
The University of Texas at Austin
Department of Electrical and Computer Engineering

Introduction to Embedded Systems
EE319K (Gerstlauer), Spring 2013

Final Exam

Date: May 11, 2013

UT EID:

Printed Name:

Last, First

Your signature is your promise that you have not cheated and will not cheat on this exam, nor
will you help others to cheat on this exam:

Signature:

Instructions:
 Closed book and closed notes.
 No calculators or any electronic devices (turn cell phones off).
 Please be sure that your answers to all questions (and all supporting work that is required)

are contained in the space (boxes) provided.
 Anything outside the boxes will be ignored in grading.
 For all questions, unless otherwise stated, find the most efficient (time, resources)

solution.

Problem 1 15

Problem 2 25

Problem 3 20

Problem 4 15

Problem 5 25

Total 100

EE319K (Gerstlauer), Spring 2013, Final Exam 2
Name:

Problem 1 (15 points): Subroutines

Given the following C functions:

long max1(long a[2]) {
 long m;
 m = a[0];
 if (a[1] > m) m = a[1];
 return m;
}

void max2(long a, long b) {
 long data[2];
 data[0] = a; data[1] = b;
 return max1(data);
}

(a) Assume a calling convention in which only the first parameter of a function is passed via
register R0. All other parameters are passed via the stack and functions can freely use
registers R0-R3. Complete the partial assembly code generated for these two functions:

 AREA |.text|, CODE, READONLY, ALIGN=2

max1
 LDR R1,[R0]

 LDR R2,[R0,________]
 CMP R1,R2

 _______ n1
 MOV R1,R2
n1 MOV R0,R1
 BX LR

b EQU __________ ; input parameter ‘b’

dat0 EQU __________ ; local variable ‘data[0]’

dat1 EQU __________ ; local variable ‘data[1]’

max2
 _______________________ ; save registers

 _______________________ ; allocate ‘data’
 MOV R11,SP
 STR R0,[R11,#dat0] ; store first ‘data’ element
 LDR R0,[R11,#c] ; load ‘b’
 STR R0,[R11,#dat1] ; store second ‘data’ element
 ADD R0,R11,#dat0 ; pass address to ‘data’
 BL max1

 _______________________ ; de-allocate ‘data’

 _______________________ ; restore registers
 BX LR

EE319K (Gerstlauer), Spring 2013, Final Exam 3
Name:

(b) Assume that max2 is called with parameters max2(42,-14). Show the contents of the stack
frame of max2 at the point right before the BL max1 instruction gets executed. Mark any
allocated but uninitialized stack items with a ‘?’. Indicate the location of both stack and
frame pointer. Each entry below corresponds to a 32-bit word.

Problem 2 (25 points): Serial Communication

(a) Assume you are observing the following waveform on an oscilloscope attached to a serial
communication line. Assuming that the line was idle before, mark the frame boundaries
and indicate the start, stop and data bits within each observed frame

5V

0V

Time0 100us 200us 300us 400us

EE319K (Gerstlauer), Spring 2013, Final Exam 4
Name:

(b) What is the baud rate and bandwidth of the observed communication channel?

Baud rate Bandwidth (bytes/s)

(c) Assuming that ASCII characters are transmitted over the line, what partial message have

we observed so far?

(d) Assume that you want to implement a receiver that taps into the communication line to

observe and decode transmitted messages. Given the code template for the UART
initialization function below, fill in the blanks to complete the initialization code such
that it matches communication requirements and enables the receive FIFO with interrupts
on ¼ full and when idle. Assume that the systems is running at an 8MHz bus clock.

void UART0_Init(void) {
 SYSCTL_RCGC1_R |= 0x0001;
 SYSCTL_RCGC2_R |= 0x0001;
 UART0_CTL_R &= ~0x0001;

 UART0_IBRD_R __________________

 UART0_FBRD_R __________________

 UART0_LCRH_R = 0x0070;
 UART0_IFLS_R &= ~0x38;
 UART0_IFLS_R |= 0x80;

 UART0_IM_R ____________________

 UART0_CTL_R ____________________

 GPIO_PORTA_AFSEL_R |= 0x03;
 GPIO_PORTA_DEN_R |= 0x03;
 NVIC_PRI1_R = (NVIC_PRI1_R&0xFFFF00FF)|0x00004000;
 NVIC_EN0_R |= NVIC_EN0_INT5;
}

EE319K (Gerstlauer), Spring 2013, Final Exam 5
Name:

(e) Write the code for the UART interrupt handler. The handler is supposed to read ASCII

characters from the UART and put them into a global software FIFO until the UART
receive FIFO is empty. You can ignore errors (full conditions) of the software FIFO.

void UART0_Handler(void) {

 FIFO_Put(data);

}

Problem 3 (20 points): Finite State Machine

You are asked to implement a Mealy FSM that recognizes a certain pattern of ASCII characters
received over the serial port (see Problem 2). The FSM processes characters by reading from the
software FIFO at the beginning of each state. It outputs a ‘1’ for one character duration every
time the pattern is received in the input stream. The output of the FSM should be written to an
LED attached to PA0. Given the following state diagram:

other / 1

S2

‘a’..’z’
/ 0

S0 S1

‘a’..’z’
/ 0

other
/ 0

other / 0

‘0’..’9' / 0

(a) What input pattern does the FSM recognize?

EE319K (Gerstlauer), Spring 2013, Final Exam 6
Name:

(b) Define the C state structure to use in the FSM as well as the FSM array to encode the
given machine. Hint: there is a naïve and a smart way to encode input dependencies.
struct state {

};

typedef const struct state_stateType;

#define S0 _____________________
#define S1 _____________________
#define S2 _____________________

stateType FSM[3] = {

};

(c) Fill in the blanks to write the main program that implements the recognizer.
#define PA0 (*((volatile unsigned long *)0x40004004))

stateType *current = S0;

void main(void) {

 PLL_Init();
 UART0_Init();
 PortA_Init();

 while(1) {
 FIFO_Get(&input);

 }
}

EE319K (Gerstlauer), Spring 2013, Final Exam 7
Name:

Problem 4 (15 points): Digital to Analog Conversion

(a) Design a 3-bit binary-weighted DAC interfaced to PB2 through PB0 using 3kΩ, 6kΩ and
12kΩ resistors. What is the output voltage Vout when applying bit patterns 111 and 101?

PB0

PB1

PB2

Vout

(b) What is the voltage at Vout for the bit pattern 111 if a load of 12kΩ is applied between

Vout and ground?

EE319K (Gerstlauer), Spring 2013, Final Exam 8
Name:

Problem 6 (25 points): Communication System

You are asked to implement the receiver side of a communication system that uses sound to
wirelessly transmit a binary signal. The signal is transmitted by modulating a sound wave at
1000Hz such that the sound is on when the binary digit being transmitted is one and off
otherwise (so-called Binary Amplitude Shift Keying, BASK modulation).

(a) Assume that the microphone can convert air pressure changes of sound waves into a

voltage between 0 and 3V with a precision corresponding to only 4 bits. What is the
resolution of the system and what 4-bit value will get sampled for a microphone voltage
of 2.25V?

 Resolution (V) Sampled value at 2.25V

(b) What is the minimum rate at which the receiver needs to sample the sound signal in order

to be able to properly decode it?

Modulator DAC

ADC

Binary
signal

Timer

De-
Modulator

Binary
signal

EE319K (Gerstlauer), Spring 2013, Final Exam 9
Name:

(c) In order to improve decoding and demodulation, we want to oversample the received
sound signal at a rate of 32000Hz. Given the template below for a system running at a
bus clock of 8MHz, fill in the blanks to complete the SysTick initialization routine to set
the SysTick interrupt priority to 2 and trigger SysTick interrupts at the desired sampling
rate. Make sure your code is friendly.

SysTick_Init
 LDR R1, =NVIC_ST_CTRL_R
 MOV R0, #0
 STR R0, [R1]
 LDR R1, =NVIC_ST_RELOAD_R

 STR R0, [R1]
 LDR R1, =NVIC_SYS_PRI3_R
 LDR R0, [R1]

 STR R0, [R1]
 LDR R1, =NVIC_ST_CTRL_R

 STR R0, [R1]
 BX LR

(d) Finally, write the SysTick_Handler that calls an ADC_In routine to acquire 4-bit samples
and collect it into a global Samples array. Every time 32 new samples have been collected,
the handler is supposed to call a Demodulate function and put a zero or one into a global
mailbox depending on whether the Demodulate result was greater than the predefined
THRESHOLD. ADC_In and Demodulate functions are declared externally as follows:

ADC.h:
// Acquire 4-bit sample
unsigned char ADC_In(void);

Demodulate.h:
// Demodulate signal of 32 samples into amplitude
unsigned short Demodulate(unsigned char signal[32]);

Make sure that your code defines and uses the following variables:

 All mailbox-related variables should be public and permanently allocated.
 Samples should be a permanently allocated array that is private to the SysTick.c

file.
 Cur should be a permanently allocated variable that is private to the

SysTick_Handler. It should be initialized to zero and used to index into the
Samples array.

 Any other necessary variables should be temporary and private to the handler.

EE319K (Gerstlauer), Spring 2013, Final Exam 10
Name:

SysTick.h

void SysTick_Handler(void);

SysTick.c

#define THRESHOLD 6000

#include “ADC.h”
#include “Demodulate.h”
#include “SysTick.h”

void SysTick_Handler(void)
{

}

EE319K (Gerstlauer), Spring 2013, Final Exam 11

Memory access instructions
 LDR Rd, [Rn] ; load 32-bit number at [Rn] to Rd
 LDR Rd, [Rn,#off] ; load 32-bit number at [Rn+off] to Rd
 LDR Rd, =value ; set Rd equal to any 32-bit value (PC rel)
 LDRH Rd, [Rn] ; load unsigned 16-bit at [Rn] to Rd
 LDRH Rd, [Rn,#off] ; load unsigned 16-bit at [Rn+off] to Rd
 LDRSH Rd, [Rn] ; load signed 16-bit at [Rn] to Rd
 LDRSH Rd, [Rn,#off] ; load signed 16-bit at [Rn+off] to Rd
 LDRB Rd, [Rn] ; load unsigned 8-bit at [Rn] to Rd
 LDRB Rd, [Rn,#off] ; load unsigned 8-bit at [Rn+off] to Rd
 LDRSB Rd, [Rn] ; load signed 8-bit at [Rn] to Rd
 LDRSB Rd, [Rn,#off] ; load signed 8-bit at [Rn+off] to Rd
 STR Rt, [Rn] ; store 32-bit Rt to [Rn]
 STR Rt, [Rn,#off] ; store 32-bit Rt to [Rn+off]
 STRH Rt, [Rn] ; store least sig. 16-bit Rt to [Rn]
 STRH Rt, [Rn,#off] ; store least sig. 16-bit Rt to [Rn+off]
 STRB Rt, [Rn] ; store least sig. 8-bit Rt to [Rn]
 STRB Rt, [Rn,#off] ; store least sig. 8-bit Rt to [Rn+off]
 PUSH {Rt} ; push 32-bit Rt onto stack
 POP {Rd} ; pop 32-bit number from stack into Rd
 ADR Rd, label ; set Rd equal to the address at label
 MOV{S} Rd, <op2> ; set Rd equal to op2
 MOV Rd, #im16 ; set Rd equal to im16, im16 is 0 to 65535
 MVN{S} Rd, <op2> ; set Rd equal to -op2
Branch instructions
 B label ; branch to label Always
 BEQ label ; branch if Z == 1 Equal
 BNE label ; branch if Z == 0 Not equal
 BCS label ; branch if C == 1 Higher or same, unsigned ≥
 BHS label ; branch if C == 1 Higher or same, unsigned ≥
 BCC label ; branch if C == 0 Lower, unsigned <
 BLO label ; branch if C == 0 Lower, unsigned <
 BMI label ; branch if N == 1 Negative
 BPL label ; branch if N == 0 Positive or zero
 BVS label ; branch if V == 1 Overflow
 BVC label ; branch if V == 0 No overflow
 BHI label ; branch if C==1 and Z==0 Higher, unsigned >
 BLS label ; branch if C==0 or Z==1 Lower or same, unsigned ≤
 BGE label ; branch if N == V Greater than or equal, signed ≥
 BLT label ; branch if N != V Less than, signed <
 BGT label ; branch if Z==0 and N==V Greater than, signed >
 BLE label ; branch if Z==1 and N!=V Less than requal,signed ≤
 BX Rm ; branch indirect to location specified by Rm
 BL label ; branch to subroutine at label
 BLX Rm ; branch to subroutine indirect specified by Rm
Interrupt instructions
 CPSIE I ; enable interrupts (I=0)
 CPSID I ; disable interrupts (I=1)
Logical instructions
 AND{S} {Rd,} Rn, <op2> ; Rd=Rn&op2 (op2 is 32 bits)
 ORR{S} {Rd,} Rn, <op2> ; Rd=Rn|op2 (op2 is 32 bits)
 EOR{S} {Rd,} Rn, <op2> ; Rd=Rn^op2 (op2 is 32 bits)
 BIC{S} {Rd,} Rn, <op2> ; Rd=Rn&(~op2) (op2 is 32 bits)
 ORN{S} {Rd,} Rn, <op2> ; Rd=Rn|(~op2) (op2 is 32 bits)
 LSR{S} Rd, Rm, Rs ; logical shift right Rd=Rm>>Rs (unsigned)
 LSR{S} Rd, Rm, #n ; logical shift right Rd=Rm>>n (unsigned)
 ASR{S} Rd, Rm, Rs ; arithmetic shift right Rd=Rm>>Rs (signed)
 ASR{S} Rd, Rm, #n ; arithmetic shift right Rd=Rm>>n (signed)
 LSL{S} Rd, Rm, Rs ; shift left Rd=Rm<<Rs (signed, unsigned)
 LSL{S} Rd, Rm, #n ; shift left Rd=Rm<<n (signed, unsigned)

EE319K (Gerstlauer), Spring 2013, Final Exam 12

Arithmetic instructions
 ADD{S} {Rd,} Rn, <op2> ; Rd = Rn + op2
 ADD{S} {Rd,} Rn, #im12 ; Rd = Rn + im12, im12 is 0 to 4095
 SUB{S} {Rd,} Rn, <op2> ; Rd = Rn - op2
 SUB{S} {Rd,} Rn, #im12 ; Rd = Rn - im12, im12 is 0 to 4095
 RSB{S} {Rd,} Rn, <op2> ; Rd = op2 - Rn
 RSB{S} {Rd,} Rn, #im12 ; Rd = im12 – Rn
 CMP Rn, <op2> ; Rn – op2 sets the NZVC bits
 CMN Rn, <op2> ; Rn - (-op2) sets the NZVC bits
 MUL{S} {Rd,} Rn, Rm ; Rd = Rn * Rm signed or unsigned
 MLA Rd, Rn, Rm, Ra ; Rd = Ra + Rn*Rm signed or unsigned
 MLS Rd, Rn, Rm, Ra ; Rd = Ra - Rn*Rm signed or unsigned
 UDIV {Rd,} Rn, Rm ; Rd = Rn/Rm unsigned
 SDIV {Rd,} Rn, Rm ; Rd = Rn/Rm signed

Notes Ra Rd Rm Rn Rt represent 32-bit registers
 value any 32-bit value: signed, unsigned, or address
 {S} if S is present, instruction will set condition codes
 #im12 any value from 0 to 4095
 #im16 any value from 0 to 65535
 {Rd,} if Rd is present Rd is destination, otherwise Rn
 #n any value from 0 to 31
 #off any value from -255 to 4095
 label any address within the ROM of the microcontroller
 op2 the value generated by <op2>

Examples of flexible operand <op2> creating the 32-bit number. E.g., Rd = Rn+op2
 ADD Rd, Rn, Rm ; op2 = Rm
 ADD Rd, Rn, Rm, LSL #n ; op2 = Rm<<n Rm is signed, unsigned
 ADD Rd, Rn, Rm, LSR #n ; op2 = Rm>>n Rm is unsigned
 ADD Rd, Rn, Rm, ASR #n ; op2 = Rm>>n Rm is signed
 ADD Rd, Rn, #constant ; op2 = constant, where X and Y are hexadecimal digits:

 produced by shifting an 8-bit unsigned value left by any number of bits
 in the form 0x00XY00XY
 in the form 0xXY00XY00
 in the form 0xXYXYXYXY

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12

R13 (MSP)
R14 (LR)
R15 (PC)

Stack pointer
Link register

Program counter

General
purpose
registers

256k Flash
ROM

64k RAM

I/O ports

Internal I/O
PPB

0x0000.0000

0x0003.FFFF

0x2000.0000

0x2000.FFFF

0x4000.0000

0x41FF.FFFF

0xE000.0000

0xE004.0FFF

Condition code bits
N negative
Z zero
V signed overflow
C carry or
 unsigned overflow

EE319K (Gerstlauer), Spring 2013, Final Exam 13

Address 7 6 5 4 3 2 1 0 Name
$400F.E108 GPIOH GPIOG GPIOF GPIOE GPIOD GPIOC GPIOB GPIOA SYSCTL_RCGC2_R
$4000.43FC DATA DATA DATA DATA DATA DATA DATA DATA GPIO_PORTA_DATA_R
$4000.4400 DIR DIR DIR DIR DIR DIR DIR DIR GPIO_PORTA_DIR_R
$4000.4420 SEL SEL SEL SEL SEL SEL SEL SEL GPIO_PORTA_AFSEL_R
$4000.451C DEN DEN DEN DEN DEN DEN DEN DEN GPIO_PORTA_DEN_R

Table 4.5. Some LM3S1968 parallel ports. Each register is 32 bits wide. Bits 31 – 8 are zero.

We set the direction register (e.g., GPIO_PORTA_DIR_R) to specify which pins are input (0) and which are output (1). We
will set bits in the alternative function register when we wish to activate the alternate functions (not GPIO). We use the data
register (e.g., GPIO_PORTA_DATA_R) to perform input/output on the port. For each I/O pin we wish to use whether GPIO
or alternate function we must enable the digital circuits by setting the bit in the enable register (e.g.,
GPIO_PORTA_DEN_R).

Address 31 30 29-7 6 5 4 3 2 1 0 Name
0xE000E100 G F … UART1 UART0 E D C B A NVIC_EN0_R
0xE000E104 … UART2 H NVIC_EN1_R

Address 31-24 23-17 16 15-3 2 1 0 Name

$E000E010 0 0 COUNT 0 CLK_SRC INTEN ENABLE NVIC_ST_CTRL_R
$E000E014 0 24-bit RELOAD value NVIC_ST_RELOAD_R
$E000E018 0 24-bit CURRENT value of SysTick counter NVIC_ST_CURRENT_R

Address 31-29 28-24 23-21 20-8 7-5 4-0 Name
$E000ED20 TICK 0 PENDSV 0 DEBUG 0 NVIC_SYS_PRI3_R

Table 9.6. SysTick registers.

Table 9.6 shows the SysTick registers used to create a periodic interrupt. SysTick has a 24-bit counter that decrements at
the bus clock frequency. Let fBUS be the frequency of the bus clock, and let n be the value of the RELOAD register. The
frequency of the periodic interrupt will be fBUS/(n+1). First, we clear the ENABLE bit to turn off SysTick during
initialization. Second, we set the RELOAD register. Third, we write to the NVIC_ST_CURRENT_R value to clear the
counter. Lastly, we write the desired mode to the control register, NVIC_ST_CTRL_R. To turn on the SysTick, we set the
ENABLE bit. We must set CLK_SRC=1, because CLK_SRC=0 external clock mode is not implemented on the
LM3S/LM4F family. We set INTEN to enable interrupts. The standard name for the SysTick ISR is SysTick_Handler.

Address 31-17 16 15-10 9 8 7-0 Name
$400F.E000 ADC MAXADCSPD SYSCTL_RCGC0_R

 31-14 13-12 11-10 9-8 7-6 5-4 3-2 1-0
$4003.8020 SS3 SS2 SS1 SS0 ADC_SSPRI_R

 31-16 15-12 11-8 7-4 3-0
$4003.8014 EM3 EM2 EM1 EM0 ADC_EMUX_R

 31-4 3 2 1 0
$4003.8000 ASEN3 ASEN2 ASEN1 ASEN0 ADC_ACTSS_R
$4003.80A0 MUX0 ADC_SSMUX3_R
$4003.80A4 TS0 IE0 END0 D0 ADC_SSCTL3_R
$4003.8028 SS3 SS2 SS1 SS0 ADC_PSSI_R
$4003.8004 INR3 INR2 INR1 INR0 ADC_RIS_R
$4003.8008 MASK3 MASK2 MASK1 MASK0 ADC_IM_R
$4003.800C IN3 IN2 IN1 IN0 ADC_ISC_R

 31-10 9-0
$4003.80A8 DATA ADC_SSFIFO3

Table 10.3. The LM3S ADC registers. Each register is 32 bits wide.

Set MAXADCSPD to 00 for slow speed operation. The ADC has four sequencers, but we will use only sequencer 3. We set
the ADC_SSPRI_R register to 0x3210 to make sequencer 3 the lowest priority. Because we are using just one sequencer,
we just need to make sure each sequencer has a unique priority. We set bits 15–12 (EM3) in the ADC_EMUX_R register
to specify how the ADC will be triggered. If we specify software start (EM3=0x0), then the software writes an 8 (SS3) to

EE319K (Gerstlauer), Spring 2013, Final Exam 14

the ADC_PSSI_R to initiate a conversion on sequencer 3. Bit 3 (INR3) in the ADC_RIS_R register will be set when the
conversion is complete. We can enable and disable the sequencers using the ADC_ACTSS_R register. There are eight on
the LM3S1968. Which channel we sample is configured by writing to the ADC_SSMUX3_R register. The
ADC_SSCTL3_R register specifies the mode of the ADC sample. Clear TS0. We set IE0 so that the INR3 bit is set on
ADC conversion, and clear it when no flags are needed. We will set IE0 for both interrupt and busy-wait synchronization.
When using sequencer 3, there is only one sample, so END0 will always be set, signifying this sample is the end of the
sequence. Clear the D0 bit. The ADC_RIS_R register has flags that are set when the conversion is complete, assuming the
IE0 bit is set. Do not set bits in the ADC_IM_R register because we do not want interrupts.

UART0 pins are on PA1 (transmit) and PA0 (receive). The UART0_IBRD_R and UART0_FBRD_R registers specify the
baud rate. The baud rate divider is a 22-bit binary fixed-point value with a resolution of 2-6. The Baud16 clock is created
from the system bus clock, with a frequency of (Bus clock frequency)/divider. The baud rate is
 Baud rate = Baud16/16 = (Bus clock frequency)/(16*divider)
We set bit 4 of the UART0_LCRH_R to enable the hardware FIFOs. We set both bits 5 and 6 of the UART0_LCRH_R to
establish an 8-bit data frame. The RTRIS is set on a receiver timeout, which is when the receiver FIFO is not empty and no
incoming frames have occurred in a 32-bit time period. The arm bits are in the UART0_IM_R register. To acknowledge an
interrupt (make the trigger flag become zero), software writes a 1 to the corresponding bit in the UART0_IC_R register.
We set bit 0 of the UART0_CTL_R to enable the UART. Writing to UART0_DR_R register will output on the UART. This
data is placed in a 16-deep transmit hardware FIFO. Data are transmitted first come first serve. Received data are place in a
16-deep receive hardware FIFO. Reading from UART0_DR_R register will get one data from the receive hardware FIFO.
The status of the two FIFOs can be seen in the UART0_FR_R register (FF is FIFO full, FE is FIFO empty). The standard
name for the UART0 ISR is UART0_Handler. RXIFLSEL specifies the receive FIFO level that causes an interrupt (010
means interrupt on ≥ ½ full, or 7 to 8 characters). TXIFLSEL specifies the transmit FIFO level that causes an interrupt (010
means interrupt on ≤ ½ full, or 9 to 8 characters).

 31–12 11 10 9 8 7–0 Name
$4000.C000 OE BE PE FE DATA UART0_DR_R

 31–3 3 2 1 0
$4000.C004 OE BE PE FE UART0_RSR_R

 31–8 7 6 5 4 3 2–0
$4000.C018 TXFE RXFF TXFF RXFE BUSY UART0_FR_R

 31–16 15–0
$4000.C024 DIVINT UART0_IBRD_R

 31–6 5–0
$4000.C028 DIVFRAC UART0_FBRD_R

 31–8 7 6 – 5 4 3 2 1 0
$4000.C02C SPS WPEN FEN STP2 EPS PEN BRK UART0_LCRH_R

 31–10 9 8 7 6–3 2 1 0
$4000.C030 RXE TXE LBE SIRLP SIREN UARTEN UART0_CTL_R

 31–6 5-3 2-0
$4000.C034 RXIFLSEL TXIFLSEL UART0_IFLS_R

 31-11 10 9 8 7 6 5 4
$4000.C038 OEIM BEIM PEIM FEIM RTIM TXIM RXIM UART0_IM_R
$4000.C03C OERIS BERIS PERIS FERIS RTRIS TXRIS RXRIS UART0_RIS_R
$4000.C040 OEMIS BEMIS PEMIS FEMIS RTMIS TXMIS RXMIS UART0_MIS_R
$4000.C044 OEIC BEIC PEIC FEIC RTIC TXIC RXIC UART0_IC_R

Table 11.2. UART0 registers. Each register is 32 bits wide. Shaded bits are zero.

EE319K (Gerstlauer), Spring 2013, Final Exam 15

ASCII Table

BITS 4 to 6
 0 1 2 3 4 5 6 7
 0 NUL DLE SP 0 @ P ` p
B 1 SOH DC1 ! 1 A Q a q
I 2 STX DC2 " 2 B R b r
T 3 ETX DC3 # 3 C S c s
S 4 EOT DC4 $ 4 D T d t
 5 ENQ NAK % 5 E U e u
0 6 ACK SYN & 6 F V f v
 7 BEL ETB ' 7 G W g w
T 8 BS CAN (8 H X h x
O 9 HT EM) 9 I Y i y
 A LF SUB * : J Z j z
3 B VT ESC + ; K [k {
 C FF FS , < L \ l ;
 D CR GS - = M] m }
 E SO RS . > N ^ n ~

