
EE319K Fall 2017 Final Exam Solution Page 1

Valvano December 15, 2017 7:00pm-10:00pm

Final Exam
Date: December 15, 2017

 Circle one: MT, NT, JV, RY, VJR

Printed Name:

Last, First

Your signature is your promise that you have not cheated and will not cheat on this exam, nor will you help others to cheat
on this exam. You will not reveal the contents of this exam to others who are taking the makeup thereby giving them an
undue advantage:

Signature:

Instructions:
• Write your UT EID on all pages (at the top) and circle your instructor’s name at the bottom.
• Closed book and closed notes. No books, no papers, no data sheets (other than the last four pages of this Exam)
• No devices other than pencil, pen, eraser (no calculators, no electronic devices), please turn cell phones off.
• Please be sure that your answers to all questions (and all supporting work that is required) are contained in the

space (boxes) provided. Anything outside the boxes will be ignored in grading.
• You have 180 minutes, so allocate your time accordingly.
• For all questions, unless otherwise stated, find the most efficient (time, resources) solution.
• Unless otherwise stated, make all I/O accesses friendly.
• Please read the entire exam before starting. See supplement pages for Device I/O registers.

Problem 1 10

Problem 2 10

Problem 3 10

Problem 4 15

Problem 5 15

Problem 6 15

Problem 7 15

Problem 8 10

Total 100

EE319K Fall 2017 Final Exam Solution Page 2

Valvano December 15, 2017 7:00pm-10:00pm

(10) Question 1. Place one letter in the box for each question that represents the best answer.
A) To force the compiler to not optimize the access
B) To place the variable in nonvolatile ROM
C) To force the variable to be placed in a register
D) To place the variable in volatile RAM

E) To make the variable private to the file
F) To make the variable private to the function
G) Because of Arm Architecture Procedure Call Standard
H) To force the variable to be placed on the stack

(1) Part a) Why do we add static to an otherwise local variable? ……………………………………………

(1) Part b) Why do we add const to an otherwise global variable? ………………………………………………

(1) Part c) Why do we add static to an otherwise global variable? …………………………………………………

(1) Part d) Why do we use a local variable? ………………………………………………………………………

I) To execute instructions faster
J) Because of the Central Limit Theorem
K) To reduce the latency of other interrupts
L) To save power, making the battery last longer
M) To prevent Aliasing
N) Because of the Nyquist Theorem
O) To decouple the execution of the ISR with the main program
P) To reduce noise and improve signal to noise ratio
Q) To synchronize one computer to another
R) To improve bandwidth

(1) Part e) Why do we place a FIFO queue between an ISR that reads data from an input port…………………..
and the main program that processes the data?

(1) Part f) Why does a Harvard architecture have two (or more) buses? ………………………………………….

(1) Part g) Why should the time to execute an ISR be as short as possible? …………………………………………

(1) Part h) Why would you ever wish to use the PLL and slow down the bus clock ……………………………………
so the software runs slower?

(1) Part i) Why would we use hardware averaging on the ADC? ……………………………………………………

(1) Part j) Why does the UART protocol use start and stop bits? ……………………………………………………..

D

B

E

F

O

I

K

L

P

Q

EE319K Fall 2017 Final Exam Solution Page 3

Valvano December 15, 2017 7:00pm-10:00pm

(10) Question 2: For parts a) to f), please place one numerical value in the box for each question.
(2) Part a) You are recording a bioelectric signal with frequency components from 1 to 10 Hz.
The ADC precision is 8 bits. What is the slowest sampling rate possible? …………………………………………

(1) Part b) What is the 16-bit hexadecimal representation of decimal 1000? ………………………………………

(1) Part c) UART0_IBRD_R equals 2 and UART0_FBRD_R equals 32. The bus cycle is
16 MHz? The UART is using its hardware FIFO. What is the baud rate? ……………………………………

(1) Part d) A fixed-point number system has a resolution of 0.25 cm. What integer do we use …………………………
to represent -3.75 cm?

(1) Part e) These three resistors could be replaced by one resistor. Give the resistance value of this one
equivalent resistor? …………………………………………………………………………………………

(1) Part f) How much current (I) flows when the switch is closed, include units ………………………………………

Reverse-engineer UART parameters from the trace observed at a receiver below.

(2) Part g) What is the data value transferred over the UART in hexadecimal? …………………………

(2) Part h) What is the baud rate in bits/sec? ………………………………………………………

10kΩ

10kΩ
10kΩ

Vout

+3.3V

1kΩ

Switch
I

1ms

20 Hz

0x03E8

400,000 bps

-15

15kΩ

3.3 mA

101110102 = 0xBA =186

Bit time = 2ms, BR=500 bps

EE319K Fall 2017 Final Exam Solution Page 4

Valvano December 15, 2017 7:00pm-10:00pm

(10) Question 3: Interrupt
(6) Part a) Complete the assembly subroutine that initializes SysTick to interrupt every 1 sec. The bus clock is 16 MHz;
that each bus cycle is 62.5 ns. Set the interrupt priority to 3. ARM and enable interrupts. The goal is to toggle PB1 every
3600 seconds. You may assume PB1 is already initialized to be a GPIO output. Fill in the blanks as needed
 THUMB
 AREA DATA, ALIGN=4

 AREA |.text|, CODE, READONLY, ALIGN=2
Init LDR R1,=NVIC_ST_RELOAD_R

 STR R0,[R1] ; establish interrupt period
 LDR R1,=NVIC_SYS_PRI3_R
 LDR R2,[R1]

 STR R2,[R1] ; set SysTick to priority 3
 LDR R1,=NVIC_ST_CTRL_R

 STR R2,[R1] ; arm and enable SysTick

 BX LR
(4) Part b) Write the SysTick ISR in assembly that toggles PB1 every 3600 seconds.

 LDR R1,=Count
 MOV R2,#3600
 STR R2,[R1] ; count=3600
 CPSIE I ; enable interrupts

SysTick_Handler
 LDR R1,=Count
 LDR R2,[R1]
 SUBS R2,R2,#1
 BNE skip
 LDR R0,=GPIO_PORTB_DATA_R
 LDR R2,[R0]
 EOR R2,R2,#0x02 ; toggle PB1
 STR R2,[R0]
 MOV R2,#3600
Skip STR R2,[R1] ; set count
 BX LR

Count SPACE 4

 LDR R0,=15999999 ; 16,000,000 clock/sec

 AND R2,R2,#0x00FFFFFF ; priority is
 ORR R2,R2,#0x60000000 ;in bits 31-29

 MOV R2,#7

EE319K Fall 2017 Final Exam Solution Page 5

Valvano December 15, 2017 7:00pm-10:00pm

(15) Question 4: FSM
(5) Part a) Consider a Moore finite state machine with 2 inputs (SW1, SW0) and one output (LOCK). Initially the LOCK
is high (1). Any time both inputs are simultaneously high, the machine reverts to the initial state with the LOCK high. Call
this initial state Init. The sequence just SW0 high (input=1), both switches low (input=0), and then just SW1 high (input=2)
will cause the LOCK to go low (0). Assume the FSM runs at a fixed rate of 100 Hz periodically performing the usual
output, wait 10ms, input, next operations. Use pointer addressing to access the next state.

(10) Part b) Show the C code, including the struct that defines your finite state graph in ROM. Define a state pointer Pt.

The execution engine in the main program is given and cannot be changed.
int main(void){uint32_t input;
 Port_Init(); // Port B and Port E initializations are given (not to write)
 SysTick_Init(); // SysTick initialization is given
 Pt = Init; // initial state (not to write)
 while(1){
 GPIO_PORTE_DATA_R = Pt->Out; // set LOCK to 0 or 1
 SysTick_Wait10ms(1); // fixed delay
 input = GPIO_PORTB_DATA_R&0x03; // read switches: 0,1,2,3
 Pt = Pt->Next[input]; }}}

Init

Init
1

0,2,3

First
1

2,3

1

Idle
1

1,3

0
1

Unlock
0

1,3

2
0 0,2

struct state {
 uint32_t Out;
 const struct state *Next[4];
};
typedef const struct State state_t;
state_t *Pt;
#define Init &FSM[0]
#define First &FSM[1]
#define Idle &FSM[2]
#define Unlock &FSM[3]
state_t FSM[4]={
 {1, { Init, First, Init, Init}}, // Init state
 {1, { Idle, First, Init, Init}}, // First state
 {1, { Idle, Init, Unlock, Init}}, // Idle state
 {0, {Unlock, Init, Unlock, Init}} // Unlock state
};

EE319K Fall 2017 Final Exam Solution Page 6

Valvano December 15, 2017 7:00pm-10:00pm

(15) Question 5: Interfacing
(5) Part a) Interface an LED to the microcontroller PA7 output. If PA7 is high the LED should be on. Assume the desired
operating point is 3.5V 20mA. Assume the output low voltage of the TM4C123 is 0.2V. Assume the output high voltage of
the TM4C123 is 3.1V. Assume the output low voltage of the 7406 is 0.5V. Show the circuit, including resistor values.

(5) Part b) Design a circuit with two switches and one LED. Assume the switches are ideal, and the LED operating point is
1.3V 2 mA. There is no microcontroller in this solution. The LED should be on if both switches are pressed; otherwise the
LED should be off. Show the circuit, including the switches, the LED, and resistors as needed (include resistance values).

(5) Part c) Design a 5-bit DAC using multiple resistors. Show the circuit, including resistor values.

PB7

PB6

PB5

PB4

PB3

PB2

PB1

PB0

Microcontroller

DACout

R = (5V-3.5-0.5V)/20 mA
= 1V/20mA = 50 ohms

R = (3.3V-1.3V)/2mA = 1000 ohms

PA7

+5 V

7406

R

+3.3

1kΩ

2kΩ

4kΩ

8kΩ

16kΩ

EE319K Fall 2017 Final Exam Solution Page 7

Valvano December 15, 2017 7:00pm-10:00pm

(15) Question 6: FIFO queue You are asked to implement a 16-bit FIFO that can handle up to 19 elements. You cannot add
additional global variables. You cannot change the function prototypes. You must use pointers to access the FIFO
uint16_t FIFO[20];
uint16_t *Gpt,*Ppt;
(3) Part a) Write the routine that initializes the FIFO.
void Fifo_Init(void){ // Initialize FIFO
 Gpt = FIFO;
 Ppt = FIFO;

}
(6) Part b) Write the routine that puts data into the FIFO. If the FIFO is full, this routine should wait until there is room in
FIFO for the data. You can add local variables, but no statics or globals.
void Fifo_Put(uint16_t data){ // enter data into FIFO
 uint16_t *pt = Ppt;
 pt++;
 if(pt == &FIFO[20]){
 pt = FIFO; // wrap
 }
 while(pt == Gpt){}; // full, so wait
 *Ppt = data;
 Ppt = pt;

}
(6) Part c) Write the routine that gets data from the FIFO. If the FIFO is empty, this routine should wait until there is data
in FIFO to return. You can add local variables, but no statics or globals.
uint16_t Fifo_Get(void){ // if empty spin until there is data
 uint16_t data;
 while(Ppt == Gpt){}; // empty, so wait
 data = *Gpt; // remove data
 Gpt ++;
 if(Gpt == &FIFO[20]){
 Gpt = FIFO; // wrap
 }
 return data;

}

EE319K Fall 2017 Final Exam Solution Page 8

Valvano December 15, 2017 7:00pm-10:00pm

(15) Question 7: Local variables
(3) Part a) What does the function func do?
Calculates the exclusive or of all half-words in an array.

(7) Part b) Implement the operation performed by this assembly function in C. The assembly is written in AAPCS. Add C
comments.

uint16_t Func(uint16_t *pt, uint8_t size){
 uint16_t result=0; // EOR of all data
 do{
 result ^= *pt; // access array
 pt++; // pointer to next
 size--; // number of elements
 }
 while(size);
 return result;
}

(5) Part c) Assume at the beginning of the execution of the function Func, the stack is empty, SP equals 0x20000400,
R0 equals 0x20001000, R1 equals 4, R2 equals 2, and R11 equals 11. Show the contents of the stack at the point in the
execution of Func signified by the ***. Also specify the value of R11 using a pointer into the stack.

0x200003E4
0x200003E8
0x200003EC
0x200003F0 0
0x200003F4 11
0x200003F8 0x20001000
0x200003FC 4
0x20000400
0x20000404

;R0 points to an array
;R1 is the size of array
Func PUSH {R0,R1}
 MOV R2,#0
 PUSH {R2,R11}
 MOV R11,SP
;***this point for part c)***
loop LDR R0,[R11,#8]
 LDRH R1,[R0]
 ADD R0,#2
 STR R0,[R11,#8]
 LDRH R0,[R11,#0]
 EOR R0,R0,R1
 STRH R0,[R11,#0]
 LDRB R0,[R11,#12]
 SUBS R0,#1
 STRB R0,[R11,#12]
 BNE loop
 LDRH R0,[R11,#0]
 ADD SP,#4
 POP {R11}
 ADD SP,#8
 BX LR

R11

EE319K Fall 2017 Final Exam Solution Page 9

Valvano December 15, 2017 7:00pm-10:00pm

(10) Question 8: UART interrupt
Assume you have the SSI interface to the LCD you used in Lab 6. In C, this LCD output data function is
void writedata(uint8_t c) {
 while((SSI0_SR_R&0x00000002)==0){}; // wait until transmit FIFO not full
 GPIO_PORTA_DATA_R |= 0x40; // DC is data
 SSI0_DR_R = c; // data out
}
The overall goal of the communication is to transfer data from the UART0 receiver (PA0) to the LCD. Assume the UART0
is initialized for receiver interrupts. In particular, when there is data in the receiver FIFO, RXRIS is set and a UART
interrupt is triggered.
(6) Part a) Show the UART ISR that reads data from the receiver, acknowledges the interrupt and sends the data to the
LCD using the SSI port.

(2) Part b) The hardware automatically pushes R0, R1, R2, R3, R12, LR, PC, and PSW on the stack when the interrupt is
triggered. These registers are automatically popped at the end of the ISR by the BX LR instruction. Is the ISR code allowed
to use the other registers R4-R11? Choose the best answer, placing A-F in the box.

A) No, since thee registers are not saved, using these registers would cause errors in the main program.
B) Yes, R4-R11 are reserved for interrupts, so they can be freely used.
C) Yes, according to AAPCS any function can use R4-R11 if it first saves the registers and then restores them afterward.
D) No, R4-R11 are reserved for the main program, so they cannot be used in an ISR.
E) No, according to AAPCS the stack must be aligned to 8 bytes.
F) Yes, R4-R11 are also automatically saved by the compiler for every function.

(1) Part c) Does the hardware automatically disable interrupts during the execution of the ISR? Choose the best answer,
placing A-F in the box.

A) Yes, the execution of interrupts is more important than the execution of the main program.
B) Yes, disabling interrupts prevents the execution of one ISR from being interrupt by itself
C) Yes, according to AAPCS, the hardware automatically disables interrupts during the execution of the ISRs.
D) No, but according to AAPCS, the software automatically disables interrupts during the execution of the ISRs.
E) No, interrupts are not disabled to allow an interrupt with a lower priority (higher value in priority register) to interrupt.
F) No, interrupts are not disabled to allow an interrupt with a higher priority (lower value in priority register) to interrupt.

void UART0_Handler(void){
uint8_t data;
 data = UART0_DR_R; // read from UART receiver
 UART0_IC_R = 0x10; // acknowledge
 writedata(data);
}

C

F

EE319K Fall 2017 Final Exam Solution Page 10

Valvano December 15, 2017 7:00pm-10:00pm

Memory access instructions
 LDR Rd, [Rn] ; load 32-bit number at [Rn] to Rd
 LDR Rd, [Rn,#off] ; load 32-bit number at [Rn+off] to Rd
 LDR Rd, =value ; set Rd equal to any 32-bit value (PC rel)
 LDRH Rd, [Rn] ; load unsigned 16-bit at [Rn] to Rd
 LDRH Rd, [Rn,#off] ; load unsigned 16-bit at [Rn+off] to Rd
 LDRSH Rd, [Rn] ; load signed 16-bit at [Rn] to Rd
 LDRSH Rd, [Rn,#off] ; load signed 16-bit at [Rn+off] to Rd
 LDRB Rd, [Rn] ; load unsigned 8-bit at [Rn] to Rd
 LDRB Rd, [Rn,#off] ; load unsigned 8-bit at [Rn+off] to Rd
 LDRSB Rd, [Rn] ; load signed 8-bit at [Rn] to Rd
 LDRSB Rd, [Rn,#off] ; load signed 8-bit at [Rn+off] to Rd
 STR Rt, [Rn] ; store 32-bit Rt to [Rn]
 STR Rt, [Rn,#off] ; store 32-bit Rt to [Rn+off]
 STRH Rt, [Rn] ; store least sig. 16-bit Rt to [Rn]
 STRH Rt, [Rn,#off] ; store least sig. 16-bit Rt to [Rn+off]
 STRB Rt, [Rn] ; store least sig. 8-bit Rt to [Rn]
 STRB Rt, [Rn,#off] ; store least sig. 8-bit Rt to [Rn+off]
 PUSH {Rt} ; push 32-bit Rt onto stack
 POP {Rd} ; pop 32-bit number from stack into Rd
 ADR Rd, label ; set Rd equal to the address at label
 MOV{S} Rd, <op2> ; set Rd equal to op2
 MOV Rd, #im16 ; set Rd equal to im16, im16 is 0 to 65535
 MVN{S} Rd, <op2> ; set Rd equal to -op2
Branch instructions
 B label ; branch to label Always
 BEQ label ; branch if Z == 1 Equal
 BNE label ; branch if Z == 0 Not equal
 BCS label ; branch if C == 1 Higher or same, unsigned ≥
 BHS label ; branch if C == 1 Higher or same, unsigned ≥
 BCC label ; branch if C == 0 Lower, unsigned <
 BLO label ; branch if C == 0 Lower, unsigned <
 BMI label ; branch if N == 1 Negative
 BPL label ; branch if N == 0 Positive or zero
 BVS label ; branch if V == 1 Overflow
 BVC label ; branch if V == 0 No overflow
 BHI label ; branch if C==1 and Z==0 Higher, unsigned >
 BLS label ; branch if C==0 or Z==1 Lower or same, unsigned ≤
 BGE label ; branch if N == V Greater than or equal, signed ≥
 BLT label ; branch if N != V Less than, signed <
 BGT label ; branch if Z==0 and N==V Greater than, signed >
 BLE label ; branch if Z==1 or N!=V Less than or equal, signed ≤
 BX Rm ; branch indirect to location specified by Rm
 BL label ; branch to subroutine at label
 BLX Rm ; branch to subroutine indirect specified by Rm
Interrupt instructions
 CPSIE I ; enable interrupts (I=0)
 CPSID I ; disable interrupts (I=1)
Logical instructions
 AND{S} {Rd,} Rn, <op2> ; Rd=Rn&op2 (op2 is 32 bits)
 ORR{S} {Rd,} Rn, <op2> ; Rd=Rn|op2 (op2 is 32 bits)
 EOR{S} {Rd,} Rn, <op2> ; Rd=Rn^op2 (op2 is 32 bits)
 BIC{S} {Rd,} Rn, <op2> ; Rd=Rn&(~op2) (op2 is 32 bits)
 ORN{S} {Rd,} Rn, <op2> ; Rd=Rn|(~op2) (op2 is 32 bits)
 LSR{S} Rd, Rm, Rs ; logical shift right Rd=Rm>>Rs (unsigned)
 LSR{S} Rd, Rm, #n ; logical shift right Rd=Rm>>n (unsigned)
 ASR{S} Rd, Rm, Rs ; arithmetic shift right Rd=Rm>>Rs (signed)

EE319K Fall 2017 Final Exam Solution Page 11

Valvano December 15, 2017 7:00pm-10:00pm

 ASR{S} Rd, Rm, #n ; arithmetic shift right Rd=Rm>>n (signed)
 LSL{S} Rd, Rm, Rs ; shift left Rd=Rm<<Rs (signed, unsigned)
 LSL{S} Rd, Rm, #n ; shift left Rd=Rm<<n (signed, unsigned)
Arithmetic instructions
 ADD{S} {Rd,} Rn, <op2> ; Rd = Rn + op2
 ADD{S} {Rd,} Rn, #im12 ; Rd = Rn + im12, im12 is 0 to 4095
 SUB{S} {Rd,} Rn, <op2> ; Rd = Rn - op2
 SUB{S} {Rd,} Rn, #im12 ; Rd = Rn - im12, im12 is 0 to 4095
 RSB{S} {Rd,} Rn, <op2> ; Rd = op2 - Rn
 RSB{S} {Rd,} Rn, #im12 ; Rd = im12 – Rn
 CMP Rn, <op2> ; Rn – op2 sets the NZVC bits
 CMN Rn, <op2> ; Rn - (-op2) sets the NZVC bits
 MUL{S} {Rd,} Rn, Rm ; Rd = Rn * Rm signed or unsigned
 MLA Rd, Rn, Rm, Ra ; Rd = Ra + Rn*Rm signed or unsigned
 MLS Rd, Rn, Rm, Ra ; Rd = Ra - Rn*Rm signed or unsigned
 UDIV {Rd,} Rn, Rm ; Rd = Rn/Rm unsigned
 SDIV {Rd,} Rn, Rm ; Rd = Rn/Rm signed
Notes Ra Rd Rm Rn Rt represent 32-bit registers
 value any 32-bit value: signed, unsigned, or address
 {S} if S is present, instruction will set condition codes
 #im12 any value from 0 to 4095
 #im16 any value from 0 to 65535
 {Rd,} if Rd is present Rd is destination, otherwise Rn
 #n any value from 0 to 31
 #off any value from -255 to 4095
 label any address within the ROM of the microcontroller
 op2 the value generated by <op2>
Examples of flexible operand <op2> creating the 32-bit number. E.g., Rd = Rn+op2
 ADD Rd, Rn, Rm ; op2 = Rm
 ADD Rd, Rn, Rm, LSL #n ; op2 = Rm<<n Rm is signed, unsigned
 ADD Rd, Rn, Rm, LSR #n ; op2 = Rm>>n Rm is unsigned
 ADD Rd, Rn, Rm, ASR #n ; op2 = Rm>>n Rm is signed
 ADD Rd, Rn, #constant ; op2 = constant, where X and Y are hexadecimal digits:

• produced by shifting an 8-bit unsigned value left by any number of bits
• in the form 0x00XY00XY
• in the form 0xXY00XY00
• in the form 0xXYXYXYXY

 DCB 1,2,3 ; allocates three 8-bit byte(s)
 DCW 1,2,3 ; allocates three 16-bit halfwords
 DCD 1,2,3 ; allocates three 32-bit words
 SPACE 4 ; reserves 4 bytes

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12

R13 (MSP)
R14 (LR)
R15 (PC)

Stack pointer
Link register

Program counter

General
purpose
registers

Condition code bits
N negative
Z zero
V signed overflow
C carry or
 unsigned overflow

256k Flash
ROM

32k RAM

I/O ports

Internal I/O
PPB

0x0000.0000

0x0003.FFFF

0x2000.0000

0x2000.7FFF

0x4000.0000

0x400F.FFFF

0xE000.0000

0xE004.1FFF

EE319K Fall 2017 Final Exam Solution Page 12

Valvano December 15, 2017 7:00pm-10:00pm

Address 7 6 5 4 3 2 1 0 Name
$400F.E608 GPIOF GPIOE GPIOD GPIOC GPIOB GPIOA SYSCTL_RCGCGPIO_R
$4000.53FC DATA DATA DATA DATA DATA DATA DATA DATA GPIO_PORTB_DATA_R
$4000.5400 DIR DIR DIR DIR DIR DIR DIR DIR GPIO_PORTB_DIR_R
$4000.5420 SEL SEL SEL SEL SEL SEL SEL SEL GPIO_PORTB_AFSEL_R
$4000.551C DEN DEN DEN DEN DEN DEN DEN DEN GPIO_PORTB_DEN_R

Table 4.5. TM4C123 Port B parallel ports. Each register is 32 bits wide. Bits 31 – 8 are zero.

Address 31 30 29-7 6 5 4 3 2 1 0 Name
0xE000E100 F … UART1 UART0 E D C B A NVIC_EN0_R

Address 31-24 23-17 16 15-3 2 1 0 Name
$E000E010 0 0 COUNT 0 CLK_SRC INTEN ENABLE NVIC_ST_CTRL_R
$E000E014 0 24-bit RELOAD value NVIC_ST_RELOAD_R
$E000E018 0 24-bit CURRENT value of SysTick counter NVIC_ST_CURRENT_R

Address 31-29 28-24 23-21 20-8 7-5 4-0 Name
$E000ED20 SYSTICK 0 PENDSV 0 DEBUG 0 NVIC_SYS_PRI3_R

Table 9.6. SysTick registers.
Table 9.6 shows the SysTick registers used to create a periodic interrupt. SysTick has a 24-bit counter that decrements at
the bus clock frequency. Let fBUS be the frequency of the bus clock, and let n be the value of the RELOAD register. The
frequency of the periodic interrupt will be fBUS/(n+1). First, we clear the ENABLE bit to turn off SysTick during
initialization. Second, we set the RELOAD register. Third, we write to the NVIC_ST_CURRENT_R value to clear the
counter. Lastly, we write the desired mode to the control register, NVIC_ST_CTRL_R. To turn on the SysTick, we set the
ENABLE bit. We must set CLK_SRC=1, because CLK_SRC=0 external clock mode is not implemented. We set INTEN
to arm SysTick interrupts. The standard name for the SysTick ISR is SysTick_Handler.

Address 31-2 1 0 Name
$400F.E638 ADC1 ADC0 SYSCTL_RCGCADC_R

 31-14 13-12 11-10 9-8 7-6 5-4 3-2 1-0
$4003.8020 SS3 SS2 SS1 SS0 ADC0_SSPRI_R

 31-16 15-12 11-8 7-4 3-0
$4003.8014 EM3 EM2 EM1 EM0 ADC0_EMUX_R

 31-4 3 2 1 0
$4003.8000 ASEN3 ASEN2 ASEN1 ASEN0 ADC0_ACTSS_R
$4003.80A0 MUX0 ADC0_SSMUX3_R
$4003.80A4 TS0 IE0 END0 D0 ADC0_SSCTL3_R
$4003.8028 SS3 SS2 SS1 SS0 ADC0_PSSI_R
$4003.8004 INR3 INR2 INR1 INR0 ADC0_RIS_R
$4003.8008 MASK3 MASK2 MASK1 MASK0 ADC0_IM_R
$4003.8FC4 Speed ADC0_PC_R

 31-12 11-0
$4003.80A8 DATA ADC0_SSFIFO3_R

Table 10.3. The TM4C ADC registers. Each register is 32 bits wide. LM3S has 10-bit data.
Set Speed to 0001 for slow speed operation. The ADC has four sequencers, but we will use only sequencer 3. We set the
ADC_SSPRI_R register to 0x3210 to make sequencer 3 the lowest priority. Because we are using just one sequencer, we
just need to make sure each sequencer has a unique priority. We set bits 15–12 (EM3) in the ADC_EMUX_R register to
specify how the ADC will be triggered. If we specify software start (EM3=0x0), then the software writes an 8 (SS3) to the
ADC_PSSI_R to initiate a conversion on sequencer 3. Bit 3 (INR3) in the ADC_RIS_R register will be set when the
conversion is complete. We can enable and disable the sequencers using the ADC_ACTSS_R register. Which channel we
sample is configured by writing to the ADC_SSMUX3_R register. The ADC_SSCTL3_R register specifies the mode of
the ADC sample. Clear TS0. We set IE0 so that the INR3 bit is set on ADC conversion, and clear it when no flags are
needed. We will set IE0 for both interrupt and busy-wait synchronization. When using sequencer 3, there is only one
sample, so END0 will always be set, signifying this sample is the end of the sequence. Clear the D0 bit. The ADC_RIS_R

EE319K Fall 2017 Final Exam Solution Page 13

Valvano December 15, 2017 7:00pm-10:00pm

register has flags that are set when the conversion is complete, assuming the IE0 bit is set. Do not set bits in the
ADC_IM_R register because we do not want interrupts. Write one to ADC_ISC_R to clear the corresponding bit in the
ADC_RIS_R register.

UART0 pins are on PA1 (transmit) and PA0 (receive). The UART0_IBRD_R and UART0_FBRD_R registers specify the
baud rate. The baud rate divider is a 22-bit binary fixed-point value with a resolution of 2-6. The Baud16 clock is created
from the system bus clock, with a frequency of (Bus clock frequency)/divider. The baud rate is
 Baud rate = Baud16/16 = (Bus clock frequency)/(16*divider)
We set bit 4 of the UART0_LCRH_R to enable the hardware FIFOs. We set both bits 5 and 6 of the UART0_LCRH_R to
establish an 8-bit data frame. The RTRIS is set on a receiver timeout, which is when the receiver FIFO is not empty and no
incoming frames have occurred in a 32-bit time period. The arm bits are in the UART0_IM_R register. To acknowledge an
interrupt (make the trigger flag become zero), software writes a 1 to the corresponding bit in the UART0_IC_R register.
We set bit 0 of the UART0_CTL_R to enable the UART. Writing to UART0_DR_R register will output on the UART. This
data is placed in a 16-deep transmit hardware FIFO. Data are transmitted first come first serve. Received data are place in a
16-deep receive hardware FIFO. Reading from UART0_DR_R register will get one data from the receive hardware FIFO.
The status of the two FIFOs can be seen in the UART0_FR_R register (FF is FIFO full, FE is FIFO empty). The standard
name for the UART0 ISR is UART0_Handler. RXIFLSEL specifies the receive FIFO level that causes an interrupt (010
means interrupt on ≥ ½ full, or 7 to 8 characters). TXIFLSEL specifies the transmit FIFO level that causes an interrupt (010
means interrupt on ≤ ½ full, or 9 to 8 characters).

 31–12 11 10 9 8 7–0 Name
$4000.C000 OE BE PE FE DATA UART0_DR_R

 31–3 3 2 1 0
$4000.C004 OE BE PE FE UART0_RSR_R

 31–8 7 6 5 4 3 2–0
$4000.C018 TXFE RXFF TXFF RXFE BUSY UART0_FR_R

 31–16 15–0
$4000.C024 DIVINT UART0_IBRD_R

 31–6 5–0
$4000.C028 DIVFRAC UART0_FBRD_R

 31–8 7 6 – 5 4 3 2 1 0
$4000.C02C SPS WPEN FEN STP2 EPS PEN BRK UART0_LCRH_R

 31–10 9 8 7 6–3 2 1 0
$4000.C030 RXE TXE LBE SIRLP SIREN UARTEN UART0_CTL_R

 31–6 5-3 2-0
$4000.C034 RXIFLSEL TXIFLSEL UART0_IFLS_R

 31-11 10 9 8 7 6 5 4
$4000.C038 OEIM BEIM PEIM FEIM RTIM TXIM RXIM UART0_IM_R
$4000.C03C OERIS BERIS PERIS FERIS RTRIS TXRIS RXRIS UART0_RIS_R
$4000.C040 OEMIS BEMIS PEMIS FEMIS RTMIS TXMIS RXMIS UART0_MIS_R
$4000.C044 OEIC BEIC PEIC FEIC RTIC TXIC RXIC UART0_IC_R

Table 11.2. UART0 registers. Each register is 32 bits wide. Shaded bits are zero.

