
EE319K Fall 2015 Final Exam Page 1

Yerraballi Dec 10, 2015 7:00pm-10:00pm

Final Exam

Date: Dec 10, 2015

UT EID: Circle one: MT, NT, JV, RY, VJR

Printed Name:
Last, First

Your signature is your promise that you have not cheated and will not cheat on this exam, nor will you help others to cheat
on this exam. You will not reveal the contents of this exam to others who are taking the makeup thereby giving them an

undue advantage:

Signature:

Instructions:

• Closed book and closed notes. No books, no papers, no data sheets (other than the last four pages of this Exam)

• No devices other than pencil, pen, eraser (no calculators, no electronic devices), please turn cell phones off.

• Please be sure that your answers to all questions (and all supporting work that is required) are contained in the
space (boxes) provided. Anything outside the boxes will be ignored in grading.

• You have 180 minutes, so allocate your time accordingly.

• For all questions, unless otherwise stated, find the most efficient (time, resources) solution.

• Unless otherwise stated, make all I/O accesses friendly.

• Please read the entire exam before starting. See supplement pages for Device I/O registers.

Problem 1 10

Problem 2 12

Problem 3 12

Problem 4 12

Problem 5 12

Problem 6 12

Problem 7 10

Problem 8 20

Total 100

EE319K Fall 2015 Final Exam Page 2

Yerraballi Dec 10, 2015 7:00pm-10:00pm

(10) Question 1. Please place one letter/number for each box. Choose the best answer to each question.
Part i) What the consequence of running the microcontroller at a higher speed? ……………………………………….

Part ii) When is the 7406 driver needed in interfacing? …………………………

Part iii) What is the advantage of using binary vs. decimal fixed point? ………………………………

Part iv) What does the prototype void fun(uint32_t *) say? …………………………

Part v) What memory does code get placed in? …………………………………………

Part vi) Why is the bandwidth always lower than the baud-rate? …………………………………………

Part Vii) How do we make a declaration be placed in ROM? ……………………………………

Part viii) The AAPCS convention requires that we maintain the contents of these registers
 inside a subroutine? …………………………………………

Part ix) Where are local variables allocated their space? ……………………

Part x) Which two shift operations are the same? …………………………………………

A) The Cortex M has a Harvard Architecture.
B) The PC always fetches instructions from flash memory in a von Neumann architecture.
C) ASL and LSL are the same.
D) ASR and LSR are the same.
E) In RAM because code needs to be able to grow the stack.
F) Registers R0 through R3.
G) Registers R4 through R11.
H) In ROM because it does not get modified.
I) UART uses start and stop bits in addition to the 8-bits of data.
J) Local variables are stored on the stack.
K) Local variables are stored in registers.
L) The LED needs more than 3.3 V.
M) The LED needs more than 10 mA.
N) Binary takes less space than decimal.
O) It creates a negative logic interface.
P) To satisfy the Nyquist Theorem.
Q) Binary fixed point math is simpler than decimal.
R) Because the UART sends a data bit value 0 as 0V and a data bit value 1 at 3.3V.
S) The function does not accept an 8 or 16 bit unsigned integer.
T) The receiver uses it to synchronize timing with the transmitter.
U) The function expects a pointer to a 32-bit unsigned integer as input.
V) Black box testing is more detailed than white box testing.
W) It decouples the production of data from the consumption of data.
X) The switch needs more than 10mA current.
Y) If running on battery we drain the battery faster.
Z) It provides for debugging, allowing you to download code and debug your software.
1) In order to handle either positive or negative values.
2) By using a static modifier in the declaration.
3) By using a const modifier in the declaration.
4) By using a volatile modifier in the declaration.
5) To tell the compiler the subroutine should not change its value.
6) Specifies it as an address or a pointer.

EE319K Fall 2015 Final Exam Page 3

Yerraballi Dec 10, 2015 7:00pm-10:00pm

PA 1

R

+3.3

(12) Question 2

(5) Part a) What are the Condition code bits after each of the following ARM instructions are

executed sequence?

Instructions CC Bits
MOV R0, #-1 N=0; Z=0;V=0; C=0

LSRS R0,#30 N=0; Z=0;V=0; C=1

SUBS R0,#1 N=0; Z=0;V=0; C=1

CMP R0,#4 N=1; Z=0;V=0; C=0

ADD R0,#1 N=1; Z=0;V=0; C=0

CMP R0,#3

N=0; Z=1;V=0; C=0

(2) Part b) Calculate the divider and the Integer and fractional part of the Baud-rate assuming we want

a 100kbps baud-rate. The clock rate is 50MHz.

UART0_IBRD_R =

UART_FBRD_R =

(2) Part c) A repeating pulse signal that is ON for 5ms and OFF for 5ms is being sampled in an

application. What should the sampling frequency be to faithfully capture the signal?

(3) Part d) In the LED circuit interface to the right the operating point of the LED is (3V,

5mA) and the VOL=0.5V. Will the interface work? If it works then calculate the value of R.

If it does not work, explain why?

EE319K Fall 2015 Final Exam Page 4

Yerraballi Dec 10, 2015 7:00pm-10:00pm

(12) Question 3. Reverse-engineer UART parameters from the trace observed at a receiver below.

(2) Part a) What is the integer data value transferred over the UART?

(2) Part b) What is the baud rate in bits/sec?

(2) Part c) What is the maximum bandwidth in bytes per second?

(4) Part d) Assume the UART has been initialized with busy wait synchronization. Write a C function
that writes one character to the UART.

 (2) Part e) Assuming the clock is at 80MHz, what value was written to the IBRD register to achieve
the baud-rate calculated above?

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
 Time (in milli seconds)

Volt

EE319K Fall 2015 Final Exam Page 5

Yerraballi Dec 10, 2015 7:00pm-10:00pm

(12) Question 4.
a) (4 points) For a 8-bit ADC with an analog input voltage range of 0 to2.55V, what are the following:

(i) ADC precision

(ii) ADC range

(iii) ADC resolution

b) (2 points) What will the above 8-bit ADC return if the input voltage is 1.0V?

c) (6 points) Write an ADC0_In function (in C) that uses busy-wait synchronization to sample the
ADC. The function reads the ADC output, and returns the 8-bit binary number. Assume the ADC has
already been initialized to use sequencer 3 with a software trigger and channel 1. See supplement pages
for ADC registers.

 uint8_t ADC0_In(void) {

EE319K Fall 2015 Final Exam Page 6

Yerraballi Dec 10, 2015 7:00pm-10:00pm

 (12) Question 5.

The desired operating point of an LED is 1V, 10mA. Interface this LED to PB12 using positive logic.
Assume the VOL of the 7406 is 0.5V. Assume the microcontroller output voltages are VOH = 3.3V and
VOL = 0.2V. Specify values for any resistors needed. Show equations of your calculations used to
select resistor values.
Draw the circuit along with any additional components needed.

 (12) Question 7: FIFO

Write a C program that implements a FIFO data structure with exactly two elements. You have to
implement the Fifo_Init, FiFo_Get and Fifo_Put functions. The FiFo declaration and

function prototypes for the functions are given below. Feel free to add any global variables you need:
// Declarations

char FiFo[2];

// Add any other declarations here

R

P B 1

M icro con tro ller 7 4 0 6

+ 3 .3 V + 5 V

EE319K Fall 2015 Final Exam Page 7

Yerraballi Dec 10, 2015 7:00pm-10:00pm

//Prototypes of the stack functions that you can use

// Assume stacks do not overflow (infinite size)

void FiFo_Init(); // Initializes the FiFo variables

unit8_t FiFo_Put(char data); // Adds data to Fifo returns 0/1

 // for failure/success

unit8_t FiFo_Get(char *data); // Copies to *data from Fifo

 //returns 0/1 for failure/success

EE319K Fall 2015 Final Exam Page 8

Yerraballi Dec 10, 2015 7:00pm-10:00pm

(10) Question 8: Convert the C code into assembly, assuming the AAPCS parameter passing
convention and local variables. Remember, local variables use the stack, not registers.

uint16_t pow(unit8_t base, uint8_t exp){

 uint16_t prod;

 uint16_t n;

 prod = 1;

 for(n=exp; n>0; n--) {

 prod = prod * base;

 }

 return prod;

}

EE319K Fall 2015 Final Exam Page 9

Yerraballi Dec 10, 2015 7:00pm-10:00pm

(20) Question 9: (Program) A stepper motor can be controlled by writing a 4-bit number to it. The
repeating sequence 5,6,10,9,5,6,10,9… moves it clockwise (CW) and the repeating sequence
5,9,10,6,5,9,10,6… moves it counter clockwise (CCW). The delay between writes determines the speed
of the motor. Assume a constant speed of the motor with time between writes of 50ms. Design a Moore
FSM with four states that takes a single input PA0 (0: CW; 1:CCW) and four outputs (PD0-3).

a) (10 points) Give the FSM state graph for the stepper motor.

b) (10 points) Complete the code below by adding state #defines and FSM array entries and the FSM
loop.

struct State{

uint8_t out; // output produced in this state

uint32_t wait; // delay in 10µs units

uint8_t next[4]; // list of next states

};

typedef struct State SType;
SType FSM[4] = {

}

SType curState = ; //set the initial state here
int main() {

 // All Port Initialization done for you – Ccomplete the FSM loop below

 …

 while(1){

 }

}

EE319K Fall 2015 Final Exam Page 10

Yerraballi Dec 10, 2015 7:00pm-10:00pm

 Memory access instructions
 LDR Rd, [Rn] ; load 32-bit number at [Rn] to Rd

 LDR Rd, [Rn,#off] ; load 32-bit number at [Rn+off] to Rd

 LDR Rd, =value ; set Rd equal to any 32-bit value (PC rel)

 LDRH Rd, [Rn] ; load unsigned 16-bit at [Rn] to Rd

 LDRH Rd, [Rn,#off] ; load unsigned 16-bit at [Rn+off] to Rd

 LDRSH Rd, [Rn] ; load signed 16-bit at [Rn] to Rd

 LDRSH Rd, [Rn,#off] ; load signed 16-bit at [Rn+off] to Rd

 LDRB Rd, [Rn] ; load unsigned 8-bit at [Rn] to Rd

 LDRB Rd, [Rn,#off] ; load unsigned 8-bit at [Rn+off] to Rd

 LDRSB Rd, [Rn] ; load signed 8-bit at [Rn] to Rd

 LDRSB Rd, [Rn,#off] ; load signed 8-bit at [Rn+off] to Rd

 STR Rt, [Rn] ; store 32-bit Rt to [Rn]

 STR Rt, [Rn,#off] ; store 32-bit Rt to [Rn+off]

 STRH Rt, [Rn] ; store least sig. 16-bit Rt to [Rn]

 STRH Rt, [Rn,#off] ; store least sig. 16-bit Rt to [Rn+off]

 STRB Rt, [Rn] ; store least sig. 8-bit Rt to [Rn]

 STRB Rt, [Rn,#off] ; store least sig. 8-bit Rt to [Rn+off]

 PUSH {Rt} ; push 32-bit Rt onto stack

 POP {Rd} ; pop 32-bit number from stack into Rd

 ADR Rd, label ; set Rd equal to the address at label

 MOV{S} Rd, <op2> ; set Rd equal to op2

 MOV Rd, #im16 ; set Rd equal to im16, im16 is 0 to 65535

 MVN{S} Rd, <op2> ; set Rd equal to -op2

Branch instructions
 B label ; branch to label Always

 BEQ label ; branch if Z == 1 Equal

 BNE label ; branch if Z == 0 Not equal

 BCS label ; branch if C == 1 Higher or same, unsigned ≥

 BHS label ; branch if C == 1 Higher or same, unsigned ≥

 BCC label ; branch if C == 0 Lower, unsigned <

 BLO label ; branch if C == 0 Lower, unsigned <

 BMI label ; branch if N == 1 Negative

 BPL label ; branch if N == 0 Positive or zero

 BVS label ; branch if V == 1 Overflow

 BVC label ; branch if V == 0 No overflow

 BHI label ; branch if C==1 and Z==0 Higher, unsigned >

 BLS label ; branch if C==0 or Z==1 Lower or same, unsigned ≤

 BGE label ; branch if N == V Greater than or equal, signed ≥

 BLT label ; branch if N != V Less than, signed <

 BGT label ; branch if Z==0 and N==V Greater than, signed >

 BLE label ; branch if Z==1 or N!=V Less than or equal, signed ≤

 BX Rm ; branch indirect to location specified by Rm

 BL label ; branch to subroutine at label

 BLX Rm ; branch to subroutine indirect specified by Rm

Interrupt instructions
 CPSIE I ; enable interrupts (I=0)

 CPSID I ; disable interrupts (I=1)

Logical instructions
 AND{S} {Rd,} Rn, <op2> ; Rd=Rn&op2 (op2 is 32 bits)

 ORR{S} {Rd,} Rn, <op2> ; Rd=Rn|op2 (op2 is 32 bits)

 EOR{S} {Rd,} Rn, <op2> ; Rd=Rn^op2 (op2 is 32 bits)

 BIC{S} {Rd,} Rn, <op2> ; Rd=Rn&(~op2) (op2 is 32 bits)

 ORN{S} {Rd,} Rn, <op2> ; Rd=Rn|(~op2) (op2 is 32 bits)

 LSR{S} Rd, Rm, Rs ; logical shift right Rd=Rm>>Rs (unsigned)

 LSR{S} Rd, Rm, #n ; logical shift right Rd=Rm>>n (unsigned)

 ASR{S} Rd, Rm, Rs ; arithmetic shift right Rd=Rm>>Rs (signed)

EE319K Fall 2015 Final Exam Page 11

Yerraballi Dec 10, 2015 7:00pm-10:00pm

 ASR{S} Rd, Rm, #n ; arithmetic shift right Rd=Rm>>n (signed)

 LSL{S} Rd, Rm, Rs ; shift left Rd=Rm<<Rs (signed, unsigned)

 LSL{S} Rd, Rm, #n ; shift left Rd=Rm<<n (signed, unsigned)

Arithmetic instructions
 ADD{S} {Rd,} Rn, <op2> ; Rd = Rn + op2

 ADD{S} {Rd,} Rn, #im12 ; Rd = Rn + im12, im12 is 0 to 4095

 SUB{S} {Rd,} Rn, <op2> ; Rd = Rn - op2

 SUB{S} {Rd,} Rn, #im12 ; Rd = Rn - im12, im12 is 0 to 4095

 RSB{S} {Rd,} Rn, <op2> ; Rd = op2 - Rn

 RSB{S} {Rd,} Rn, #im12 ; Rd = im12 – Rn

 CMP Rn, <op2> ; Rn – op2 sets the NZVC bits

 CMN Rn, <op2> ; Rn - (-op2) sets the NZVC bits

 MUL{S} {Rd,} Rn, Rm ; Rd = Rn * Rm signed or unsigned

 MLA Rd, Rn, Rm, Ra ; Rd = Ra + Rn*Rm signed or unsigned

 MLS Rd, Rn, Rm, Ra ; Rd = Ra - Rn*Rm signed or unsigned

 UDIV {Rd,} Rn, Rm ; Rd = Rn/Rm unsigned

 SDIV {Rd,} Rn, Rm ; Rd = Rn/Rm signed

Notes Ra Rd Rm Rn Rt represent 32-bit registers
 value any 32-bit value: signed, unsigned, or address

 {S} if S is present, instruction will set condition codes

 #im12 any value from 0 to 4095

 #im16 any value from 0 to 65535

 {Rd,} if Rd is present Rd is destination, otherwise Rn

 #n any value from 0 to 31

 #off any value from -255 to 4095

 label any address within the ROM of the microcontroller

 op2 the value generated by <op2>

Examples of flexible operand <op2> creating the 32-bit number. E.g., Rd = Rn+op2
 ADD Rd, Rn, Rm ; op2 = Rm

 ADD Rd, Rn, Rm, LSL #n ; op2 = Rm<<n Rm is signed, unsigned

 ADD Rd, Rn, Rm, LSR #n ; op2 = Rm>>n Rm is unsigned

 ADD Rd, Rn, Rm, ASR #n ; op2 = Rm>>n Rm is signed

 ADD Rd, Rn, #constant ; op2 = constant, where X and Y are hexadecimal digits:

• produced by shifting an 8-bit unsigned value left by any number of bits

• in the form 0x00XY00XY

• in the form 0xXY00XY00

• in the form 0xXYXYXYXY

 DCB 1,2,3 ; allocates three 8-bit byte(s)

 DCW 1,2,3 ; allocates three 16-bit halfwords

 DCD 1,2,3 ; allocates three 32-bit words

 SPACE 4 ; reserves 4 bytes

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12

R13 (MSP)
R14 (LR)
R15 (PC)

Stack pointer
Link register

Program counter

General
purpose
registers

Condition code bits

N negative
Z zero
V signed overflow
C carry or

 unsigned overflow

256k Flash
ROM

32k RAM

I/O ports

Internal I/O
PPB

0x0000.0000

0x0003.FFFF

0x2000.0000

0x2000.7FFF

0x4000.0000

0x400F.FFFF

0xE000.0000

0xE004.1FFF

EE319K Fall 2015 Final Exam Page 12

Yerraballi Dec 10, 2015 7:00pm-10:00pm

Address 7 6 5 4 3 2 1 0 Name

$400F.E608 GPIOF GPIOE GPIOD GPIOC GPIOB GPIOA SYSCTL_RCGCGPIO_R

$4000.53FC DATA DATA DATA DATA DATA DATA DATA DATA GPIO_PORTB_DATA_R

$4000.5400 DIR DIR DIR DIR DIR DIR DIR DIR GPIO_PORTB_DIR_R

$4000.5420 SEL SEL SEL SEL SEL SEL SEL SEL GPIO_PORTB_AFSEL_R

$4000.551C DEN DEN DEN DEN DEN DEN DEN DEN GPIO_PORTB_DEN_R

Table 4.5. TM4C123 Port B parallel ports. Each register is 32 bits wide. Bits 31 – 8 are zero.

Address 31 30 29-7 6 5 4 3 2 1 0 Name

0xE000E100 F … UART1 UART0 E D C B A NVIC_EN0_R

Address 31-24 23-17 16 15-3 2 1 0 Name

$E000E010 0 0 COUNT 0 CLK_SRC INTEN ENABLE NVIC_ST_CTRL_R

$E000E014 0 24-bit RELOAD value NVIC_ST_RELOAD_R

$E000E018 0 24-bit CURRENT value of SysTick counter NVIC_ST_CURRENT_R

Address 31-29 28-24 23-21 20-8 7-5 4-0 Name

$E000ED20 SYSTICK 0 PENDSV 0 DEBUG 0 NVIC_SYS_PRI3_R

Table 9.6. SysTick registers.

Table 9.6 shows the SysTick registers used to create a periodic interrupt. SysTick has a 24-bit counter that decrements at
the bus clock frequency. Let fBUS be the frequency of the bus clock, and let n be the value of the RELOAD register. The
frequency of the periodic interrupt will be fBUS/(n+1). First, we clear the ENABLE bit to turn off SysTick during
initialization. Second, we set the RELOAD register. Third, we write to the NVIC_ST_CURRENT_R value to clear the

counter. Lastly, we write the desired mode to the control register, NVIC_ST_CTRL_R. To turn on the SysTick, we set the

ENABLE bit. We must set CLK_SRC=1, because CLK_SRC=0 external clock mode is not implemented. We set INTEN
to enable interrupts. The standard name for the SysTick ISR is SysTick_Handler.

Address 31-2 1 0 Name

$400F.E638 ADC1 ADC0 SYSCTL_RCGCADC_R

 31-14 13-12 11-10 9-8 7-6 5-4 3-2 1-0

$4003.8020 SS3 SS2 SS1 SS0 ADC0_SSPRI_R

 31-16 15-12 11-8 7-4 3-0

$4003.8014 EM3 EM2 EM1 EM0 ADC0_EMUX_R

 31-4 3 2 1 0

$4003.8000 ASEN3 ASEN2 ASEN1 ASEN0 ADC0_ACTSS_R

$4003.80A0 MUX0 ADC0_SSMUX3_R

$4003.80A4 TS0 IE0 END0 D0 ADC0_SSCTL3_R

$4003.8028 SS3 SS2 SS1 SS0 ADC0_PSSI_R

$4003.8004 INR3 INR2 INR1 INR0 ADC0_RIS_R

$4003.8008 MASK3 MASK2 MASK1 MASK0 ADC0_IM_R

$4003.8FC4 Speed ADC0_PC_R

 31-12 11-0

$4003.80A8 DATA ADC0_SSFIFO3_R

Table 10.3. The TM4C ADC registers. Each register is 32 bits wide. LM3S has 10-bit data.

Set Speed to 00 for slow speed operation. The ADC has four sequencers, but we will use only sequencer 3. We set the
ADC_SSPRI_R register to 0x3210 to make sequencer 3 the lowest priority. Because we are using just one sequencer, we
just need to make sure each sequencer has a unique priority. We set bits 15–12 (EM3) in the ADC_EMUX_R register to
specify how the ADC will be triggered. If we specify software start (EM3=0x0), then the software writes an 8 (SS3) to the
ADC_PSSI_R to initiate a conversion on sequencer 3. Bit 3 (INR3) in the ADC_RIS_R register will be set when the
conversion is complete. We can enable and disable the sequencers using the ADC_ACTSS_R register. Which channel we
sample is configured by writing to the ADC_SSMUX3_R register. The ADC_SSCTL3_R register specifies the mode of
the ADC sample. Clear TS0. We set IE0 so that the INR3 bit is set on ADC conversion, and clear it when no flags are
needed. We will set IE0 for both interrupt and busy-wait synchronization. When using sequencer 3, there is only one

EE319K Fall 2015 Final Exam Page 13

Yerraballi Dec 10, 2015 7:00pm-10:00pm

sample, so END0 will always be set, signifying this sample is the end of the sequence. Clear the D0 bit. The ADC_RIS_R
register has flags that are set when the conversion is complete, assuming the IE0 bit is set. Do not set bits in the
ADC_IM_R register because we do not want interrupts. Write one to ADC_ISC_R to clear the corresponding bit in the
ADC_RIS_R register.

UART0 pins are on PA1 (transmit) and PA0 (receive). The UART0_IBRD_R and UART0_FBRD_R registers specify the

baud rate. The baud rate divider is a 22-bit binary fixed-point value with a resolution of 2-6. The Baud16 clock is created
from the system bus clock, with a frequency of (Bus clock frequency)/divider. The baud rate is
 Baud rate = Baud16/16 = (Bus clock frequency)/(16*divider)
We set bit 4 of the UART0_LCRH_R to enable the hardware FIFOs. We set both bits 5 and 6 of the UART0_LCRH_R to

establish an 8-bit data frame. The RTRIS is set on a receiver timeout, which is when the receiver FIFO is not empty and no
incoming frames have occurred in a 32-bit time period. The arm bits are in the UART0_IM_R register. To acknowledge an

interrupt (make the trigger flag become zero), software writes a 1 to the corresponding bit in the UART0_IC_R register.

We set bit 0 of the UART0_CTL_R to enable the UART. Writing to UART0_DR_R register will output on the UART. This

data is placed in a 16-deep transmit hardware FIFO. Data are transmitted first come first serve. Received data are place in a
16-deep receive hardware FIFO. Reading from UART0_DR_R register will get one data from the receive hardware FIFO.

The status of the two FIFOs can be seen in the UART0_FR_R register (FF is FIFO full, FE is FIFO empty). The standard

name for the UART0 ISR is UART0_Handler. RXIFLSEL specifies the receive FIFO level that causes an interrupt (010
means interrupt on ≥ ½ full, or 7 to 8 characters). TXIFLSEL specifies the transmit FIFO level that causes an interrupt (010
means interrupt on ≤ ½ full, or 9 to 8 characters).
 31–12 11 10 9 8 7–0 Name

$4000.C000 OE BE PE FE DATA UART0_DR_R

 31–3 3 2 1 0

$4000.C004 OE BE PE FE UART0_RSR_R

 31–8 7 6 5 4 3 2–0

$4000.C018 TXFE RXFF TXFF RXFE BUSY UART0_FR_R

 31–16 15–0

$4000.C024 DIVINT UART0_IBRD_R

 31–6 5–0

$4000.C028 DIVFRAC UART0_FBRD_R

 31–8 7 6 – 5 4 3 2 1 0

$4000.C02C SPS WPEN FEN STP2 EPS PEN BRK UART0_LCRH_R

 31–10 9 8 7 6–3 2 1 0

$4000.C030 RXE TXE LBE SIRLP SIREN UARTEN UART0_CTL_R

 31–6 5-3 2-0

$4000.C034 RXIFLSEL TXIFLSEL UART0_IFLS_R

 31-11 10 9 8 7 6 5 4

$4000.C038 OEIM BEIM PEIM FEIM RTIM TXIM RXIM UART0_IM_R

$4000.C03C OERIS BERIS PERIS FERIS RTRIS TXRIS RXRIS UART0_RIS_R

$4000.C040 OEMIS BEMIS PEMIS FEMIS RTMIS TXMIS RXMIS UART0_MIS_R

$4000.C044 OEIC BEIC PEIC FEIC RTIC TXIC RXIC UART0_IC_R

Table 11.2. UART0 registers. Each register is 32 bits wide. Shaded bits are zero.

