EE319K Fall 2018 Final Exam UT EID: Page 1

Final Exam
Date: December 19, 2018

Printed Name:

Last, First

Your signature is your promise that you have not cheated and will not cheat on this exam, nor will you help others to cheat
on this exam. You will not reveal the contents of this exam to others who are taking the makeup thereby giving them an

undue advantage:

Signature:

Instructions:

Write your UT EID on all pages (at the top) and circle your instructor’s name at the bottom.

Closed book and closed notes. No books, no papers, no data sheets (other than the last four pages of this Exam)

No devices other than pencil, pen, eraser (no calculators, no electronic devices), please turn cell phones off.

Please be sure that your answers to all questions (and all supporting work that is required) are contained in the
space (boxes) provided. Anything outside the boxes will be ignored in grading.

You have 180 minutes, so allocate your time accordingly.

For all questions, unless otherwise stated, find the most efficient (time, resources) solution.

Unless otherwise stated, make all I/O accesses friendly.

Please read the entire exam before starting. See supplement pages for Device I/0 registers.

Problem 1 10
Problem 2 5

Problem 3 10
Problem 4 5

Problem 5 15
Problem 6 10
Problem 7 5

Problem 8 10
Problem 9 10
Problem 10 20
Total 100

Valvano December 19, 2018 2:00pm-5:00pm

EE319K Fall 2018 Final Exam UT EID:

(10) Problem 1. Give a one to three word answer for each question.

(1) Part a) What data structure do you use to stream data from an ISR to the main program

given the situation where data arrives into the ISR bursts but is processed one byte at a time in the main?

(1) Part b) With UART transmission we send one start bit, 8 data bits and one stop bit. What term

do we use to defIne theSe 10 DItS? ittt e e e e e

(1) Part ¢) What qualifier do we add to an otherwise local variable (scope within a function) so that the

variable is defined in permanently in RAM? ... e

(1) Part d) What qualifier do we add to an otherwise global variable so that the scope is restricted to
software located within that same file?

(1) Part e) What graphical structure describes the modularity of a system, such that circles and rectangles

are modules and arrows represent information as it passes from one module to another?

(1) Part f) What term is used to describe the smallest difference in input voltage that an ADC can

reliably diStingUisSh? ... s

(1) Part g) What are the units of electrical power? Give as a one-word answer, and not as a

combINAtioN OF OTNET UNILS. ...ttt et et e e et e e et

(1) Part h) In a real-time system, it is important to respond to critical events. What is the term used to
describe the delay between the time a critical event occurs and the time the event is processed? For example,

the time between touching a switch and the time the software recognizes the switch is touched.

(1) Part i) What is the name of the number system where the value 4.125 is represented

with the integer 264 (4.125 = 264%0.015625)7 ...

(1) Part j) What is the debugging term used in Lab 4 to store important information into arrays? This

Debugging technique can be used to replace printing (printf) information while the program is running.

Page 2

(5) Problem 2. Consider the sampling rate chosen for the ADC in Lab 8. Give the relationship for the slowest possible
sampling rate (f;, in Hz), given these parameters: ADC range (V, in volts), number of ADC bits (», in bits, e.g., 12 bits) and

rate at which one moves the slide pot (7, in oscillations per sec).

Valvano December 19, 2018 2:00pm-5:00pm

EE319K Fall 2018 Final Exam UT EID: Page 3

(10) Problem 3: Design a 6-bit DAC connected to Port E using PES to PEQ. Show the circuit and label all resistors,
capacitors and interface chips needed. Make PEQ the least significant bit and make PES the most significant bit.

PE5

PE4 jmm

PE3

Out
PE2 |

PE] |—

PEQ fre—

(5) Problem 4. Interface an LED to Port B bit 0 using positive logic. The desired operating point of the LED is 3V and 100
mA. Assume the ULN2003B has an output low voltage (V¢ is the same thing as Vor) that depends on the collector current
according to this graph at 25 C, middle curve. Show the circuit and label all resistors, capacitors and interface chips needed.

16
— Ta =25°C
1.5 | === T, =-40°C

Ta = 105°C
14

1.3 B /
1.2 1

1.1 /

1

k
A\

_— 4/
// ™N Use the middle curve
L

0.9

0.8

0.7
100 150 200 250 300 350 400 450 500
le - Collector Current - mA

Vce(sat) - Collector-Emitter Saturation Voltage - V

PB0

Valvano December 19, 2018 2:00pm-5:00pm

EE319K Fall 2018 Final Exam UT EID: Page 4

(15) Problem 5. Consider a game that has 50 boxes. There is an array specifying the current status of each box. Each box is
4 by 4 pixels, and has an (x,y) coordinate, a velocity, a direction, and a life parameter. You may assume the box array has
been populated with data before your function is called. The figure on the right shows one example box at (x,y)=(50,20)
typedef enum {dead,alive} status_t;
struct abox {

intlé_t x; // x coordinate, in pixels (50’17)\ , (53,17)
intlé_t y; // y coordinate, in pixels
intl6_t velocity; // velocity, in pixels/frame
intl6é_t angle; // direction, in degrees
status_t life;}; // dead or alive (50,20) ~
typedef abox box_t; [~ (53,20)

Each box has 16 pixels in the game world, occupying the square space from (x,y) to (x+3, y-3). Implement a C function that
searches to see if two alive boxes are overlapping (the location of any of the 16 pixels of one box is equal to any of the 16
pixels of another box). If two alive boxes occupy overlapping space, set the life parameter of both boxes to dead. Do not
worry about 3 or more boxes overlapping the same space.

void Search(box t box[]){ // 50 elements

Valvano December 19, 2018 2:00pm-5:00pm

EE319K Fall 2018 Final Exam UT EID: Page 5

(10) Problem 6. Draw the state transition graph for a Moore FSM used to control 6 tail lights on a car. There are two inputs
and 6 outputs. If the input is 0, the output is 0. If the input is 1 (turn right), the output cycles through the values 4 2 1 every
¥ second. If the input is 2 (turn left), the output cycles through the values 8,16,32 every 2 second. If the input is 3 (brake)
the output is 63. Each state has a name, an output, a dwell time, and multiple arrows to next states. In a STG you can assign
the symbol X for an arrow to mean “for all possible input values”.

(5) Problem 7. Assume the UARTO has been initialized for busy-wait synchronization. Design a C function with these four steps
1) Wait for new serial port input
2) Read the new 8-bit ASCII character data
3) Echo the data by transmitting the same 8-bit data just received
4) Return by value the one character received.
Show what you would place in the .h file, including comments

Show what you would place in the .c file

Valvano December 19,2018 2:00pm-5:00pm

EE319K Fall 2018 Final Exam UT EID: Page 6

(10) Question 8. The subroutine mySub uses a call by value parameter passed on the stack. There are no return parameters.
Call by value means the data itself is pushed on the stack. This is not AAPCS compliant. A typical calling sequence is
AREA | .text|, CODE, READONLY, ALIGN=2
stuff DCD 123 ;32-bit constant
start LDR RO,=stuff
LDR RO, [RO]

PUSH {RO} ;the value of the input parameter is pushed
MOV RO, #0 ;no cheating, parameter not in RO, on stack
BL mySub

ADD SP,SP,#4 ;discard parameter

The subroutine allocates one 32-bit local variable, i, and uses SP stack pointer addressing to access the local variable and
the parameter. The binding for these two are

in EQU ;binding for 32-bit value that is the input parameter

i EQU ;binding for 32-bit local variable

mySub PUSH {R9,R10,R11,LR}

;allocate i

e start of body-------------------
LDR R1l1,[SP,#in] ;Reg Rll is the input parameter value
STR R11, [SP,#i] ;save parameter into local i

;deallocate i

POP {R9,R10,R11,PC}
In the boxes provided, show the binding for in, the binding for the local variable i, the assembly instruction(s) to allocate
i, and the assembly instruction(s) to deallocate i.

(10) Question 9: Write C code to maintain the elapsed time in minutes. I.e., increment the global variable Time once a
minute. Include both the initialization (arm and enable interrupts), and the ISR (maintain Time). Do not worry about

priority. Assume the bus clock is 16 MHz. You may add additional variables of whatever type you wish. Note that
2"24=16,777,216.

uint32_t Time; // in minutes

void SysTick Init(void) {

}
void SysTick Handler (void) {

Valvano December 19, 2018 2:00pm-5:00pm

EE319K Fall 2018 Final Exam UT EID: Page 7

(20) Question 10: You are asked to implement a simple postfix calculator as a subroutine in assembly language. The input
(call by reference in RO) to your function is a null-terminated character string with the following 12 valid characters

0,1,2,3,4,5,6,7,8,9,+,and*. You may assume all strings are valid and calculate exactly one 32-bit output value. For example
"s" returns 5

"79+" returns 7+9 = 16
"58*1+" returns (5*8)+1 =41
"92%T4+4%524%" returns (((9*2)+7)*4)*(5+2)) = ((18+7)*4)*7) = ((25*4)*7) = (100*7) =700

The basic idea is to fetch a character from the string:
e ifitis a+ or * operator, pop two numbers from the stack, unsigned 32-bit operate, and push the result
o ifitis a digit, push the value (0 to 9) of the digit as a 32-bit value onto the stack
e if it is the null termination, pop one 32-bit value from the stack and return that value in RO

;input: RO points to the string to process
;output: RO contains the 32-bit wvalue
Calc

Valvano December 19, 2018 2:00pm-5:00pm

EE319K Fall 2018

Memory access instructions

Extra sheets (do not turn in)

LDR Rd, [Rn] ; load 32-bit number at [Rn] to Rd
LDR Rd, [Rn,#o0ff] ; load 32-bit number at [Rn+off] to Rd
LDR Rd, =value ; set Rd equal to any 32-bit value (PC rel)
LDRH Rd, [Rn] ; load unsigned 16-bit at [Rn] to Rd
LDRH Rd, [Rn,#0ff] ; load unsigned 16-bit at [Rn+off] to Rd
LDRSH Rd, [Rn] ; load signed 16-bit at [Rn] to Rd
LDRSH Rd, [Rn,#o0ff] ; load signed 16-bit at [Rn+off] to Rd
LDRB Rd, [Rn] ; load unsigned 8-bit at [Rn] to Rd
LDRB Rd, [Rn,#0ff] ; load unsigned 8-bit at [Rn+off] to Rd
LDRSB Rd, [Rn] ; load signed 8-bit at [Rn] to Rd
LDRSB Rd, [Rn,#o0ff] ; load signed 8-bit at [Rn+off] to Rd
STR Rt, [Rn] ; store 32-bit Rt to [Rn]
STR Rt, [Rn,#0off] ; store 32-bit Rt to [Rn+off]
STRH Rt, [Rn] ; store least sig. 16-bit Rt to [Rn]
STRH Rt, [Rn,#o0ff] ; store least sig. 16-bit Rt to [Rn+off]
STRB Rt, [Rn] ; store least sig. 8-bit Rt to [Rn]
STRB Rt, [Rn,#o0ff] ; store least sig. 8-bit Rt to [Rn+off]
PUSH {Rt} ; push 32-bit Rt onto stack
POP {Rd} ; pop 32-bit number from stack into Rd
ADR Rd, label ; set Rd equal to the address at label
MOV{S} Rd, <op2> ; set Rd equal to op2
MOV Rd, #imlé ; set Rd equal to iml6, iml6é is O to 65535
MVN{S} Rd, <op2> ; set Rd equal to -op2
Branch instructions
B label ; branch to label Always
BEQ label ; branch if Z2 == 1 Equal
BNE label ; branch if Z == 0 Not equal
BCS 1label ; branch if C == 1 Higher or same, unsigned 2
BHS 1label ; branch if C == 1 Higher or same, unsigned 2
BCC 1label ; branch if C == 0 Lower, unsigned <
BLO 1label ; branch if C == 0 Lower, unsigned <
BMI label ; branch if N == 1 Negative
BPL label ; branch if N == 0 Positive or zero
BVS 1label ; branch if Vv == 1 Overflow
BVC 1label ; branch if V == 0 No overflow
BHI label ; branch if C==1 and Z==0 Higher, unsigned >
BLS label ; branch if C==0 or Z==1 Lower or same, unsigned <
BGE label ; branch if =V Greater than or equal, signed 2
BLT label ; branch if N =V Less than, signed <
BGT label ; branch if Z==0 and N==V Greater than, signed >
BLE label ; branch if Z==1 or N!=V Less than or equal, signed <
BX Rm ; branch indirect to location specified by Rm
BL label ; branch to subroutine at label
BLX Rm ; branch to subroutine indirect specified by Rm
Interrupt instructions
CPSIE I ; enable interrupts (I=0)
CPSID I ; disable interrupts (I=1)
Logical instructions
AND{S} {Rd,} Rn, <op2> ; Rd=Rné&op2 (op2 is 32 bits)
ORR{S} {Rd,} Rn, <op2> ; Rd=Rn|op2 (op2 is 32 bits)
EOR{S} {Rd,} Rn, <op2> ; Rd=Rn”“op2 (op2 is 32 bits)
BIC{S} {Rd,} Rn, <op2> ; Rd=Rné&(~op2) (op2 is 32 bits)
ORN{S} {Rd,} Rn, <op2> ; Rd=Rn| (~op2) (op2 is 32 bits)
LSR{S} Rd, Rm, Rs ; logical shift right Rd=Rm>>Rs (unsigned)
LSR{S} Rd, Rm, #n ; logical shift right RdA=Rm>>n (unsigned)
ASR{S} Rd, Rm, Rs ; arithmetic shift right RA=Rm>>Rs (signed)
Valvano December 19, 2018 2:00pm-5:00pm

Page 8

EE319K Fall 2018 Extra sheets (do not turn in)
ASR{S} Rd, Rm, #n ; arithmetic shift right RA=Rm>>n (signed)
LSL{S} Rd, Rm, Rs ; shift left Rd=Rm<<Rs (signed, unsigned)
LSL{S} Rd, Rm, #n ; shift left Rd=Rm<<n (signed, unsigned)
Arithmetic instructions
ADD{S} {Rd,} Rn, <op2> ; Rd = Rn + op2
ADD{S} {Rd,} Rn, #iml2 ; Rd = Rn + iml2, iml2 is 0 to 4095
SUB{S} {Rd,} Rn, <op2> ; Rd = Rn - op2
SUB{S} {Rd,} Rn, #iml2 ; Rd = Rn - iml2, iml2 is 0 to 4095
RSB{S} {Rd,} Rn, <op2> ; Rd = op2 - Rn
RSB{S} {Rd,} Rn, #iml2 ; Rd = iml2 - Rn
CMP Rn, <op2> ; Rn — op2 sets the NZVC bits
CMN Rn, <op2> ; Rn - (-op2) sets the NZVC bits
MUL{S} {Rd,} Rn, Rm ; Rd = Rn * Rm signed or unsigned
MLA Rd, Rn, Rm, Ra ; Rd = Ra + Rn*Rm signed or unsigned
MLS Rd, Rn, Rm, Ra ; Rd = Ra - Rn*Rm signed or unsigned
UDIV {Rd,} Rn, Rm ; Rd = Rn/Rm unsigned
SDIV {Rd,} Rn, Rm ; Rd = Rn/Rm signed
Notes Ra Rd Rm Rn Rt represent 32-bit registers
value any 32-bit value: signed, unsigned, or address
{S} if S is present, instruction will set condition codes
#iml2 any value from 0 to 4095
#iml6 any value from 0 to 65535
{Rd,} if Rd is present Rd is destination, otherwise Rn
#n any value from 0 to 31
#off any value from -255 to 4095
label any address within the ROM of the microcontroller
op2 the value generated by <op2>
Examples of flexible operand <op2> creating the 32-bit number. E.g., Rd = Rn+op2
ADD Rd, Rn, Rm ; op2 = Rm
ADD Rd, Rn, Rm, LSL #n ; op2 = Rm<<n Rm is signed, unsigned
ADD Rd, Rn, Rm, LSR #n ; op2 = Rm>>n Rm is unsigned
ADD Rd, Rn, Rm, ASR #n ; op2 = Rm>>n Rm is signed
ADD Rd, Rn, #constant ; op2 = constant, where X and Y are hexadecimal digits:
e produced by shifting an 8-bit unsigned value left by any number of bits
e in the form 0x00XYO00XY
e in the form 0xXY00XYO00 256k Flash
e in the form 0xXYXYXYXY ROM
RO
R1
R> 32k RAM
R3 Condition code bits
R4 N negative
General RS 7 7ero
rféggt%ies gg V signed overflow I/0 ports
RS C carry or
R9 unsigned overflow
R10
R11 Internal I/O
RI2 PPB
Stack pointer [R13 (MSP)
Link register | R14 (LR)
Program counter| R15 (PC)
DCB 1,2,3 ; allocates three 8-bit byte(s)
DCW 1,2,3 ; allocates three 16-bit halfwords
DCD 1,2,3 ; allocates three 32-bit words
SPACE 4 ; reserves 4 bytes

Valvano December 19, 2018 2:00pm-5:00pm

Page 9

0x0000.0000
0x0003.FFFF
0x2000.0000
0x2000.7FFF
0x4000.0000
0x400F.FFFF
0xE000.0000
0xE004.1FFF

EE319K Fall 2018 Extra sheets (do not turn in) Page 10

Address 7 6 5 4 3 2 1 0 Name

$400F.E608 GPIOF GPIOE GPIOD GPIOC GPIOB GPIOA SYSCTL RCGCGPIO R
$4000.53FC DATA DATA DATA DATA DATA DATA DATA DATA GPIO PORTB DATA R
$4000.5400 DIR DIR DIR DIR DIR DIR DIR DIR GPIO PORTB DIR R
$4000.5420 SEL SEL SEL SEL SEL SEL SEL SEL GPIO PORTB AFSEL R
$4000.551C DEN DEN DEN DEN DEN DEN DEN DEN GPIO PORTB DEN R

Table 4.5. TM4C123 Port B parallel ports. Each register is 32 bits wide. Bits 31 — 8 are zero.

Address 31 30 | 29-7 6 5 4 3 2 1 0 | Name
0xEO000E100 F ... | UARTI1 | UARTO | E D C B A | NVIC ENO R
Address 31-24 | 23-17 16 15-3 2 1 0 Name
$E000E010 0 0 COUNT 0 CLK SRC | INTEN | ENABLE | NVIC ST CTRL R
$E000E014 0 24-bit RELOAD value NVIC ST RELOAD R
$E000E018 0 24-bit CURRENT value of SysTick counter NVIC ST CURRENT R
Address 31-29 28-24 23-21 20-8 7-5 4-0 Name
$E000ED20 | SYSTICK 0 PENDSV 0 DEBUG 0 NVIC SYS PRI3 R

Table 9.6. SysTick registers. Note: 2*24=16,777,216

Table 9.6 shows the SysTick registers used to create a periodic interrupt. SysTick has a 24-bit counter that decrements at
the bus clock frequency. Let fzus be the frequency of the bus clock, and let n be the value of the RELOAD register. The
frequency of the periodic interrupt will be fpus/(n+1). First, we clear the ENABLE bit to turn off SysTick during
initialization. Second, we set the RELOAD register. Third, we write to the NVIC_ST CURRENT R value to clear the
counter. Lastly, we write the desired mode to the control register, NVIC_ST CTRL_R. To turn on the SysTick, we set the
ENABLE bit. We must set CLK_SRC=1, because CLK_SRC=0 external clock mode is not implemented. We set INTEN
to arm SysTick interrupts. The standard name for the SysTick ISR is SysTick_Handler.

Address 31-2 1 0 Name
| $400F.E638 | | ADCI | ADCO | SYSCTL RCGCADC R |
31-14 13-12 11-10 9-8 7-6 5-4 3-2 1-0
| $4003.8020 | [ss3] [ss2] [ssi] | sso [ADCO SSPRI R |
31-16 15-12 11-8 7-4 3-0
| $4003.8014 | | EM3 [EM2 | EMI | EMO [ADCO EMUX R |
31-4 3 2 1 0
$4003.8000 ASEN3 | ASEN2 [ASENI | ASENO | ADCO ACTSS R
$4003.80A0 MUX0 ADC0 SSMUX3 R
$4003.80A4 TSO 1E0 ENDO DO ADCO SSCTL3 R
$4003.8028 SS3 SS2 Ssi SS0 ADCO PSSI R
$4003.8004 INR3 INR2 INR1 INRO | ADCO RIS R
$4003.8008 MASK3 | MASK2 | MASKI | MASKO | ADCO IM R
$4003.8FC4 Speed ADCO PC R
31-12 11-0
| $4003.80A8 | | DATA | ADCO SSFIFO3 R |

Table 10.3. The TM4C ADC registers. Each register is 32 bits wide.

Set Speed to 0001 for slow speed operation. The ADC has four sequencers, but we will use only sequencer 3. We set the
ADC_SSPRI_R register to 0x3210 to make sequencer 3 the lowest priority. Because we are using just one sequencer, we
just need to make sure each sequencer has a unique priority. We set bits 15-12 (EM3) in the ADC_EMUX_R register to
specify how the ADC will be triggered. If we specify software start (EM3=0x0), then the software writes an 8 (SS3) to the
ADC_PSSI_R to initiate a conversion on sequencer 3. Bit 3 (INR3) in the ADC_RIS_R register will be set when the
conversion is complete. We can enable and disable the sequencers using the ADC_ACTSS_R register. Which channel we
sample is configured by writing to the ADC_SSMUX3_R register. The ADC_SSCTL3_R register specifies the mode of
the ADC sample. Clear TS0. We set IE0 so that the INR3 bit is set on ADC conversion, and clear it when no flags are
needed. We will set IEQ for both interrupt and busy-wait synchronization. When using sequencer 3, there is only one
sample, so ENDO will always be set, signifying this sample is the end of the sequence. Clear the D0 bit. The ADC_RIS_R

Valvano December 19, 2018 2:00pm-5:00pm

EE319K Fall 2018 Extra sheets (do not turn in) Page 11

register has flags that are set when the conversion is complete, assuming the IE0Q bit is set. Do not set bits in the
ADC_IM_R register because we do not want interrupts. Write one to ADC_ISC_R to clear the corresponding bit in the
ADC_RIS_R register.

UARTO pins are on PA1 (transmit) and PAO (receive). The UARTO_IBRD_ R and UARTO_FBRD_R registers specify the
baud rate. The baud rate divider is a 22-bit binary fixed-point value with a resolution of 2-%. The Baud16 clock is created
from the system bus clock, with a frequency of (Bus clock frequency)/divider. The baud rate is

Baud rate = Baud16/16 = (Bus clock frequency)/(16*divider)
We set bit 4 of the UARTO_LCRH_R to enable the hardware FIFOs. We set both bits 5 and 6 of the UARTO_LCRH_R to
establish an 8-bit data frame. The RTRIS is set on a receiver timeout, which is when the receiver FIFO is not empty and no
incoming frames have occurred in a 32-bit time period. The arm bits are in the UARTO_IM R register. To acknowledge an
interrupt (make the trigger flag become zero), software writes a 1 to the corresponding bt in the UARTO_IC_Rregister.
We set bit 0 of the UARTO_CTL_R to enable the UART. Writing to UARTO_DR_R register will output on the UART. This
data is placed in a 16- deep transmit hardware FIFO. Data are transmitted first come first serve. Received data are place in a
16-deep receive hardware FIFO. Reading from UARTO_DR R register will get one data from the receive hardware FIFO.
The status of the two FIFOs can be seen in the UARTO0_FR_R register (FF is FIFO full, FE is FIFO empty). The standard
name for the UARTO ISR is UARTO_Handler. RXIFLSEL specifies the receive FIFO level that causes an interrupt (010
means interrupt on > % full, or 7 to 8 characters). TXIFLSEL specifies the transmit FIFO level that causes an interrupt (010
means interrupt on < ' full, or 9 to 8 characters).

31-12 11 10 9 8 7-0 Name
$4000.C000 | | oE | BE | PE | FE | DATA | UARTO DR R
31-3 3 2 1 0
$4000.C004 | | oE | BE | PE | FE | UARTO RSR R
31-8 7 6 5 4 3 2-0
$4000.C018 | | TXFE | RXFF | TXFF | RXFE | BUSY | | UARTO FR R
31-16 15-0
$4000.C024 | | DIVINT | UARTO IBRD R
31-6 5-0
$4000.C028 | | DIVFRAC | UARTO FBRD R
31-8 7 6-5 4 3 2 1 0
$4000.C02C | | sps | WPEN | FEN | STP2 [EPS | PEN | BRK | UARTO LCRH R
31-10 9 8 7 6-3 2 1 0
$4000.C030 | | RXE | TXE | LBE | | SIRLP | SIREN | UARTEN | UARTO CTL R
31-6 53 2-0
$4000.C034 | | RXIFLSEL | TXIFLSEL | UARTO IFLS R
31-11 10 9 8 7 6 5 4
$4000.C038 OEIM | BEIM | PEM FEIM RTIM [TXIM [RXIM UARTO IM R
$4000.C03C OERIS | BERIS | PERIS | FERIS | RTRIS | TXRIS | RXRIS UARTO RIS R
$4000.C040 OEMIS | BEMIS | PEMIS | FEMIS | RTMIS | TXMIS | RXMIS UARTO MIS R
$4000.C044 OEIC | BEIC PEIC FEIC RTIC | TXIC RXIC UARTO_IC_R

Table 11.2. UARTO registers. Each register is 32 bits wide. Shaded bits are zero.

Valvano December 19, 2018 2:00pm-5:00pm

