=2
 THUMB

loc equ 8 ; Binding [3]

Func
 SUB SP,#4
 PUSH {R2,R11}
 LDRH R2,[R1]
 ADD R2,#1
 STRH R2,[R1]
 STR R2,[SP,#loc]
 ADD R0,R2
 STR R0,[SP,#loc]
 POP {R2,R11} ;[B]
 ADD SP,#4
 BX LR

 ALIGN
 END

a) (5 points) Compete the three missing blanks in lines labeled [1], [2] and [3].
b) (2 points) Circle the Allocation and Deallocation steps for the local variable loc.
c) (3 points) Assuming the SP is initialized to 0x20000400. What are the contents of the Stack

(and the value of the SP) after main calls Func and the instruction at [B] has been completed.

0x200003E4
0x200003E8
0x200003EC
0x200003F0
0x200003F4
0x200003F8
0x200003FC
0x20000400
0x20000004

main PUSH {r3-r5,lr}
 MOVS r4,#0x0E
 MOVS r0,#0x2A
 STR r0,[sp,#0x00]
 MOV r1,sp
 MOV r0,r4
 BL Func
 MOV r4,r0
 LDRH r0,[sp,#0x00]
 ADD r0,r0,r4
 UXTH r0,r0 ;clear 31-16
 STR r0,[sp,#0x00]
 MOVS r0,#0x00
 POP {r3-r5,pc}

EE319K Fall 2014 Final Exam Page 8

Erez, Valvano, Yerraballi Dec 11, 2014 2:00pm-5:00pm

d) (5 points) What is the value of the variable glob:
I. After instruction at [A] is completed?

II. After instruction at [C] is completed?

e) (5 points) Give the C equivalent of the assembly code corresponding to the subroutine Func.

EE319K Fall 2014 Final Exam Page 9

Erez, Valvano, Yerraballi Dec 11, 2014 2:00pm-5:00pm

(10) Question 8: (assembly/C) The left and right sides represent corresponding C and ARM assembly
(think of the assembly as the compiler-produced code of the C part). Both sides contain a few missing
lines, which you are to fill in. Each box below represents exactly one missing line of code (in either C
or assembly). Note arrows are placed to roughly correspond to lines of assembly and lines of C.

#include <stdint.h> // C99 types

uint32_t var;

int main() {
 var = 0;

 if (var < 3) {

 }
 else {
 var = var + i;
 }

 }

}

 AREA DATA

i SPACE 4
 AREA |.text|,CODE,READONLY,ALIGN=2
 THUMB
 EXPORT main
main
 LDR R0, =var
 MOV R1, #0
 STR R1, [R0]

 LDR R2, =i
 MOV R3, #0
 STR R3, [R2]
 B labelD
labelA
 LDR R1, [R0]

 ADD R1, R1, #1
 STR R1, [R0]
 B labelC
labelB

labelC
 ADD R3, R3, #1
 STR R3, [R2]
labelD
 CMP R3, #0x0A
 BLT labelA

 LDR R0, [R0]
 BX LR
 ALIGN
 END

EE319K Fall 2014 Final Exam Page 10

Erez, Valvano, Yerraballi Dec 11, 2014 2:00pm-5:00pm

 Memory access instructions
 LDR Rd, [Rn] ; load 32-bit number at [Rn] to Rd
 LDR Rd, [Rn,#off] ; load 32-bit number at [Rn+off] to Rd
 LDR Rd, =value ; set Rd equal to any 32-bit value (PC rel)
 LDRH Rd, [Rn] ; load unsigned 16-bit at [Rn] to Rd
 LDRH Rd, [Rn,#off] ; load unsigned 16-bit at [Rn+off] to Rd
 LDRSH Rd, [Rn] ; load signed 16-bit at [Rn] to Rd
 LDRSH Rd, [Rn,#off] ; load signed 16-bit at [Rn+off] to Rd
 LDRB Rd, [Rn] ; load unsigned 8-bit at [Rn] to Rd
 LDRB Rd, [Rn,#off] ; load unsigned 8-bit at [Rn+off] to Rd
 LDRSB Rd, [Rn] ; load signed 8-bit at [Rn] to Rd
 LDRSB Rd, [Rn,#off] ; load signed 8-bit at [Rn+off] to Rd
 STR Rt, [Rn] ; store 32-bit Rt to [Rn]
 STR Rt, [Rn,#off] ; store 32-bit Rt to [Rn+off]
 STRH Rt, [Rn] ; store least sig. 16-bit Rt to [Rn]
 STRH Rt, [Rn,#off] ; store least sig. 16-bit Rt to [Rn+off]
 STRB Rt, [Rn] ; store least sig. 8-bit Rt to [Rn]
 STRB Rt, [Rn,#off] ; store least sig. 8-bit Rt to [Rn+off]
 PUSH {Rt} ; push 32-bit Rt onto stack
 POP {Rd} ; pop 32-bit number from stack into Rd
 ADR Rd, label ; set Rd equal to the address at label
 MOV{S} Rd, <op2> ; set Rd equal to op2
 MOV Rd, #im16 ; set Rd equal to im16, im16 is 0 to 65535
 MVN{S} Rd, <op2> ; set Rd equal to -op2
Branch instructions
 B label ; branch to label Always
 BEQ label ; branch if Z == 1 Equal
 BNE label ; branch if Z == 0 Not equal
 BCS label ; branch if C == 1 Higher or same, unsigned ≥
 BHS label ; branch if C == 1 Higher or same, unsigned ≥
 BCC label ; branch if C == 0 Lower, unsigned <
 BLO label ; branch if C == 0 Lower, unsigned <
 BMI label ; branch if N == 1 Negative
 BPL label ; branch if N == 0 Positive or zero
 BVS label ; branch if V == 1 Overflow
 BVC label ; branch if V == 0 No overflow
 BHI label ; branch if C==1 and Z==0 Higher, unsigned >
 BLS label ; branch if C==0 or Z==1 Lower or same, unsigned ≤
 BGE label ; branch if N == V Greater than or equal, signed ≥
 BLT label ; branch if N != V Less than, signed <
 BGT label ; branch if Z==0 and N==V Greater than, signed >
 BLE label ; branch if Z==1 or N!=V Less than or equal, signed ≤
 BX Rm ; branch indirect to location specified by Rm
 BL label ; branch to subroutine at label
 BLX Rm ; branch to subroutine indirect specified by Rm
Interrupt instructions
 CPSIE I ; enable interrupts (I=0)
 CPSID I ; disable interrupts (I=1)
Logical instructions
 AND{S} {Rd,} Rn, <op2> ; Rd=Rn&op2 (op2 is 32 bits)
 ORR{S} {Rd,} Rn, <op2> ; Rd=Rn|op2 (op2 is 32 bits)
 EOR{S} {Rd,} Rn, <op2> ; Rd=Rn^op2 (op2 is 32 bits)
 BIC{S} {Rd,} Rn, <op2> ; Rd=Rn&(~op2) (op2 is 32 bits)
 ORN{S} {Rd,} Rn, <op2> ; Rd=Rn|(~op2) (op2 is 32 bits)
 LSR{S} Rd, Rm, Rs ; logical shift right Rd=Rm>>Rs (unsigned)
 LSR{S} Rd, Rm, #n ; logical shift right Rd=Rm>>n (unsigned)
 ASR{S} Rd, Rm, Rs ; arithmetic shift right Rd=Rm>>Rs (signed)

EE319K Fall 2014 Final Exam Page 11

Erez, Valvano, Yerraballi Dec 11, 2014 2:00pm-5:00pm

 ASR{S} Rd, Rm, #n ; arithmetic shift right Rd=Rm>>n (signed)
 LSL{S} Rd, Rm, Rs ; shift left Rd=Rm<<Rs (signed, unsigned)
 LSL{S} Rd, Rm, #n ; shift left Rd=Rm<<n (signed, unsigned)
Arithmetic instructions
 ADD{S} {Rd,} Rn, <op2> ; Rd = Rn + op2
 ADD{S} {Rd,} Rn, #im12 ; Rd = Rn + im12, im12 is 0 to 4095
 SUB{S} {Rd,} Rn, <op2> ; Rd = Rn - op2
 SUB{S} {Rd,} Rn, #im12 ; Rd = Rn - im12, im12 is 0 to 4095
 RSB{S} {Rd,} Rn, <op2> ; Rd = op2 - Rn
 RSB{S} {Rd,} Rn, #im12 ; Rd = im12 – Rn
 CMP Rn, <op2> ; Rn – op2 sets the NZVC bits
 CMN Rn, <op2> ; Rn - (-op2) sets the NZVC bits
 MUL{S} {Rd,} Rn, Rm ; Rd = Rn * Rm signed or unsigned
 MLA Rd, Rn, Rm, Ra ; Rd = Ra + Rn*Rm signed or unsigned
 MLS Rd, Rn, Rm, Ra ; Rd = Ra - Rn*Rm signed or unsigned
 UDIV {Rd,} Rn, Rm ; Rd = Rn/Rm unsigned
 SDIV {Rd,} Rn, Rm ; Rd = Rn/Rm signed
Notes Ra Rd Rm Rn Rt represent 32-bit registers
 value any 32-bit value: signed, unsigned, or address
 {S} if S is present, instruction will set condition codes
 #im12 any value from 0 to 4095
 #im16 any value from 0 to 65535
 {Rd,} if Rd is present Rd is destination, otherwise Rn
 #n any value from 0 to 31
 #off any value from -255 to 4095
 label any address within the ROM of the microcontroller
 op2 the value generated by <op2>
Examples of flexible operand <op2> creating the 32-bit number. E.g., Rd = Rn+op2
 ADD Rd, Rn, Rm ; op2 = Rm
 ADD Rd, Rn, Rm, LSL #n ; op2 = Rm<<n Rm is signed, unsigned
 ADD Rd, Rn, Rm, LSR #n ; op2 = Rm>>n Rm is unsigned
 ADD Rd, Rn, Rm, ASR #n ; op2 = Rm>>n Rm is signed
 ADD Rd, Rn, #constant ; op2 = constant, where X and Y are hexadecimal digits:

 produced by shifting an 8-bit unsigned value left by any number of bits
 in the form 0x00XY00XY
 in the form 0xXY00XY00
 in the form 0xXYXYXYXY

 DCB 1,2,3 ; allocates three 8-bit byte(s)
 DCW 1,2,3 ; allocates three 16-bit halfwords
 DCD 1,2,3 ; allocates three 32-bit words
 SPACE 4 ; reserves 4 bytes

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12

R13 (MSP)
R14 (LR)
R15 (PC)

Stack pointer
Link register

Program counter

General
purpose

registers

256k Flash
ROM

64k RAM

I/O ports

Internal I/O
PPB

0x0000.0000

0x0003.FFFF

0x2000.0000

0x2000.FFFF

0x4000.0000

0x41FF.FFFF

0xE000.0000

0xE004.0FFF

Condition code bits
N negative
Z zero
V signed overflow
C carry or
 unsigned overflow

EE319K Fall 2014 Final Exam Page 12

Erez, Valvano, Yerraballi Dec 11, 2014 2:00pm-5:00pm

Address 7 6 5 4 3 2 1 0 Name
$400F.E108 GPIOF GPIOE GPIOD GPIOC GPIOB GPIOA SYSCTL_RCGCGPIO_R
$4000.43FC DATA DATA DATA DATA DATA DATA DATA DATA GPIO_PORTA_DATA_R
$4000.4400 DIR DIR DIR DIR DIR DIR DIR DIR GPIO_PORTA_DIR_R
$4000.4420 SEL SEL SEL SEL SEL SEL SEL SEL GPIO_PORTA_AFSEL_R
$4000.451C DEN DEN DEN DEN DEN DEN DEN DEN GPIO_PORTA_DEN_R

Table 4.5. Some TM4C123/LM4F120 parallel ports. Each register is 32 bits wide. Bits 31 – 8 are zero.

Address 31 30 29-7 6 5 4 3 2 1 0 Name
0xE000E100 F … UART1 UART0 E D C B A NVIC_EN0_R

Address 31-24 23-17 16 15-3 2 1 0 Name
$E000E010 0 0 COUNT 0 CLK_SRC INTEN ENABLE NVIC_ST_CTRL_R
$E000E014 0 24-bit RELOAD value NVIC_ST_RELOAD_R
$E000E018 0 24-bit CURRENT value of SysTick counter NVIC_ST_CURRENT_R

Address 31-29 28-24 23-21 20-8 7-5 4-0 Name
$E000ED20 SYSTICK 0 PENDSV 0 DEBUG 0 NVIC_SYS_PRI3_R

Table 9.6. SysTick registers.

Table 9.6 shows the SysTick registers used to create a periodic interrupt. SysTick has a 24-bit counter that decrements at
the bus clock frequency. Let fBUS be the frequency of the bus clock, and let n be the value of the RELOAD register. The
frequency of the periodic interrupt will be fBUS/(n+1). First, we clear the ENABLE bit to turn off SysTick during
initialization. Second, we set the RELOAD register. Third, we write to the NVIC_ST_CURRENT_R value to clear the
counter. Lastly, we write the desired mode to the control register, NVIC_ST_CTRL_R. To turn on the SysTick, we set the
ENABLE bit. We must set CLK_SRC=1, because CLK_SRC=0 external clock mode is not implemented on the
LM3S/LM4F family. We set INTEN to enable interrupts. The standard name for the SysTick ISR is SysTick_Handler.

Address 31-17 16 15-10 9 8 7-0 Name
$400F.E000 ADC MAXADCSPD SYSCTL_RCGC0_R

 31-14 13-12 11-10 9-8 7-6 5-4 3-2 1-0
$4003.8020 SS3 SS2 SS1 SS0 ADC_SSPRI_R

 31-16 15-12 11-8 7-4 3-0
$4003.8014 EM3 EM2 EM1 EM0 ADC_EMUX_R

 31-4 3 2 1 0
$4003.8000 ASEN3 ASEN2 ASEN1 ASEN0 ADC_ACTSS_R
$4003.80A0 MUX0 ADC_SSMUX3_R
$4003.80A4 TS0 IE0 END0 D0 ADC_SSCTL3_R
$4003.8028 SS3 SS2 SS1 SS0 ADC_PSSI_R
$4003.8004 INR3 INR2 INR1 INR0 ADC_RIS_R
$4003.8008 MASK3 MASK2 MASK1 MASK0 ADC_IM_R
$4003.800C IN3 IN2 IN1 IN0 ADC_ISC_R

 31-12 11-0
$4003.80A8 12-bit DATA ADC_SSFIFO3

Table 10.3. The TM4C123/LM4F120ADC registers. Each register is 32 bits wide.

Set MAXADCSPD to 00 for slow speed operation. The ADC has four sequencers, but we will use only sequencer 3. We set
the ADC_SSPRI_R register to 0x3210 to make sequencer 3 the lowest priority. Because we are using just one sequencer,
we just need to make sure each sequencer has a unique priority. We set bits 15–12 (EM3) in the ADC_EMUX_R register
to specify how the ADC will be triggered. If we specify software start (EM3=0x0), then the software writes an 8 (SS3) to
the ADC_PSSI_R to initiate a conversion on sequencer 3. Bit 3 (INR3) in the ADC_RIS_R register will be set when the
conversion is complete. We can enable and disable the sequencers using the ADC_ACTSS_R register. There are 11 on the
TM4C123/LM4F120. Which channel we sample is configured by writing to the ADC_SSMUX3_R register. The
ADC_SSCTL3_R register specifies the mode of the ADC sample. Clear TS0. We set IE0 so that the INR3 bit is set on
ADC conversion, and clear it when no flags are needed. We will set IE0 for both interrupt and busy-wait synchronization.
When using sequencer 3, there is only one sample, so END0 will always be set, signifying this sample is the end of the

EE319K Fall 2014 Final Exam Page 13

Erez, Valvano, Yerraballi Dec 11, 2014 2:00pm-5:00pm

sequence. Clear the D0 bit. The ADC_RIS_R register has flags that are set when the conversion is complete, assuming the
IE0 bit is set. Do not set bits in the ADC_IM_R register because we do not want interrupts. Write one to ADC_ISC_R to
clear the corresponding bit in the ADC_RIS_R register.

UART0 pins are on PA1 (transmit) and PA0 (receive). The UART0_IBRD_R and UART0_FBRD_R registers specify the
baud rate. The baud rate divider is a 22-bit binary fixed-point value with a resolution of 2-6. The Baud16 clock is created
from the system bus clock, with a frequency of (Bus clock frequency)/divider. The baud rate is
 Baud rate = Baud16/16 = (Bus clock frequency)/(16*divider)
We set bit 4 of the UART0_LCRH_R to enable the hardware FIFOs. We set both bits 5 and 6 of the UART0_LCRH_R to
establish an 8-bit data frame. The RTRIS is set on a receiver timeout, which is when the receiver FIFO is not empty and no
incoming frames have occurred in a 32-bit time period. The arm bits are in the UART0_IM_R register. To acknowledge an
interrupt (make the trigger flag become zero), software writes a 1 to the corresponding bit in the UART0_IC_R register.
We set bit 0 of the UART0_CTL_R to enable the UART. Writing to UART0_DR_R register will output on the UART. This
data is placed in a 16-deep transmit hardware FIFO. Data are transmitted first come first serve. Received data are place in a
16-deep receive hardware FIFO. Reading from UART0_DR_R register will get one data from the receive hardware FIFO.
The status of the two FIFOs can be seen in the UART0_FR_R register (FF is FIFO full, FE is FIFO empty). The standard
name for the UART0 ISR is UART0_Handler. RXIFLSEL specifies the receive FIFO level that causes an interrupt (010
means interrupt on ≥ ½ full, or 7 to 8 characters). TXIFLSEL specifies the transmit FIFO level that causes an interrupt (010
means interrupt on ≤ ½ full, or 9 to 8 characters).
 31–12 11 10 9 8 7–0 Name
$4000.C000 OE BE PE FE DATA UART0_DR_R

 31–3 3 2 1 0
$4000.C004 OE BE PE FE UART0_RSR_R

 31–8 7 6 5 4 3 2–0
$4000.C018 TXFE RXFF TXFF RXFE BUSY UART0_FR_R

 31–16 15–0
$4000.C024 DIVINT UART0_IBRD_R

 31–6 5–0
$4000.C028 DIVFRAC UART0_FBRD_R

 31–8 7 6 – 5 4 3 2 1 0
$4000.C02C SPS WPEN FEN STP2 EPS PEN BRK UART0_LCRH_R

 31–10 9 8 7 6–3 2 1 0
$4000.C030 RXE TXE LBE SIRLP SIREN UARTEN UART0_CTL_R

 31–6 5-3 2-0
$4000.C034 RXIFLSEL TXIFLSEL UART0_IFLS_R

 31-11 10 9 8 7 6 5 4
$4000.C038 OEIM BEIM PEIM FEIM RTIM TXIM RXIM UART0_IM_R
$4000.C03C OERIS BERIS PERIS FERIS RTRIS TXRIS RXRIS UART0_RIS_R
$4000.C040 OEMIS BEMIS PEMIS FEMIS RTMIS TXMIS RXMIS UART0_MIS_R
$4000.C044 OEIC BEIC PEIC FEIC RTIC TXIC RXIC UART0_IC_R

Table 11.2. UART0 registers. Each register is 32 bits wide. Shaded bits are zero.

