
EE319K Fall 2018 Final Exam Solution UT EID:_____________________ Page 1

Valvano December 19, 2018 2:00pm-5:00pm

Final Exam Solutions

Date: December 19, 2018

 Circle one: MT, NT, JV, RY, VJR

Printed Name:

Last, First

Your signature is your promise that you have not cheated and will not cheat on this exam, nor will you help others to cheat
on this exam. You will not reveal the contents of this exam to others who are taking the makeup thereby giving them an
undue advantage:

Signature:

Instructions:
 Write your UT EID on all pages (at the top) and circle your instructor’s name at the bottom.
 Closed book and closed notes. No books, no papers, no data sheets (other than the last four pages of this Exam)
 No devices other than pencil, pen, eraser (no calculators, no electronic devices), please turn cell phones off.
 Please be sure that your answers to all questions (and all supporting work that is required) are contained in the

space (boxes) provided. Anything outside the boxes will be ignored in grading.
 You have 180 minutes, so allocate your time accordingly.
 For all questions, unless otherwise stated, find the most efficient (time, resources) solution.
 Unless otherwise stated, make all I/O accesses friendly.
 Please read the entire exam before starting. See supplement pages for Device I/O registers.

Problem 1 10

Problem 2 5

Problem 3 10

Problem 4 5

Problem 5 15

Problem 6 10

Problem 7 5

Problem 8 10

Problem 9 10

Problem 10 20

Total 100

EE319K Fall 2018 Final Exam Solution UT EID:_____________________ Page 2

Valvano December 19, 2018 2:00pm-5:00pm

(10) Problem 1. Give a one to three word answer for each question.

(1) Part a) What data structure do you use to stream data from an ISR to the main program
given the situation where data arrives into the ISR bursts but is processed one byte at a time in the main? …………

(1) Part b) With UART transmission we send one start bit, 8 data bits and one stop bit. What term
do we use to define these 10 bits? …………………………………………………………………….…………

(1) Part c) What qualifier do we add to an otherwise local variable (scope within a function) so that the
variable is defined in permanently in RAM? ……………………………………..………………………………

(1) Part d) What qualifier do we add to an otherwise global variable so that the scope is restricted to
software located within that same file? ………………………………………………………………………

(1) Part e) What graphical structure describes the modularity of a system, such that circles and rectangles
are modules and arrows represent information passes from one module to another? ………………………………

(1) Part f) What term is used to describe the smallest difference in input voltage that an ADC can
reliably distinguish? ……………………………………………………………………………………………….

(1) Part g) What are the units of electrical power? Give as a one-word answer, and not as a
combination of other units. …………………………………..…………………………………………………

(1) Part h) In a real-time system, it is important to respond to critical events. What is the term used to
describe the delay between the time a critical event occurs and the time the event is processed? For example,
the time between touching a switch and the time the software recognizes the switch is touched. ……………….

(1) Part i) A number system where the value 4.125 is represented with the integer 264? ……………..…………………

(1) Part j) What is the debugging term used to store important information into arrays? This debugging
technique can be used to replace printing (printf) information while the program is running. …………………..

(5) Problem 2. Consider the sampling rate chosen for the ADC in Lab 8. Give the relationship for the slowest possible
sampling rate (fs, in Hz), given these parameters: ADC range (V, in volts), number of ADC bits (n, in bits, e.g., 12 bits) and
rate at which one moves the slide pot (r, in oscillations per sec).

FIFO

Frame

static

static

Data flow
graph

Resolution

watts

Latency

Binary fixed
point

Dump

Nyquist fs > 2r

EE319K Fall 2018 Final Exam Solution UT EID:_____________________ Page 3

Valvano December 19, 2018 2:00pm-5:00pm

(10) Problem 3: Design a 6-bit DAC connected to Port E using PE5 to PE0. Show the circuit and label all resistors,
capacitors and interface chips needed.

(5) Problem 4. Interface an LED to Port B bit 0 using positive logic. The desired operating point of the LED is 3V and 100
mA. Assume the ULN2003B has an output voltage that depends on the collector current according to this graph at 25 C.
Show the circuit and label all resistors, capacitors and interface chips needed.

PE5

PE4

PE3

PE2

PE1

PE0

Out

PB0

Same as lab 3, except the resistor value.
Must use 5V to power LED
VCE = 0.85V at 100 mA
R = (5-3-0.85V)/100mA
 = 1.15V/100mA = 11.5 ohms

Any 6 resistors in binary sequence with values from 1k to 1M. E.g.,
1k 2k 4k 8k 16k and 32k, such that the smallest resistor is connected
to PE5 and the largest resistor is connected to PE0

R

+5 V

ULN2003

1k

2k

4k

8k

16k

32k

EE319K Fall 2018 Final Exam Solution UT EID:_____________________ Page 4

Valvano December 19, 2018 2:00pm-5:00pm

(15) Problem 5. Consider a game that has up to 50 boxes. There is an array specifying the current status of each box. Each
box is 4 by 4 pixels, and has an (x,y) coordinate, a velocity, a direction, and a life parameter. You may assume the Box
array has been populated with data. The figure on the right shows one example box at (x,y)=(50,20)
typedef enum {dead,alive} status_t;
struct box {
 int16_t x; // x coordinate, in pixels
 int16_t y; // y coordinate, in pixels
 int16_t velocity; // velocity, in pixels/frame
 int16_t angle; // direction, in degrees
 status_t life;}; // dead or alive
typedef box box_t;
Each box has 16 pixels in the game world, occupying the square space from (x,y) to (x+3, y-3). Write a C function that
searches to see if two alive boxes are overlapping (the location of any of the 16 pixels of one box is equal to any of the 16
pixels of another box). If two boxes are occupying the same space, set the life parameter of both boxes to 0. Do not worry
about 3 or more boxes occupying the same space.

void Search(box_t box[]){ // 50 elements
 int i,j;
 int16_t dx; // x distance between boxes
 int16_t dy; // y distance between boxed
 for(i=0;i<49;i++){
 if((box[i].life == alive){
 for(j=i+1;j<50;j++){
 if(box[j].life == alive){
 dx = box[i].x - box[j].x;
 dy = box[i].y - box[j].y; // calculate distances
 if((dx>-4)&&(dx<+4)&&(dy>-4)&&(dy<+4)){
 box[i].life = dead;
 box[j].life = dead;
 }
 }
 }
 }
 }
}

(50,17) (53,17)

(50,20)
(53,20)

EE319K Fall 2018 Final Exam Solution UT EID:_____________________ Page 5

Valvano December 19, 2018 2:00pm-5:00pm

(10) Problem 6. Draw the state transition graph for a Moore FSM used to control 6 tail lights on a car. There are two inputs
and 6 outputs. If the input is 0 the output is 0. If the input is 1 (turn right), the output cycles through the values 4 2 1 every
½ second. If the input is 2 (turn left), the output cycles through the values 8,16,32 every ½ second. If the input is 3 (brake)
the output is 63. Each state has a name, output, dwell time, and multiple arrows to next states.

All 0 inputs go to Idle, all 3 inputs go to stop, each state must have 4 arrows

(5) Problem 7. Assume the UART0 has been initialized. Use busy-wait synchronization to implement a C function with the
following steps
 1) Wait for new serial port input
 2) Read the new 8-bit ASCII character data
 3) Echo the data by transmitting the same 8-bit data just received
 4) Return by value the one character received.
Show what you would place in the .h file

//------------UART_InCharEcho------------
// Wait for new serial port input
// Echo received data to transmitter
// Input: none
// Output: ASCII code for character just received
char UART_InCharEcho(void);

Show what you would place in the .c file

char UART_InCharEcho(void){ char data;
 while((UART0_FR_R&0x00000010) != 0); // UART Receive FIFO Empty
 data = UART0_DR_R;
 while((UART0_FR_R&0x00000020) != 0); // UART Transmit FIFO Full (optional)
 UART0_DR_R = data;
 return data;
}

(10) Question 8. The subroutine mySub uses a call by value parameter passed on the stack. There are no return parameters.
Call by value means the data itself is pushed on the stack. This is not AAPCS compliant. A typical calling sequence is

Idle
10ms

0

Right1
500ms

4

Right2
500ms

2

Right3
500ms

1

Left1
500ms

8

Left2
500ms

16

Left3
500ms

32

Stop
10ms

63

1 1 1

1

2 2 2

2

2 1

3

1

2 2 2

1
1

EE319K Fall 2018 Final Exam Solution UT EID:_____________________ Page 6

Valvano December 19, 2018 2:00pm-5:00pm

 AREA |.text|, CODE, READONLY, ALIGN=2
stuff DCD 123 ;32-bit constant
start LDR R0,=stuff
 LDR R0,[R0]
 PUSH {R0} ;the value of the input parameter is pushed
 MOV R0,#0 ;no cheating, parameter not in R0, on stack
 BL mySub
 ADD SP,SP,#4 ;discard parameter
The subroutine allocates one 32-bit local variable, i, and uses SP stack pointer addressing to access the local variable and
the parameter. The binding for these two are

in EQU ;32-bit value that is the input parameter

i EQU ;32-bit local variable

mySub PUSH {R9,R10,R11,LR}

 ;allocate i

;---------start of body-------------------
 LDR R11,[SP,#in] ;Reg R11 is the input parameter data
 STR R11,[SP,#i] ;save parameter into local i
;---------end of body---------------------

 ;deallocate i

 POP {R9,R10,R11,PC}
In the boxes provided, show the binding for in, the binding for the local variable i, the assembly instruction(s) to allocate
i, and the assembly instructions to deallocate i.

(10) Question 9: Write C code to maintain the elapsed time in minutes. I.e., increment the global variable Time once a
minute. Include both the initialization and the ISR. Do not worry about priority. Assume bus clock is 16 MHz.

uint32_t Time;
void SysTick_Init(void){
 NVIC_ST_CTRL_R = 0; // disable SysTick during setup (optional)
 NVIC_ST_RELOAD_R = 159999; // reload value for 10 ms
 NVIC_ST_CURRENT_R = 0; // any write to current clears it (optional)
 NVIC_ST_CTRL_R = 0x07; // enable SysTick with core clock and interrupts
 Time = 0; // optional
 EnableInterrupts();

}
void SysTick_Handler(void){ uint32_t static count=0;
 count++;
 if(count == 100*60){ // once a minute
 count=0;
 Time++;
 }
}

Many answers here. Consider the line
 if(count == N){

The product of N*(RELOAD+1)/16MHz
should be 1 minute

20

0

SUB SP,SP,#4

ADD SP,SP,#4

SP-> i 0
 R9 4
 R10 8
 R11 12
 LR 16
 123=in 20

EE319K Fall 2018 Final Exam Solution UT EID:_____________________ Page 7

Valvano December 19, 2018 2:00pm-5:00pm

(20) Question 10: You are asked to implement a simple postfix calculator as a subroutine in assembly language. The input
(call by reference in R0) to your function is a null-terminated character string with the following 12 valid characters
0,1,2,3,4,5,6,7,8,9,+,and*. You may assume all strings are valid and calculate exactly one 32-bit output value. For example
"5" returns 5
"79+" returns 7+9 = 16
"58*1+" returns (5*8)+1 = 41
"92*7+4*52+*" returns (((9*2)+7)*4)*(5+2)) = ((18+7)*4)*7) = ((25*4)*7) = (100*7) =700
The basic idea is to fetch a character from the string:

 if it is a + or * operator, pop two numbers from the stack, unsigned 32-bit operate, and push the result
 if it is a digit, convert ASCII to value, push the value (0 to 9) of the digit as a 32-bit value onto the stack
 if it is the null termination, pop one 32-bit value from the stack and return that value in R0

;input: R0 points to the string to process
;output: R0 contains the value determined by the calculator
Calc
 LDRB R1,[R0] ; characters are one byte; could have used signed LDRSB
 ADD R0,R0,#1 ; next
 CMP R1,#0
 BEQ done
 CMP R1,#'+'
 BNE nPls
plus POP {R2,R3}
 ADD R2,R3 ;add top two elements
 PUSH {R2}
 B Calc
nPls CMP R1,#'*'
 BNE nMul
mult POP {R2,R3}
 MUL R2,R3 ;multiply top two elements
 PUSH {R2}
 B Calc
nMul SUB R1,#'0'
 PUSH {R1} ; push digit 0 to 9
 B Calc
done POP {R0}
 BX LR

EE319K Fall 2018 Extra sheets (do not turn in) Page 8

Valvano December 19, 2018 2:00pm-5:00pm

Memory access instructions
 LDR Rd, [Rn] ; load 32-bit number at [Rn] to Rd
 LDR Rd, [Rn,#off] ; load 32-bit number at [Rn+off] to Rd
 LDR Rd, =value ; set Rd equal to any 32-bit value (PC rel)
 LDRH Rd, [Rn] ; load unsigned 16-bit at [Rn] to Rd
 LDRH Rd, [Rn,#off] ; load unsigned 16-bit at [Rn+off] to Rd
 LDRSH Rd, [Rn] ; load signed 16-bit at [Rn] to Rd
 LDRSH Rd, [Rn,#off] ; load signed 16-bit at [Rn+off] to Rd
 LDRB Rd, [Rn] ; load unsigned 8-bit at [Rn] to Rd
 LDRB Rd, [Rn,#off] ; load unsigned 8-bit at [Rn+off] to Rd
 LDRSB Rd, [Rn] ; load signed 8-bit at [Rn] to Rd
 LDRSB Rd, [Rn,#off] ; load signed 8-bit at [Rn+off] to Rd
 STR Rt, [Rn] ; store 32-bit Rt to [Rn]
 STR Rt, [Rn,#off] ; store 32-bit Rt to [Rn+off]
 STRH Rt, [Rn] ; store least sig. 16-bit Rt to [Rn]
 STRH Rt, [Rn,#off] ; store least sig. 16-bit Rt to [Rn+off]
 STRB Rt, [Rn] ; store least sig. 8-bit Rt to [Rn]
 STRB Rt, [Rn,#off] ; store least sig. 8-bit Rt to [Rn+off]
 PUSH {Rt} ; push 32-bit Rt onto stack
 POP {Rd} ; pop 32-bit number from stack into Rd
 ADR Rd, label ; set Rd equal to the address at label
 MOV{S} Rd, <op2> ; set Rd equal to op2
 MOV Rd, #im16 ; set Rd equal to im16, im16 is 0 to 65535
 MVN{S} Rd, <op2> ; set Rd equal to -op2
Branch instructions
 B label ; branch to label Always
 BEQ label ; branch if Z == 1 Equal
 BNE label ; branch if Z == 0 Not equal
 BCS label ; branch if C == 1 Higher or same, unsigned ≥
 BHS label ; branch if C == 1 Higher or same, unsigned ≥
 BCC label ; branch if C == 0 Lower, unsigned <
 BLO label ; branch if C == 0 Lower, unsigned <
 BMI label ; branch if N == 1 Negative
 BPL label ; branch if N == 0 Positive or zero
 BVS label ; branch if V == 1 Overflow
 BVC label ; branch if V == 0 No overflow
 BHI label ; branch if C==1 and Z==0 Higher, unsigned >
 BLS label ; branch if C==0 or Z==1 Lower or same, unsigned ≤
 BGE label ; branch if N == V Greater than or equal, signed ≥
 BLT label ; branch if N != V Less than, signed <
 BGT label ; branch if Z==0 and N==V Greater than, signed >
 BLE label ; branch if Z==1 or N!=V Less than or equal, signed ≤
 BX Rm ; branch indirect to location specified by Rm
 BL label ; branch to subroutine at label
 BLX Rm ; branch to subroutine indirect specified by Rm
Interrupt instructions
 CPSIE I ; enable interrupts (I=0)
 CPSID I ; disable interrupts (I=1)
Logical instructions
 AND{S} {Rd,} Rn, <op2> ; Rd=Rn&op2 (op2 is 32 bits)
 ORR{S} {Rd,} Rn, <op2> ; Rd=Rn|op2 (op2 is 32 bits)
 EOR{S} {Rd,} Rn, <op2> ; Rd=Rn^op2 (op2 is 32 bits)
 BIC{S} {Rd,} Rn, <op2> ; Rd=Rn&(~op2) (op2 is 32 bits)
 ORN{S} {Rd,} Rn, <op2> ; Rd=Rn|(~op2) (op2 is 32 bits)
 LSR{S} Rd, Rm, Rs ; logical shift right Rd=Rm>>Rs (unsigned)
 LSR{S} Rd, Rm, #n ; logical shift right Rd=Rm>>n (unsigned)
 ASR{S} Rd, Rm, Rs ; arithmetic shift right Rd=Rm>>Rs (signed)

EE319K Fall 2018 Extra sheets (do not turn in) Page 9

Valvano December 19, 2018 2:00pm-5:00pm

 ASR{S} Rd, Rm, #n ; arithmetic shift right Rd=Rm>>n (signed)
 LSL{S} Rd, Rm, Rs ; shift left Rd=Rm<<Rs (signed, unsigned)
 LSL{S} Rd, Rm, #n ; shift left Rd=Rm<<n (signed, unsigned)
Arithmetic instructions
 ADD{S} {Rd,} Rn, <op2> ; Rd = Rn + op2
 ADD{S} {Rd,} Rn, #im12 ; Rd = Rn + im12, im12 is 0 to 4095
 SUB{S} {Rd,} Rn, <op2> ; Rd = Rn - op2
 SUB{S} {Rd,} Rn, #im12 ; Rd = Rn - im12, im12 is 0 to 4095
 RSB{S} {Rd,} Rn, <op2> ; Rd = op2 - Rn
 RSB{S} {Rd,} Rn, #im12 ; Rd = im12 – Rn
 CMP Rn, <op2> ; Rn – op2 sets the NZVC bits
 CMN Rn, <op2> ; Rn - (-op2) sets the NZVC bits
 MUL{S} {Rd,} Rn, Rm ; Rd = Rn * Rm signed or unsigned
 MLA Rd, Rn, Rm, Ra ; Rd = Ra + Rn*Rm signed or unsigned
 MLS Rd, Rn, Rm, Ra ; Rd = Ra - Rn*Rm signed or unsigned
 UDIV {Rd,} Rn, Rm ; Rd = Rn/Rm unsigned
 SDIV {Rd,} Rn, Rm ; Rd = Rn/Rm signed
Notes Ra Rd Rm Rn Rt represent 32-bit registers
 value any 32-bit value: signed, unsigned, or address
 {S} if S is present, instruction will set condition codes
 #im12 any value from 0 to 4095
 #im16 any value from 0 to 65535
 {Rd,} if Rd is present Rd is destination, otherwise Rn
 #n any value from 0 to 31
 #off any value from -255 to 4095
 label any address within the ROM of the microcontroller
 op2 the value generated by <op2>
Examples of flexible operand <op2> creating the 32-bit number. E.g., Rd = Rn+op2
 ADD Rd, Rn, Rm ; op2 = Rm
 ADD Rd, Rn, Rm, LSL #n ; op2 = Rm<<n Rm is signed, unsigned
 ADD Rd, Rn, Rm, LSR #n ; op2 = Rm>>n Rm is unsigned
 ADD Rd, Rn, Rm, ASR #n ; op2 = Rm>>n Rm is signed
 ADD Rd, Rn, #constant ; op2 = constant, where X and Y are hexadecimal digits:

 produced by shifting an 8-bit unsigned value left by any number of bits
 in the form 0x00XY00XY
 in the form 0xXY00XY00
 in the form 0xXYXYXYXY

 DCB 1,2,3 ; allocates three 8-bit byte(s)
 DCW 1,2,3 ; allocates three 16-bit halfwords
 DCD 1,2,3 ; allocates three 32-bit words
 SPACE 4 ; reserves 4 bytes

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12

R13 (MSP)
R14 (LR)
R15 (PC)

Stack pointer
Link register

Program counter

General
purpose
registers

Condition code bits
N negative
Z zero
V signed overflow
C carry or
 unsigned overflow

256k Flash
ROM

32k RAM

I/O ports

Internal I/O
PPB

0x0000.0000

0x0003.FFFF

0x2000.0000

0x2000.7FFF

0x4000.0000

0x400F.FFFF

0xE000.0000

0xE004.1FFF

EE319K Fall 2018 Extra sheets (do not turn in) Page 10

Valvano December 19, 2018 2:00pm-5:00pm

Address 7 6 5 4 3 2 1 0 Name
$400F.E608 GPIOF GPIOE GPIOD GPIOC GPIOB GPIOA SYSCTL_RCGCGPIO_R
$4000.53FC DATA DATA DATA DATA DATA DATA DATA DATA GPIO_PORTB_DATA_R
$4000.5400 DIR DIR DIR DIR DIR DIR DIR DIR GPIO_PORTB_DIR_R
$4000.5420 SEL SEL SEL SEL SEL SEL SEL SEL GPIO_PORTB_AFSEL_R
$4000.551C DEN DEN DEN DEN DEN DEN DEN DEN GPIO_PORTB_DEN_R

Table 4.5. TM4C123 Port B parallel ports. Each register is 32 bits wide. Bits 31 – 8 are zero.

Address 31 30 29-7 6 5 4 3 2 1 0 Name
0xE000E100 F … UART1 UART0 E D C B A NVIC_EN0_R

Address 31-24 23-17 16 15-3 2 1 0 Name
$E000E010 0 0 COUNT 0 CLK_SRC INTEN ENABLE NVIC_ST_CTRL_R
$E000E014 0 24-bit RELOAD value NVIC_ST_RELOAD_R
$E000E018 0 24-bit CURRENT value of SysTick counter NVIC_ST_CURRENT_R

Address 31-29 28-24 23-21 20-8 7-5 4-0 Name
$E000ED20 SYSTICK 0 PENDSV 0 DEBUG 0 NVIC_SYS_PRI3_R

Table 9.6. SysTick registers.

Table 9.6 shows the SysTick registers used to create a periodic interrupt. SysTick has a 24-bit counter that decrements at
the bus clock frequency. Let fBUS be the frequency of the bus clock, and let n be the value of the RELOAD register. The
frequency of the periodic interrupt will be fBUS/(n+1). First, we clear the ENABLE bit to turn off SysTick during
initialization. Second, we set the RELOAD register. Third, we write to the NVIC_ST_CURRENT_R value to clear the
counter. Lastly, we write the desired mode to the control register, NVIC_ST_CTRL_R. To turn on the SysTick, we set the
ENABLE bit. We must set CLK_SRC=1, because CLK_SRC=0 external clock mode is not implemented. We set INTEN
to arm SysTick interrupts. The standard name for the SysTick ISR is SysTick_Handler.

Address 31-2 1 0 Name
$400F.E638 ADC1 ADC0 SYSCTL_RCGCADC_R

 31-14 13-12 11-10 9-8 7-6 5-4 3-2 1-0
$4003.8020 SS3 SS2 SS1 SS0 ADC0_SSPRI_R

 31-16 15-12 11-8 7-4 3-0
$4003.8014 EM3 EM2 EM1 EM0 ADC0_EMUX_R

 31-4 3 2 1 0
$4003.8000 ASEN3 ASEN2 ASEN1 ASEN0 ADC0_ACTSS_R
$4003.80A0 MUX0 ADC0_SSMUX3_R
$4003.80A4 TS0 IE0 END0 D0 ADC0_SSCTL3_R
$4003.8028 SS3 SS2 SS1 SS0 ADC0_PSSI_R
$4003.8004 INR3 INR2 INR1 INR0 ADC0_RIS_R
$4003.8008 MASK3 MASK2 MASK1 MASK0 ADC0_IM_R
$4003.8FC4 Speed ADC0_PC_R

 31-12 11-0
$4003.80A8 DATA ADC0_SSFIFO3_R

Table 10.3. The TM4C ADC registers. Each register is 32 bits wide.

Set Speed to 0001 for slow speed operation. The ADC has four sequencers, but we will use only sequencer 3. We set the
ADC_SSPRI_R register to 0x3210 to make sequencer 3 the lowest priority. Because we are using just one sequencer, we
just need to make sure each sequencer has a unique priority. We set bits 15–12 (EM3) in the ADC_EMUX_R register to
specify how the ADC will be triggered. If we specify software start (EM3=0x0), then the software writes an 8 (SS3) to the
ADC_PSSI_R to initiate a conversion on sequencer 3. Bit 3 (INR3) in the ADC_RIS_R register will be set when the
conversion is complete. We can enable and disable the sequencers using the ADC_ACTSS_R register. Which channel we
sample is configured by writing to the ADC_SSMUX3_R register. The ADC_SSCTL3_R register specifies the mode of
the ADC sample. Clear TS0. We set IE0 so that the INR3 bit is set on ADC conversion, and clear it when no flags are
needed. We will set IE0 for both interrupt and busy-wait synchronization. When using sequencer 3, there is only one
sample, so END0 will always be set, signifying this sample is the end of the sequence. Clear the D0 bit. The ADC_RIS_R

EE319K Fall 2018 Extra sheets (do not turn in) Page 11

Valvano December 19, 2018 2:00pm-5:00pm

register has flags that are set when the conversion is complete, assuming the IE0 bit is set. Do not set bits in the
ADC_IM_R register because we do not want interrupts. Write one to ADC_ISC_R to clear the corresponding bit in the
ADC_RIS_R register.

UART0 pins are on PA1 (transmit) and PA0 (receive). The UART0_IBRD_R and UART0_FBRD_R registers specify the
baud rate. The baud rate divider is a 22-bit binary fixed-point value with a resolution of 2-6. The Baud16 clock is created
from the system bus clock, with a frequency of (Bus clock frequency)/divider. The baud rate is
 Baud rate = Baud16/16 = (Bus clock frequency)/(16*divider)
We set bit 4 of the UART0_LCRH_R to enable the hardware FIFOs. We set both bits 5 and 6 of the UART0_LCRH_R to
establish an 8-bit data frame. The RTRIS is set on a receiver timeout, which is when the receiver FIFO is not empty and no
incoming frames have occurred in a 32-bit time period. The arm bits are in the UART0_IM_R register. To acknowledge an
interrupt (make the trigger flag become zero), software writes a 1 to the corresponding bit in the UART0_IC_R register.
We set bit 0 of the UART0_CTL_R to enable the UART. Writing to UART0_DR_R register will output on the UART. This
data is placed in a 16-deep transmit hardware FIFO. Data are transmitted first come first serve. Received data are place in a
16-deep receive hardware FIFO. Reading from UART0_DR_R register will get one data from the receive hardware FIFO.
The status of the two FIFOs can be seen in the UART0_FR_R register (FF is FIFO full, FE is FIFO empty). The standard
name for the UART0 ISR is UART0_Handler. RXIFLSEL specifies the receive FIFO level that causes an interrupt (010
means interrupt on ≥ ½ full, or 7 to 8 characters). TXIFLSEL specifies the transmit FIFO level that causes an interrupt (010
means interrupt on ≤ ½ full, or 9 to 8 characters).

 31–12 11 10 9 8 7–0 Name
$4000.C000 OE BE PE FE DATA UART0_DR_R

 31–3 3 2 1 0
$4000.C004 OE BE PE FE UART0_RSR_R

 31–8 7 6 5 4 3 2–0
$4000.C018 TXFE RXFF TXFF RXFE BUSY UART0_FR_R

 31–16 15–0
$4000.C024 DIVINT UART0_IBRD_R

 31–6 5–0
$4000.C028 DIVFRAC UART0_FBRD_R

 31–8 7 6 – 5 4 3 2 1 0
$4000.C02C SPS WPEN FEN STP2 EPS PEN BRK UART0_LCRH_R

 31–10 9 8 7 6–3 2 1 0
$4000.C030 RXE TXE LBE SIRLP SIREN UARTEN UART0_CTL_R

 31–6 5-3 2-0
$4000.C034 RXIFLSEL TXIFLSEL UART0_IFLS_R

 31-11 10 9 8 7 6 5 4
$4000.C038 OEIM BEIM PEIM FEIM RTIM TXIM RXIM UART0_IM_R
$4000.C03C OERIS BERIS PERIS FERIS RTRIS TXRIS RXRIS UART0_RIS_R
$4000.C040 OEMIS BEMIS PEMIS FEMIS RTMIS TXMIS RXMIS UART0_MIS_R
$4000.C044 OEIC BEIC PEIC FEIC RTIC TXIC RXIC UART0_IC_R

Table 11.2. UART0 registers. Each register is 32 bits wide. Shaded bits are zero.

