
EE319K Fall 2019 Final Exam UT EID:_____________________ Page 1

Valvano December 14, 2019 2:00pm-5:00pm

Final Exam
Date: December 14, 2019

 Circle one: MT, NT, JV, RY,

Printed Name:

Last, First

Your signature is your promise that you have not cheated and will not cheat on this exam, nor will you help others to cheat
on this exam. You will not reveal the contents of this exam to others who are taking the makeup thereby giving them an undue
advantage:

Signature:

Instructions:
• Write your UT EID on all pages (at the top) and circle your instructor’s name at the bottom.
• Closed book and closed notes. No books, no papers, no data sheets (other than the last four pages of this Exam)
• No devices other than pencil, pen, eraser (no calculators, no electronic devices), please turn cell phones off.
• Please be sure that your answers to all questions (and all supporting work that is required) are contained in the space

(boxes) provided. Anything outside the boxes will be ignored in grading.
• You have 180 minutes, so allocate your time accordingly.
• For all questions, unless otherwise stated, find the most efficient (time, resources) solution.
• Unless otherwise stated, make all I/O accesses friendly.
• Please read the entire exam before starting. See supplement pages for Device I/O registers.

EE319K Fall 2019 Final Exam UT EID:_____________________ Page 2

Valvano December 14, 2019 2:00pm-5:00pm

(5) Problem 1. Variables. Consider the following C program.
uint8_t A=5;
const uint8_t B=5;
static uint8_t C=5;
volatile uint8_t D=5;
void func(const int32_t E, int32_t F){
 int32_t G=5;
 int32_t static H=5;
}
For each question list all possible variable names. Specify names A B C D E F G and/or H. If there are no possible
answers, specific NONE.

(1) Part a) Which variable is allocated in R1? (for this question give the one answer) ……………………………………

(1) Part b) Which variables may be allocated on the stack? (for this question give NONE, one,
or more answers) ……………………………………………………………………………………………..………

(1) Part c) Which variables are private to (have scope limited to) the function func?
(for this question give NONE, one, or more answers) ……………………………………………..………………………

(1) Part d) Which variables are initialized to 5 when the you download object code to the TM4C123,
before any software has started? (for this question give NONE, one, or more answers) ……………………………………

(1) Part e) Which variable is the best one to use to share information between the main program
and software running in an ISR? (for this question give the one answer) ………………………………………….

(15) Problem 2. Equations. Give the relationships in terms of these parameters: (VOL, output low voltage of TM4C123 in
volts), (V, voltage in volts), (R, resistance in ohms), (n, number of bits in the ADC, e.g., 12 bits), (b, baud rate of the UART
in bits/sec, e.g., 115200 bps), (max, the maximum possible ADC voltage in volts, e.g., 3.3V), (min, the minimum possible
ADC voltage in volts, e.g., 0V), (r, rate at which one moves the slide pot in oscillations per sec, e.g., 10 Hz), (R, the
SysTick RELOAD value), (f, the TM4C123 bus frequency in Hz, e.g., 80,000,000 Hz).

(4) Part a) Give the relationship for the power
dissipated in a resistor.

(4) Part b) Give the relationship for the maximum
bandwidth possible on a UART.

(4) Part c) Give the relationship for the ADC
resolution.

(4) Part d) Give the relationship for SysTick
interrupt period.

F

G

E F G H

B

D

P = V2/R

BW = 8b/10

Resolution = (max-min)/2n

or = (max-min)/(2n-1)

Units of power = watts

Units of bandwidth = bps

Units of resolution = volts

Period = (R+1)/f

Units of period = sec

EE319K Fall 2019 Final Exam UT EID:_____________________ Page 3

Valvano December 14, 2019 2:00pm-5:00pm

(10) Problem 3. Circuit. Consider this interface circuit. Assume PB3, PB2, PB1, PB0 are digital output representing a
binary integer from 0 to 15. Notice all the resistors are the same value. To make the math easier, assume VOH of the
microcontroller is 4V, and assume VOL is 0V. Some of the values are filled in. Complete the table showing the relationship
between output voltage Out, and the binary integer. Show your work

Integer (binary) Out (volts)
0000 0.0V

0001 1V (6k to 4V, 2k to ground)

0010 1V

0011 2V (3k to 4V, 3k to ground)

0100 1V

0101 2V

0110 2V

0111 3V (2k to 4V, 6k to ground)

1000 1V

1001 2V

1010 2V

1011 3V

1100 2V

1101 3V

1110 3V

1111 4.0 V

6kΩ

6kΩ

6kΩ

6kΩ

PB7

PB6

PB5

PB4

PB3

PB2

PB1

PB0

Microcontroller

Out

EE319K Fall 2019 Final Exam UT EID:_____________________ Page 4

Valvano December 14, 2019 2:00pm-5:00pm

(5) Problem 4. Stepper motor interface. The stepper motor we had in Lab 5 had five coils and the software output the
pattern 1,2,4,8,16 to spin the motor. In this problem you will interface a stepper motor with four coils (labelled A1 A2 B1
and B2) to Port E, and the software output the pattern 5,6,10,9 to spin the motor. The desired operating point of the one
coil is anywhere from 4 to 5 volts with a current of 80 to 100 mA. Assume the ULN2003B has an output low voltage of
0.5V. The maximum current of one output of the ULN2003B is 500 mA. Show the circuit and label all resistors, capacitors
and interface chips needed. Just show the circuit, not software is required.

This is identical to Lab 5, except there are four instead of 5 coils

(10) Problem 5. Draw the state transition graph for a Moore FSM used to control an LED. There are two inputs and one
output. Consider the two inputs as a binary integer, I, from 0 to 3. The input will determine the brightness of the LED. More
specifically, the duty cycle of the LED should be 100*I/3 in percent. The time constant of the human’s visual processing is
about 100 ms. The switch input and LED output are both in positive logic. Each state has a name, an output, a dwell time,
and multiple arrows to next states. Just show the graph, no software is required.

EE319K Fall 2019 Final Exam UT EID:_____________________ Page 5

Valvano December 14, 2019 2:00pm-5:00pm

(10) Question 6: You are asked to implement a FIFO queue using the following variables. These variable names and types
are fixed and cannot be changed. You cannot add additional global or static variables. You can add local variables.
int16_t *GetPt; // pointer to oldest (next to Get)
int16_t *PutPt; // pointer to free space (next place to Put)
int16_t Buffer[10]; // can store up to 9 elements
void Fifo_Init(void){
 GetPt = PutPt = Buffer;
}
// Gets an element from the FIFO
// Input: Pointer to a place that will get
// Output: 1 for success and 0 for failure
// failure is when the FIFO is empty
uint32_t Fifo_Get(int16_t *pt){
 if(GetPt == PutPt) {
 return 0;
 }
 *pt = *GetPt;
 GetPt++;
 if (GetPt == &Buffer[10]){
 GetPt = Buffer;
 }
 return 1;
}

// Adds an element to the FIFO
// Input: value to be inserted
// Output: 1 for success and 0 for failure
// failure is when the FIFO is full
uint32_t Fifo_Put(int16_t data){
 int16_t *tpt = PutPt;
 tpt++;
 if (tpt == &Buffer[10]){
 tpt = Buffer;
 }
 if(tpt == GetPt){
 return 0;
 }
 *(PutPt) = data;
 PutPt = tpt;
 return 1;
}

EE319K Fall 2019 Final Exam UT EID:_____________________ Page 6

Valvano December 14, 2019 2:00pm-5:00pm

(5) Problem 7. Assume the UART0 has been initialized for busy-wait synchronization. Design an assembly function to implement
OutChar with these two steps
 1) Wait for UART to be ready to accept another data for transmission
 2) Write data to the UART that causes the data to be transmitted
The C prototype for the function is void OutChar(char data);
OutChar
 LDR R1,=UART0_FR_R
loop
 LDR R2,[R1] ; read FR
 ANDS R2,#0x0020 ; check TXFF, not full means there is room to send
 BNE loop ; wait until TXFF is 0
 LDR R1,=UART0_DR_R
 STR R0,[R1] ; send data
 BX LR
}

(10) Question 8. Translate the following C code to assembly

void (*Task)(void);

void SysTick_Init(void(*t)(void)){
 Task = task;
 NVIC_ST_RELOAD_R = 79999
 NVIC_ST_CTRL_R = 7;
 EnableInterrupts(); // I=0
}

void SysTick_Handler(void){
 (*Task)();
}

 THUMB
 AREA DATA, ALIGN=2

Task SPACE 4 ; pointer to function

 AREA |.text|, CODE, READONLY, ALIGN=2
SysTick_Init
 LDR R1,=Task
 STR R0,[R1] ; save function into Task
 LDR R0,= NVIC_ST_RELOAD_R
 LDR R1,=79999
 STR R1,[R0]
 LDR R0,= NVIC_ST_CTRL_R
 MOV R1,#7
 STR R1,[R0]
 CPSIE I ; enable interrupts (I=0)
 BX LR

SysTick_Handler
 LDR R1,=Task
 LDR R0,[R1] ; get function from Task
 BLX R0 ; call function
 BX LR

EE319K Fall 2019 Final Exam UT EID:_____________________ Page 7

Valvano December 14, 2019 2:00pm-5:00pm

(10) Question 9. The subroutine mySub has one call by value parameter. There are no return parameters. The one call by
value input parameter is AAPCS compliant. A typical calling sequence is
 AREA |.text|, CODE, READONLY, ALIGN=2
stuff DCD 123 ;32-bit constant
start LDR R0,=stuff
 LDR R0,[R0]
 BL mySub

The subroutine allocates two 32-bit local variables, i and j and uses SP stack pointer addressing to access the local
variables. The binding for these two are

i EQU ;binding for 32-bit local variable

j EQU ;binding for 32-bit local variable

mySub

 ;allocate i,j

 PUSH {R4,LR}
;---------start of body-------------------

 ;set i = input parameter

 LDR R4,[SP,#i] ;Reg R4 is the input parameter value
 STR R4,[SP,#j] ;save parameter into local j
;---------end of body---------------------
 POP {R4,LR}

 ;deallocate i,j

 BX LR
In the boxes provided, show the binding for the two local variables, the assembly code to allocate the two local variables, the
assembly code to set i equal to the input parameter, and the assembly code to deallocate the two local variables.

(5) Question 10: You are attempting to capture a sinusoidal sound with a frequency of 1 kHz. The ADC0_PC_R is set to
0001, which supports a maximum of 125k samples/sec. Using the 12-bit ADC and periodic interrupt, you have programmed
the SysTick to interrupt at a frequency of 12 kHz. During the SysTick ISR you collect one ADC sample. Is it possible to
recreate the original signal from the captured samples? If your answer is yes, explain how. If your answer is no, what is the
term used to refer to this loss of information?

8

12

 SUB SP,SP,#8

 ADD SP,SP,#8

 STR R0,[SP,#i]

 Yes, Nyquist is satisfied fs (12kHz) > 2*fmax (2*1kHz)

EE319K Fall 2019 Final Exam UT EID:_____________________ Page 8

Valvano December 14, 2019 2:00pm-5:00pm

(15) Problem 11. Consider a game that has 32 circles. There is an array of sprites (Balls) specifying the current status of
each circle. Each circle has a radius of 4 pixels, and has an (x,y) coordinate of the center of the circle, two velocities, and a
life parameter. The circles are moving according to the two velocities. You may assume the Balls array has been
populated with data before your function is called. Two circles are touching if the distance from one center to the other
center is less than or equal to 8 pixels. The figure on the right shows one example with two circles at (x,y)=(50,20) and
(54,15). These circles are touching because sqrt(4*4+5*5) = sqrt(41) is less than or equal to 8 pixels. Hint: you do not need
floating point or square root to solve this problem.
typedef enum {dead,alive} status_t;
struct sprite {
 int16_t x; // x coordinate, in pixels
 int16_t y; // y coordinate, in pixels
 int16_t vx; // x velocity, in pixels/frame
 int16_t vy; // y velocity, in pixels/frame
 status_t life;}; // dead or alive
typedef sprite sprite_t;
sprite_t Balls[32]
Implement a C function that searches to see if two alive circles are touching. If two alive circles are touching, invert the
sign of the x velocities of both circles. Do not worry about 3 or more circles touching at the same time.

(50,20)

(54,15)

void Collisions(void){
int i,j;
 int32_t dx; // x distance between
 int32_t dy; // y distance between
 for(i=0;i<32;i++){
 if((Balls[i].life == alive){
 for(j=i+1;j<32;j++){
 if(Balls[j].life == alive){
 dx = Balls[i].x - Balls[j].x;
 dy = Balls[i].y - Balls[j].y;
// calculate distances
 if(((dx*dx)+(dy*dy))<=64)){
 Balls[i].vx = -Balls[i].vx;
 Balls[j].vx = -Balls[j].vx;
 }
 }
 }
 }
 }
}

EE319K Fall 2018 Extra sheets (do not turn in) Page 9

Valvano December 14, 2019 2:00pm-5:00pm

Memory access instructions
 LDR Rd, [Rn] ; load 32-bit number at [Rn] to Rd
 LDR Rd, [Rn,#off] ; load 32-bit number at [Rn+off] to Rd
 LDR Rd, =value ; set Rd equal to any 32-bit value (PC rel)
 LDRH Rd, [Rn] ; load unsigned 16-bit at [Rn] to Rd
 LDRH Rd, [Rn,#off] ; load unsigned 16-bit at [Rn+off] to Rd
 LDRSH Rd, [Rn] ; load signed 16-bit at [Rn] to Rd
 LDRSH Rd, [Rn,#off] ; load signed 16-bit at [Rn+off] to Rd
 LDRB Rd, [Rn] ; load unsigned 8-bit at [Rn] to Rd
 LDRB Rd, [Rn,#off] ; load unsigned 8-bit at [Rn+off] to Rd
 LDRSB Rd, [Rn] ; load signed 8-bit at [Rn] to Rd
 LDRSB Rd, [Rn,#off] ; load signed 8-bit at [Rn+off] to Rd
 STR Rt, [Rn] ; store 32-bit Rt to [Rn]
 STR Rt, [Rn,#off] ; store 32-bit Rt to [Rn+off]
 STRH Rt, [Rn] ; store least sig. 16-bit Rt to [Rn]
 STRH Rt, [Rn,#off] ; store least sig. 16-bit Rt to [Rn+off]
 STRB Rt, [Rn] ; store least sig. 8-bit Rt to [Rn]
 STRB Rt, [Rn,#off] ; store least sig. 8-bit Rt to [Rn+off]
 PUSH {Rt} ; push 32-bit Rt onto stack
 POP {Rd} ; pop 32-bit number from stack into Rd
 ADR Rd, label ; set Rd equal to the address at label
 MOV{S} Rd, <op2> ; set Rd equal to op2
 MOV Rd, #im16 ; set Rd equal to im16, im16 is 0 to 65535
 MVN{S} Rd, <op2> ; set Rd equal to -op2
Branch instructions
 B label ; branch to label Always
 BEQ label ; branch if Z == 1 Equal
 BNE label ; branch if Z == 0 Not equal
 BCS label ; branch if C == 1 Higher or same, unsigned ≥
 BHS label ; branch if C == 1 Higher or same, unsigned ≥
 BCC label ; branch if C == 0 Lower, unsigned <
 BLO label ; branch if C == 0 Lower, unsigned <
 BMI label ; branch if N == 1 Negative
 BPL label ; branch if N == 0 Positive or zero
 BVS label ; branch if V == 1 Overflow
 BVC label ; branch if V == 0 No overflow
 BHI label ; branch if C==1 and Z==0 Higher, unsigned >
 BLS label ; branch if C==0 or Z==1 Lower or same, unsigned ≤
 BGE label ; branch if N == V Greater than or equal, signed ≥
 BLT label ; branch if N != V Less than, signed <
 BGT label ; branch if Z==0 and N==V Greater than, signed >
 BLE label ; branch if Z==1 or N!=V Less than or equal, signed ≤
 BX Rm ; branch indirect to location specified by Rm
 BL label ; branch to subroutine at label
 BLX Rm ; branch to subroutine indirect specified by Rm
Interrupt instructions
 CPSIE I ; enable interrupts (I=0)
 CPSID I ; disable interrupts (I=1)
Logical instructions
 AND{S} {Rd,} Rn, <op2> ; Rd=Rn&op2 (op2 is 32 bits)
 ORR{S} {Rd,} Rn, <op2> ; Rd=Rn|op2 (op2 is 32 bits)
 EOR{S} {Rd,} Rn, <op2> ; Rd=Rn^op2 (op2 is 32 bits)
 BIC{S} {Rd,} Rn, <op2> ; Rd=Rn&(~op2) (op2 is 32 bits)
 ORN{S} {Rd,} Rn, <op2> ; Rd=Rn|(~op2) (op2 is 32 bits)
 LSR{S} Rd, Rm, Rs ; logical shift right Rd=Rm>>Rs (unsigned)
 LSR{S} Rd, Rm, #n ; logical shift right Rd=Rm>>n (unsigned)
 ASR{S} Rd, Rm, Rs ; arithmetic shift right Rd=Rm>>Rs (signed)

EE319K Fall 2018 Extra sheets (do not turn in) Page 10

Valvano December 14, 2019 2:00pm-5:00pm

 ASR{S} Rd, Rm, #n ; arithmetic shift right Rd=Rm>>n (signed)
 LSL{S} Rd, Rm, Rs ; shift left Rd=Rm<<Rs (signed, unsigned)
 LSL{S} Rd, Rm, #n ; shift left Rd=Rm<<n (signed, unsigned)
Arithmetic instructions
 ADD{S} {Rd,} Rn, <op2> ; Rd = Rn + op2
 ADD{S} {Rd,} Rn, #im12 ; Rd = Rn + im12, im12 is 0 to 4095
 SUB{S} {Rd,} Rn, <op2> ; Rd = Rn - op2
 SUB{S} {Rd,} Rn, #im12 ; Rd = Rn - im12, im12 is 0 to 4095
 RSB{S} {Rd,} Rn, <op2> ; Rd = op2 - Rn
 RSB{S} {Rd,} Rn, #im12 ; Rd = im12 – Rn
 CMP Rn, <op2> ; Rn – op2 sets the NZVC bits
 CMN Rn, <op2> ; Rn - (-op2) sets the NZVC bits
 MUL{S} {Rd,} Rn, Rm ; Rd = Rn * Rm signed or unsigned
 MLA Rd, Rn, Rm, Ra ; Rd = Ra + Rn*Rm signed or unsigned
 MLS Rd, Rn, Rm, Ra ; Rd = Ra - Rn*Rm signed or unsigned
 UDIV {Rd,} Rn, Rm ; Rd = Rn/Rm unsigned
 SDIV {Rd,} Rn, Rm ; Rd = Rn/Rm signed
Notes Ra Rd Rm Rn Rt represent 32-bit registers
 value any 32-bit value: signed, unsigned, or address
 {S} if S is present, instruction will set condition codes
 #im12 any value from 0 to 4095
 #im16 any value from 0 to 65535
 {Rd,} if Rd is present Rd is destination, otherwise Rn
 #n any value from 0 to 31
 #off any value from -255 to 4095
 label any address within the ROM of the microcontroller
 op2 the value generated by <op2>
Examples of flexible operand <op2> creating the 32-bit number. E.g., Rd = Rn+op2
 ADD Rd, Rn, Rm ; op2 = Rm
 ADD Rd, Rn, Rm, LSL #n ; op2 = Rm<<n Rm is signed, unsigned
 ADD Rd, Rn, Rm, LSR #n ; op2 = Rm>>n Rm is unsigned
 ADD Rd, Rn, Rm, ASR #n ; op2 = Rm>>n Rm is signed
 ADD Rd, Rn, #constant ; op2 = constant, where X and Y are hexadecimal digits:

• produced by shifting an 8-bit unsigned value left by any number of bits
• in the form 0x00XY00XY
• in the form 0xXY00XY00
• in the form 0xXYXYXYXY

 DCB 1,2,3 ; allocates three 8-bit byte(s)
 DCW 1,2,3 ; allocates three 16-bit halfwords
 DCD 1,2,3 ; allocates three 32-bit words
 SPACE 4 ; reserves 4 bytes

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12

R13 (MSP)
R14 (LR)
R15 (PC)

Stack pointer
Link register

Program counter

General
purpose
registers

Condition code bits
N negative
Z zero
V signed overflow
C carry or
 unsigned overflow

256k Flash
ROM

32k RAM

I/O ports

Internal I/O
PPB

0x0000.0000

0x0003.FFFF

0x2000.0000

0x2000.7FFF

0x4000.0000

0x400F.FFFF

0xE000.0000

0xE004.1FFF

EE319K Fall 2018 Extra sheets (do not turn in) Page 11

Valvano December 14, 2019 2:00pm-5:00pm

Address 7 6 5 4 3 2 1 0 Name
$400F.E608 GPIOF GPIOE GPIOD GPIOC GPIOB GPIOA SYSCTL_RCGCGPIO_R
$4000.53FC DATA DATA DATA DATA DATA DATA DATA DATA GPIO_PORTB_DATA_R
$4000.5400 DIR DIR DIR DIR DIR DIR DIR DIR GPIO_PORTB_DIR_R
$4000.5420 SEL SEL SEL SEL SEL SEL SEL SEL GPIO_PORTB_AFSEL_R
$4000.551C DEN DEN DEN DEN DEN DEN DEN DEN GPIO_PORTB_DEN_R

Table 4.5. TM4C123 Port B parallel ports. Each register is 32 bits wide. Bits 31 – 8 are zero.

Address 31 30 29-7 6 5 4 3 2 1 0 Name
0xE000E100 F … UART1 UART0 E D C B A NVIC_EN0_R

Address 31-24 23-17 16 15-3 2 1 0 Name
$E000E010 0 0 COUNT 0 CLK_SRC INTEN ENABLE NVIC_ST_CTRL_R
$E000E014 0 24-bit RELOAD value NVIC_ST_RELOAD_R
$E000E018 0 24-bit CURRENT value of SysTick counter NVIC_ST_CURRENT_R

Address 31-29 28-24 23-21 20-8 7-5 4-0 Name
$E000ED20 SYSTICK 0 PENDSV 0 DEBUG 0 NVIC_SYS_PRI3_R

Table 9.6. SysTick registers. Note: 2^24=16,777,216
Table 9.6 shows the SysTick registers used to create a periodic interrupt. SysTick has a 24-bit counter that decrements at the
bus clock frequency. Let fBUS be the frequency of the bus clock, and let n be the value of the RELOAD register. The frequency
of the periodic interrupt will be fBUS/(n+1). First, we clear the ENABLE bit to turn off SysTick during initialization. Second,
we set the RELOAD register. Third, we write to the NVIC_ST_CURRENT_R value to clear the counter. Lastly, we write
the desired mode to the control register, NVIC_ST_CTRL_R. To turn on the SysTick, we set the ENABLE bit. We must set
CLK_SRC=1, because CLK_SRC=0 external clock mode is not implemented. We set INTEN to arm SysTick interrupts.
The standard name for the SysTick ISR is SysTick_Handler.

Address 31-2 1 0 Name
$400F.E638 ADC1 ADC0 SYSCTL_RCGCADC_R

 31-14 13-12 11-10 9-8 7-6 5-4 3-2 1-0
$4003.8020 SS3 SS2 SS1 SS0 ADC0_SSPRI_R

 31-16 15-12 11-8 7-4 3-0
$4003.8014 EM3 EM2 EM1 EM0 ADC0_EMUX_R

 31-4 3 2 1 0
$4003.8000 ASEN3 ASEN2 ASEN1 ASEN0 ADC0_ACTSS_R
$4003.80A0 MUX0 ADC0_SSMUX3_R
$4003.80A4 TS0 IE0 END0 D0 ADC0_SSCTL3_R
$4003.8028 SS3 SS2 SS1 SS0 ADC0_PSSI_R
$4003.8004 INR3 INR2 INR1 INR0 ADC0_RIS_R
$4003.8008 MASK3 MASK2 MASK1 MASK0 ADC0_IM_R
$4003.8FC4 Speed ADC0_PC_R

 31-12 11-0
$4003.80A8 DATA ADC0_SSFIFO3_R

Table 10.3. The TM4C ADC registers. Each register is 32 bits wide.
Set Speed to 0001 for slow speed operation. The ADC has four sequencers, but we will use only sequencer 3. We set the
ADC_SSPRI_R register to 0x3210 to make sequencer 3 the lowest priority. Because we are using just one sequencer, we
just need to make sure each sequencer has a unique priority. We set bits 15–12 (EM3) in the ADC_EMUX_R register to
specify how the ADC will be triggered. If we specify software start (EM3=0x0), then the software writes an 8 (SS3) to the
ADC_PSSI_R to initiate a conversion on sequencer 3. Bit 3 (INR3) in the ADC_RIS_R register will be set when the
conversion is complete. We can enable and disable the sequencers using the ADC_ACTSS_R register. Which channel we
sample is configured by writing to the ADC_SSMUX3_R register. The ADC_SSCTL3_R register specifies the mode of the
ADC sample. Clear TS0. We set IE0 so that the INR3 bit is set on ADC conversion, and clear it when no flags are needed.
We will set IE0 for both interrupt and busy-wait synchronization. When using sequencer 3, there is only one sample, so
END0 will always be set, signifying this sample is the end of the sequence. Clear the D0 bit. The ADC_RIS_R register has

EE319K Fall 2018 Extra sheets (do not turn in) Page 12

Valvano December 14, 2019 2:00pm-5:00pm

flags that are set when the conversion is complete, assuming the IE0 bit is set. Do not set bits in the ADC_IM_R register
because we do not want interrupts. Write one to ADC_ISC_R to clear the corresponding bit in the ADC_RIS_R register.

UART0 pins are on PA1 (transmit) and PA0 (receive). The UART0_IBRD_R and UART0_FBRD_R registers specify the
baud rate. The baud rate divider is a 22-bit binary fixed-point value with a resolution of 2-6. The Baud16 clock is created
from the system bus clock, with a frequency of (Bus clock frequency)/divider. The baud rate is
 Baud rate = Baud16/16 = (Bus clock frequency)/(16*divider)
We set bit 4 of the UART0_LCRH_R to enable the hardware FIFOs. We set both bits 5 and 6 of the UART0_LCRH_R to
establish an 8-bit data frame. The RTRIS is set on a receiver timeout, which is when the receiver FIFO is not empty and no
incoming frames have occurred in a 32-bit time period. The arm bits are in the UART0_IM_R register. To acknowledge an
interrupt (make the trigger flag become zero), software writes a 1 to the corresponding bit in the UART0_IC_R register.
We set bit 0 of the UART0_CTL_R to enable the UART. Writing to UART0_DR_R register will output on the UART. This
data is placed in a 16-deep transmit hardware FIFO. Data are transmitted first come first serve. Received data are place in a
16-deep receive hardware FIFO. Reading from UART0_DR_R register will get one data from the receive hardware FIFO.
The status of the two FIFOs can be seen in the UART0_FR_R register (FF is FIFO full, FE is FIFO empty). The standard
name for the UART0 ISR is UART0_Handler. RXIFLSEL specifies the receive FIFO level that causes an interrupt (010
means interrupt on ≥ ½ full, or 7 to 8 characters). TXIFLSEL specifies the transmit FIFO level that causes an interrupt (010
means interrupt on ≤ ½ full, or 9 to 8 characters).

 31–12 11 10 9 8 7–0 Name
$4000.C000 OE BE PE FE DATA UART0_DR_R

 31–3 3 2 1 0
$4000.C004 OE BE PE FE UART0_RSR_R

 31–8 7 6 5 4 3 2–0
$4000.C018 TXFE RXFF TXFF RXFE BUSY UART0_FR_R

 31–16 15–0
$4000.C024 DIVINT UART0_IBRD_R

 31–6 5–0
$4000.C028 DIVFRAC UART0_FBRD_R

 31–8 7 6 – 5 4 3 2 1 0
$4000.C02C SPS WPEN FEN STP2 EPS PEN BRK UART0_LCRH_R

 31–10 9 8 7 6–3 2 1 0
$4000.C030 RXE TXE LBE SIRLP SIREN UARTEN UART0_CTL_R

 31–6 5-3 2-0
$4000.C034 RXIFLSEL TXIFLSEL UART0_IFLS_R

 31-11 10 9 8 7 6 5 4
$4000.C038 OEIM BEIM PEIM FEIM RTIM TXIM RXIM UART0_IM_R
$4000.C03C OERIS BERIS PERIS FERIS RTRIS TXRIS RXRIS UART0_RIS_R
$4000.C040 OEMIS BEMIS PEMIS FEMIS RTMIS TXMIS RXMIS UART0_MIS_R
$4000.C044 OEIC BEIC PEIC FEIC RTIC TXIC RXIC UART0_IC_R

Table 11.2. UART0 registers. Each register is 32 bits wide. Shaded bits are zero.

