
EE319K Spring 2015 Final Exam Solutions Page 1

Janapa Reddi, Telang, Tiwari, Valvano, Yerraballi May 14, 2015 7:00pm-10:00pm

Final Exam Solutions
Date: May 14, 2015

UT EID: Circle one: MT, NT, JV, RY, VJR

Printed Name:

Last, First

Your signature is your promise that you have not cheated and will not cheat on this exam, nor will you help others to cheat
on this exam. You will not reveal the contents of this exam to others who are taking the makeup thereby giving them an
undue advantage:

Signature:

Instructions:
• Closed book and closed notes. No books, no papers, no data sheets (other than the last four pages of this Exam)
• No devices other than pencil, pen, eraser (no calculators, no electronic devices), please turn cell phones off.
• Please be sure that your answers to all questions (and all supporting work that is required) are contained in the

space (boxes) provided. Anything outside the boxes will be ignored in grading.
• You have 180 minutes, so allocate your time accordingly.
• For all questions, unless otherwise stated, find the most efficient (time, resources) solution.
• Unless otherwise stated, make all I/O accesses friendly.
• Please read the entire exam before starting. See supplement pages for Device I/O registers.

Problem 1 10

Problem 2 10

Problem 3 10

Problem 4 10

Problem 5 10

Problem 6 10

Problem 7 12

Problem 8 8

Problem 9 20

Total 100

EE319K Spring 2015 Final Exam Solutions Page 2

Janapa Reddi, Telang, Tiwari, Valvano, Yerraballi May 14, 2015 7:00pm-10:00pm

(10) Question 1. Please place one letter/number for each box. Choose the best answer to each question.
Part i) Why do we sometimes use the phase lock loop? ……………………………………….

Part ii) Why did we use the open collector 7406 gate to interface the LED? …………………………

Part iii) Why did we use fixed-point to represent measured distance? ………………………………

Part iv) Why did we dump input/output data into buffers in Lab 4? …………………………

Part v) Why do we put programs in flash memory? …………………………………………

Part vi) Why does the UART use start and stop bits? …………………………………………

Part Vii) Why do we specify a global variable as static? ……………………………………

Part viii) Why do we specify a local variable as static? …………………………………………

Part ix) Why do the I/O definitions have volatile in the definitions? ……………………

Part x) Why do we specify a function parameter as const? …………………………………………

A) The Cortex M has a Harvard Architecture.
B) The PC always fetches instructions from flash memory in a von Neumann architecture.
C) Some machine instructions are 16 bits and others are 32 bits.
D) It reduces the scope of the data making the data private to the file.
E) The Cortex M processor on the TM4C123 does not support floating point operations.
F) The left/right shift is faster than multiply/divide.
G) In order to represent non-integer values.
H) To create bounded latency and provide for real-time operation.
I) It is nonintrusive debugging.
J) It is minimally intrusive debugging.
K) The interface must control both voltage and current so the LED is the proper brightness.
L) The LED needs more than 3.3 V.
M) The LED needs more than 8 mA.
N) Buffers can store more data than can be printed using the UART.
O) It creates a negative logic interface.
P) To satisfy the Nyquist Theorem.
Q) It illustrates to our client how the program works.
R) Because the UART sends a data bit value 0 as 0V and a data bit value 1 at 3.3V.
S) Message can vary in length and it is used signify the end of the message.
T) The receiver uses it to synchronize timing with the transmitter.
U) It provides a mechanism to minimize bandwidth.
V) Black box testing is more detailed than white box testing.
W) It decouples the production of data from the consumption of data.
X) It provides for ceiling and floor.
Y) If we slow down processor execution, it will save power. If we execute faster, we do more processing.
Z) It provides for debugging, allowing you to download code and debug your software.
1) In order to handle either positive or negative values.
2) To allocate it in RAM, making it persistent across subroutine calls.
3) To allocate it in ROM, and ROM is nonvolatile.
4) To tell the compiler to fetch a new value each time it is accessed.
5) To tell the compiler the subroutine should not change its value.
6) Specifies it as an address or a pointer.

Y

M

G

J

3

T

D

4

5

2

EE319K Spring 2015 Final Exam Solutions Page 3

Janapa Reddi, Telang, Tiwari, Valvano, Yerraballi May 14, 2015 7:00pm-10:00pm

(10) Question 2
(2) Part a) What are the addressing modes used in the following ARM instructions?

Instructions Addressing Modes
MOV R0, #10 Immediate mode
LDR R0, [R1] Indexed addressing
BL sublabel PC-relative
ADD R2, R1 Register
PUSH {R4-R11, LR} Register list

(2) Part b) In order to specify the desired baud rate for a bus clock frequency is 80 MHz, the divider
has been correctly calculated as 50.125. What values should the UART0_IBRD_R and the
UART0_FBRD_R registers be initialized to?

UART0_IBRD_R =

UART_FBRD_R =

(2) Part c) If the ADC sampling frequency is 100 Hz, what range of frequencies in the analog input
can safely be represented in the digital samples?

(2) Part d) Consider an LED with a desired operating point of (Id,Vd). Let VOL VOH
IOL and IOH be the operating parameters of the digital output on PA1. What is the
design equation needed to calculate the desired resistance R for this circuit?

(2) Part e) What is the relationship between the range, precision and resolution of an ADC, given that
the sampling frequency is f?

50

8

Nyquist Theorem, 0 to 50 Hz

Range = precision * resolution

R = (3.3 - Vd - VOL)/Id

PA1

R

+3.3

EE319K Spring 2015 Final Exam Solutions Page 4

Janapa Reddi, Telang, Tiwari, Valvano, Yerraballi May 14, 2015 7:00pm-10:00pm

(10) Question 3. Reverse-engineer UART parameters from the trace observed at a receiver below.

(2) Part a) What is the data value transferred over the UART in hexadecimal?

(1) Part b) What is the baud rate in bits/sec?

(2) Part c) What is the maximum bandwidth in bytes per second?

(3) Part d) Assume the UART has been initialized with busy wait synchronization. Write a C function
that reads one character from the UART.

 (2) Part e) Assume the receiver software uses busy-wait synchronization. The main program reads all
the data available from the UART and then processes the data. The maximum time required to process
the data is 125us. Is it possible to lose data? If so, explain how to change the UART so no data is lost.
If no data can be lost, explain how the UART works so no data are lost.

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
 Time (in micro seconds)

Volt

1001_0011 -> 0x93

1/5us = 200k bit/s

0.8*200/8 =20k byte/s

Add FIFOs for rate matching. At least 3 bytes. The TM4C123 will not lose data because it has a 16-element FIFO

char UART_Read(void){
 while((UART0_FR_R & 0x0010) == 0); // RXFE
 return ((char)(UART0_DR_R & 0xFF));}
}

EE319K Spring 2015 Final Exam Solutions Page 5

Janapa Reddi, Telang, Tiwari, Valvano, Yerraballi May 14, 2015 7:00pm-10:00pm

(10) Question 4. Analog Devices AD7641 is an 18-bit, 0 to 2.5V range, 2MSPS SAR ADC. A student
is attempting to capture a sinusoid signal of frequency 7.5 kHz using the AD7641. Using the 18-bit
ADC and periodic interrupt, he programs the system to interrupt at a frequency of 20 kHz. Each time
the system interrupts, he calls AD7641_In() to get one sample of the signal from the AD7641.

(2) Part a) If the AD7641 input is 1.25 V, what will be the digital value in hex returned by this ADC?

(4) Part b) Assuming the first sample is taken at time t=0, mark the (time, voltage) points on the plot
below specifying the data collected by the ADC. Red dots are the digital samples

(4) Part c) Is it possible to recreate the original signal from the captured samples? If your answer is
yes, explain how. If your answer is no, what is the term used to refer to this loss of information?

0.0

0.5

1.0

1.5

2.0

2.5

0 50 100 150 200 250 300 350 400 450 500

Vo
lta

ge
 In

pu
t (

V
)

Time (us)

217=0x20000

Yes, it is possible because 7.5 kHz is less than ½ fs according to the Nyquist
Theorem

EE319K Spring 2015 Final Exam Solutions Page 6

Janapa Reddi, Telang, Tiwari, Valvano, Yerraballi May 14, 2015 7:00pm-10:00pm

(10) Question 5. You will design an embedded system using a Moore FSM. There are two inputs
(PB3, PB2) and two outputs (PB1, PB0). The FSM runs in the background with 1 kHz SysTick
periodic interrupts. Initially both outputs will be low, and you may also assume both inputs are
initially low. If PB3 rises before PB2 rises, then set PB1 high. If PB2 rises before PB3 rises, then set
PB0 high. If both rise during the same 1-ms window, set both PB1 and PB0 high. After either or both
PB1 and/or PB0 become high, let the output remain fixed. The initial state is s=0.

(4) Part a) Show the FSM graph in Moore format. Full credit for the solution with the fewest states.

(6) Part b) The struct and the main program are fixed. Show the C code that places the FSM in
ROM, and write the SysTick ISR. PORTB_Init initializes PB3-PB0 and makes the outputs low.
SysTick_Init initializes interrupts at 1 kHz. PORTB_Init and SysTick_Init are given. Full
credit awarded for friendly access and good programming style. The initial state will be s=0.

const struct State{
 uint32_t out;
 uint32_t next[4];
};
typedef const struct State State_t;
uint32_t s; // state number

void main(void){ PORTB_Init();
 s = 0; // initial state
 SysTick_Init();
 EnableInterrupts();
 while(1){}}
void SysTick_Handler(void){

// Initialize array of states
#define Check 0
#define PB2 1
#define PB3 2
#define Both 3
State_t FSM[4]={
 {0, { Check,PB2, PB3,Both }},
 {1, { PB2, PB2, PB2, PB2 }},
 {2, { PB3, PB3, PB3, PB3 }},
 {3, { Both, Both,Both,Both}}};

// read input

 in = GPIO_PORTB_DATA_R&0x0C)>>2;

// change state

 s = FSM[s].next[in];

// friendly write output
 out = GPIO_PORTB_DATA_R&(~0x03);
 out |= FSM[s].out;
 GPIO_PORTB_DATA_R = out;

}

Init

Check
00

11

01
PB2
01

00,01,
10,11

PB3
10

00,01,
10,11

Both
11

00,01,
10,11

10

00

EE319K Spring 2015 Final Exam Solutions Page 7

Janapa Reddi, Telang, Tiwari, Valvano, Yerraballi May 14, 2015 7:00pm-10:00pm

(10) Question 6. (a): You are given two 1 kΩ resistors and four 2 kΩ resistors. Build a 3-bit DAC
circuit (connected to PE2, PE1, PE0) using *all* resistors. Complete the table below where a few of
the input logic voltage values at PE2, PE1, PE0 are shown. Calculate the output voltage Vout of the
DAC for those input values given that VOH = 5.0V, and VOL = 0V.

PE2 PE1 PE0 Vout
0 0 0 0V
0 0 1 0.625V
0 1 0 1.25V
1 0 0 2.5V

(b) The output of the DAC circuit you built in part (a) is now connected to a speaker whose resistance
is very low and can be approximated to be 0 Ω. Calculate the current through the speaker when the
logic voltage values at PE2, PE1, PE0 are 100. Show your work

Microcontroller

 PE2

PE1

PE0

+5.0V

For the R-2R ladder circuit:
Current = 5/2k = 2.5 mA

For the weighted DAC circuit:
Current = 5/1k = 5mA

PE2

PE1

PE0

Microcontroller

1kΩ

2kΩ

2kΩ DACout

2kΩ

1kΩ

2kΩ

PE2

PE1

PE0

Microcontroller
1kΩ

2kΩ

2kΩ
DACout2kΩ

1kΩ

2kΩ

PE2

PE1

PE0

Microcontroller

1kΩ

2kΩ

2kΩ DACout
2kΩ

1kΩ

2kΩ

PE2

PE1

PE0

Microcontroller

1kΩ

2kΩ

2kΩ

DACout

2kΩ

1kΩ
2kΩ

EE319K Spring 2015 Final Exam Solutions Page 8

Janapa Reddi, Telang, Tiwari, Valvano, Yerraballi May 14, 2015 7:00pm-10:00pm

(12) Question 7: FIFO
(2) Part a) What is the difference between FIFO and Mailbox?

Mailbox holds one piece of data, while a FIFO can hold multiple data in a first in first out manner.

(10) Part b) Write a C program that implements FIFO using two stack data structures. You have to
implement the Fifo_Get function using two stacks. Fifo_Put is already given to you. Return a
value of -1 if the FIFO is empty. The stack data functions are given to you, having push, pop and empty
functions that you must use. The function prototypes for these functions are given below.
// Prototypes of the stack functions that you can use
// Assume stacks do not overflow (infinite size)
int pop1(); // Gets the element at the top of the stack1
void push1(int); // Puts the element at the top of the stack1
int empty1(); // Returns 1 if stack1 is empty, 0 otherwise
int pop2(); // Gets the element at the top of the stack2
void push2(int); // Puts the element at the top of the stack2
int empty2(); // Returns 1 if stack2 is empty, 0 otherwise

// Put an element into the back of the FIFO.
// data is never -1 (the error code)
void Fifo_Put(int data) {
 push1(data); // pushes element data onto stack1
}

// Get the element at the head of the FIFO
int Fifo_Get(void) {
 int value;
 if (!empty2()) {
 return pop2();
 }

while (!empty1()) {
 value = pop1();
 push2(value);
 }

if (!empty2() {
return pop2();

}
return -1;

}

EE319K Spring 2015 Final Exam Solutions Page 9

Janapa Reddi, Telang, Tiwari, Valvano, Yerraballi May 14, 2015 7:00pm-10:00pm

(8) Question 8: Convert the C code into assembly, using local variable allocation phases. Remember,
local variables use the stack, not registers. Put exactly one assembly line into each box.

; *****binding phase***************

; 1)*****allocation phase *********
calc PUSH {R4,LR}

; 2)******access phase ************
 MOV R0,#0

 MOV R1,#255

 ADD R0,R1 ;R0=sum+n

 SUBS R1,#1 ;n-1

 BNE loop

; 3)******deallocation phase *****

 POP {R4,PC} ;R0=sum

uint16_t calc(void){
 uint16_t sum;

 uint16_t n;

 sum = 0;

 for(n=255; n>0; n--) {
 sum=sum+n;
 }

 return sum;
}

sum EQU 0 ;16-bit unsigned number

n EQU 2 ;16-bit unsigned number

 SUB SP,#4 ;allocate 4 bytes

 STRH R0,[SP,#sum] ;sum=0

 STRH R1,[SP,#n] ;n=255

 STRH R0,[SP,#sum] ;sum=sum+n

 LDRH R0,[SP,#sum] ;R0=sum

loop LDRH R1,[SP,#n] ;R1=n

 LDRH R1,[SP,#n] ;R1=n

 ADD SP,#4 ;deallocation

 STRH R1,[SP,#n] ;n=n-1

EE319K Spring 2015 Final Exam Solutions Page 10

Janapa Reddi, Telang, Tiwari, Valvano, Yerraballi May 14, 2015 7:00pm-10:00pm

(20) Question 9: (Program) Many of you could not play your ideal music for Lab 10. Valvano had
enough with people asking for Full licenses on Keil, he knows sound files are the source of the
problem, they are simply too big. You are told to change the coding of the sound files so the resulting
array packs two 4-bit samples into one byte, resulting in a compression ratio of 2:1. All wav files are
converted to 4-bit samples at 8 kHz. For example the first ten 4-bit samples of the start sound (see
below) are 8,9,9,10,11,11,12,14,15,15. Notice 8,9 are “packed” into the byte 0x89. During play time,
the packed values are decompressed into their original form and sent to the DAC. The game has 4
sounds, each in a different array named startS, shootS, deathS and quietS, each of a different
length. The following code declares the constants, variables and structure used in the solution. Read the
code carefully and answer the below questions.
#define start 0
#define shoot 1
#define death 2
#define quiet 3

const uint8_t startS[450] = {0x89,0x9A,0xBB,0xCE,0xFF … };
const uint8_t shootS[280] = { … };
const uint8_t deathS[8] = {0x8B,0xDE,0xFE,0xDB,0x85,0x32,0x12,0x35};
const uint8_t quietS[1] = {0x88};
struct sound{
 uint32_t length; // number of bytes in the array
 const uint8_t *samples; // pointer to the array
};
typedef struct sound Sound_t;

// sounds is the array of structs one per sound
Sound_t sounds[4] = {{450,startS},{280,shootS},{8,deathS},{1,quietS}};

uint32_t cSound; // holds the current sound number (0,1,2,or 3)

// Declare any other globals you need here

uint8_t hi; // hi=1 means high byte or 0 to indicate low byte
uint32_t Index; // index into the sound array

Your task is to write the following three routines, along with any globals you need above:

// Setup SysTick so it interrupts periodically at 8 kHz, bus=80MHz
void SysTick_Init(void){
 NVIC_ST_CTRL_R = 0;
 NVIC_ST_RELOAD_R = 9999; // 80MHz/8kHz = 10000
 NVIC_ST_CURRENT_R = 0;
 cSound = quietS; Index = 0; hi = 1;

 NVIC_SYS_PRI3_R = (NVIC_SYS_PRI3_R&0x00FFFFFF)|0x40000000;// Priority 2

 NVIC_ST_CTRL_R = 0x07; // CS=1, IEN=1, EN=1
}

EE319K Spring 2015 Final Exam Solutions Page 11

Janapa Reddi, Telang, Tiwari, Valvano, Yerraballi May 14, 2015 7:00pm-10:00pm

// Sound is always playing. Call this function to change the sound
// Called with a single input which is 0-3 specifying which sound to play
// Start playing the new sound from the beginning after switching.
void ChangeSound(uint8_t soundNum){

 cSound = soundNum;
 Index = 0;
 NVIC_ST_CURRENT_R = 0;
 hi = 1;

}

// SysTick_Handler calls DAC_Out output one 4-bit value
// cSound specifies the sound to play
// loop current sound if the end is reached
// DAC_Out is given, you do not need to write it
void SysTickHandler(void){

 if(hi){
 DAC_Out((sounds[cSound]).samples[Index]>>4);
 hi = 0;
 }else{
 DAC_Out(sounds[cSound].samples[Index]&0x0F);
 hi = 1;
 Index++; // increment every other output
 }
 if(Index==sounds[cSound].length){
 Index = 0;
 }

}

EE319K Spring 2015 Final Exam Solutions Page 12

Janapa Reddi, Telang, Tiwari, Valvano, Yerraballi May 14, 2015 7:00pm-10:00pm

 Memory access instructions
 LDR Rd, [Rn] ; load 32-bit number at [Rn] to Rd
 LDR Rd, [Rn,#off] ; load 32-bit number at [Rn+off] to Rd
 LDR Rd, =value ; set Rd equal to any 32-bit value (PC rel)
 LDRH Rd, [Rn] ; load unsigned 16-bit at [Rn] to Rd
 LDRH Rd, [Rn,#off] ; load unsigned 16-bit at [Rn+off] to Rd
 LDRSH Rd, [Rn] ; load signed 16-bit at [Rn] to Rd
 LDRSH Rd, [Rn,#off] ; load signed 16-bit at [Rn+off] to Rd
 LDRB Rd, [Rn] ; load unsigned 8-bit at [Rn] to Rd
 LDRB Rd, [Rn,#off] ; load unsigned 8-bit at [Rn+off] to Rd
 LDRSB Rd, [Rn] ; load signed 8-bit at [Rn] to Rd
 LDRSB Rd, [Rn,#off] ; load signed 8-bit at [Rn+off] to Rd
 STR Rt, [Rn] ; store 32-bit Rt to [Rn]
 STR Rt, [Rn,#off] ; store 32-bit Rt to [Rn+off]
 STRH Rt, [Rn] ; store least sig. 16-bit Rt to [Rn]
 STRH Rt, [Rn,#off] ; store least sig. 16-bit Rt to [Rn+off]
 STRB Rt, [Rn] ; store least sig. 8-bit Rt to [Rn]
 STRB Rt, [Rn,#off] ; store least sig. 8-bit Rt to [Rn+off]
 PUSH {Rt} ; push 32-bit Rt onto stack
 POP {Rd} ; pop 32-bit number from stack into Rd
 ADR Rd, label ; set Rd equal to the address at label
 MOV{S} Rd, <op2> ; set Rd equal to op2
 MOV Rd, #im16 ; set Rd equal to im16, im16 is 0 to 65535
 MVN{S} Rd, <op2> ; set Rd equal to -op2
Branch instructions
 B label ; branch to label Always
 BEQ label ; branch if Z == 1 Equal
 BNE label ; branch if Z == 0 Not equal
 BCS label ; branch if C == 1 Higher or same, unsigned ≥
 BHS label ; branch if C == 1 Higher or same, unsigned ≥
 BCC label ; branch if C == 0 Lower, unsigned <
 BLO label ; branch if C == 0 Lower, unsigned <
 BMI label ; branch if N == 1 Negative
 BPL label ; branch if N == 0 Positive or zero
 BVS label ; branch if V == 1 Overflow
 BVC label ; branch if V == 0 No overflow
 BHI label ; branch if C==1 and Z==0 Higher, unsigned >
 BLS label ; branch if C==0 or Z==1 Lower or same, unsigned ≤
 BGE label ; branch if N == V Greater than or equal, signed ≥
 BLT label ; branch if N != V Less than, signed <
 BGT label ; branch if Z==0 and N==V Greater than, signed >
 BLE label ; branch if Z==1 or N!=V Less than or equal, signed ≤
 BX Rm ; branch indirect to location specified by Rm
 BL label ; branch to subroutine at label
 BLX Rm ; branch to subroutine indirect specified by Rm
Interrupt instructions
 CPSIE I ; enable interrupts (I=0)
 CPSID I ; disable interrupts (I=1)
Logical instructions
 AND{S} {Rd,} Rn, <op2> ; Rd=Rn&op2 (op2 is 32 bits)
 ORR{S} {Rd,} Rn, <op2> ; Rd=Rn|op2 (op2 is 32 bits)
 EOR{S} {Rd,} Rn, <op2> ; Rd=Rn^op2 (op2 is 32 bits)
 BIC{S} {Rd,} Rn, <op2> ; Rd=Rn&(~op2) (op2 is 32 bits)
 ORN{S} {Rd,} Rn, <op2> ; Rd=Rn|(~op2) (op2 is 32 bits)
 LSR{S} Rd, Rm, Rs ; logical shift right Rd=Rm>>Rs (unsigned)
 LSR{S} Rd, Rm, #n ; logical shift right Rd=Rm>>n (unsigned)
 ASR{S} Rd, Rm, Rs ; arithmetic shift right Rd=Rm>>Rs (signed)

EE319K Spring 2015 Final Exam Solutions Page 13

Janapa Reddi, Telang, Tiwari, Valvano, Yerraballi May 14, 2015 7:00pm-10:00pm

 ASR{S} Rd, Rm, #n ; arithmetic shift right Rd=Rm>>n (signed)
 LSL{S} Rd, Rm, Rs ; shift left Rd=Rm<<Rs (signed, unsigned)
 LSL{S} Rd, Rm, #n ; shift left Rd=Rm<<n (signed, unsigned)
Arithmetic instructions
 ADD{S} {Rd,} Rn, <op2> ; Rd = Rn + op2
 ADD{S} {Rd,} Rn, #im12 ; Rd = Rn + im12, im12 is 0 to 4095
 SUB{S} {Rd,} Rn, <op2> ; Rd = Rn - op2
 SUB{S} {Rd,} Rn, #im12 ; Rd = Rn - im12, im12 is 0 to 4095
 RSB{S} {Rd,} Rn, <op2> ; Rd = op2 - Rn
 RSB{S} {Rd,} Rn, #im12 ; Rd = im12 – Rn
 CMP Rn, <op2> ; Rn – op2 sets the NZVC bits
 CMN Rn, <op2> ; Rn - (-op2) sets the NZVC bits
 MUL{S} {Rd,} Rn, Rm ; Rd = Rn * Rm signed or unsigned
 MLA Rd, Rn, Rm, Ra ; Rd = Ra + Rn*Rm signed or unsigned
 MLS Rd, Rn, Rm, Ra ; Rd = Ra - Rn*Rm signed or unsigned
 UDIV {Rd,} Rn, Rm ; Rd = Rn/Rm unsigned
 SDIV {Rd,} Rn, Rm ; Rd = Rn/Rm signed
Notes Ra Rd Rm Rn Rt represent 32-bit registers
 value any 32-bit value: signed, unsigned, or address
 {S} if S is present, instruction will set condition codes
 #im12 any value from 0 to 4095
 #im16 any value from 0 to 65535
 {Rd,} if Rd is present Rd is destination, otherwise Rn
 #n any value from 0 to 31
 #off any value from -255 to 4095
 label any address within the ROM of the microcontroller
 op2 the value generated by <op2>
Examples of flexible operand <op2> creating the 32-bit number. E.g., Rd = Rn+op2
 ADD Rd, Rn, Rm ; op2 = Rm
 ADD Rd, Rn, Rm, LSL #n ; op2 = Rm<<n Rm is signed, unsigned
 ADD Rd, Rn, Rm, LSR #n ; op2 = Rm>>n Rm is unsigned
 ADD Rd, Rn, Rm, ASR #n ; op2 = Rm>>n Rm is signed
 ADD Rd, Rn, #constant ; op2 = constant, where X and Y are hexadecimal digits:

• produced by shifting an 8-bit unsigned value left by any number of bits
• in the form 0x00XY00XY
• in the form 0xXY00XY00
• in the form 0xXYXYXYXY

 DCB 1,2,3 ; allocates three 8-bit byte(s)
 DCW 1,2,3 ; allocates three 16-bit halfwords
 DCD 1,2,3 ; allocates three 32-bit words
 SPACE 4 ; reserves 4 bytes

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12

R13 (MSP)
R14 (LR)
R15 (PC)

Stack pointer
Link register

Program counter

General
purpose
registers

256k Flash
ROM

64k RAM

I/O ports

Internal I/O
PPB

0x0000.0000

0x0003.FFFF

0x2000.0000

0x2000.FFFF

0x4000.0000

0x41FF.FFFF

0xE000.0000

0xE004.0FFF

Condition code bits
N negative
Z zero
V signed overflow
C carry or
 unsigned overflow

EE319K Spring 2015 Final Exam Solutions Page 14

Janapa Reddi, Telang, Tiwari, Valvano, Yerraballi May 14, 2015 7:00pm-10:00pm

Address 7 6 5 4 3 2 1 0 Name
$400F.E108 GPIOF GPIOE GPIOD GPIOC GPIOB GPIOA SYSCTL_RCGCGPIO_R
$4000.43FC DATA DATA DATA DATA DATA DATA DATA DATA GPIO_PORTA_DATA_R
$4000.4400 DIR DIR DIR DIR DIR DIR DIR DIR GPIO_PORTA_DIR_R
$4000.4420 SEL SEL SEL SEL SEL SEL SEL SEL GPIO_PORTA_AFSEL_R
$4000.451C DEN DEN DEN DEN DEN DEN DEN DEN GPIO_PORTA_DEN_R

Table 4.5. Some TM4C123/LM4F120 parallel ports. Each register is 32 bits wide. Bits 31 – 8 are zero.

Address 31 30 29-7 6 5 4 3 2 1 0 Name
0xE000E100 F … UART1 UART0 E D C B A NVIC_EN0_R

Address 31-24 23-17 16 15-3 2 1 0 Name
$E000E010 0 0 COUNT 0 CLK_SRC INTEN ENABLE NVIC_ST_CTRL_R
$E000E014 0 24-bit RELOAD value NVIC_ST_RELOAD_R
$E000E018 0 24-bit CURRENT value of SysTick counter NVIC_ST_CURRENT_R

Address 31-29 28-24 23-21 20-8 7-5 4-0 Name
$E000ED20 SYSTICK 0 PENDSV 0 DEBUG 0 NVIC_SYS_PRI3_R

Table 9.6. SysTick registers.
Table 9.6 shows the SysTick registers used to create a periodic interrupt. SysTick has a 24-bit counter that decrements at
the bus clock frequency. Let fBUS be the frequency of the bus clock, and let n be the value of the RELOAD register. The
frequency of the periodic interrupt will be fBUS/(n+1). First, we clear the ENABLE bit to turn off SysTick during
initialization. Second, we set the RELOAD register. Third, we write to the NVIC_ST_CURRENT_R value to clear the
counter. Lastly, we write the desired mode to the control register, NVIC_ST_CTRL_R. To turn on the SysTick, we set the
ENABLE bit. We must set CLK_SRC=1, because CLK_SRC=0 external clock mode is not implemented on the
LM3S/LM4F family. We set INTEN to enable interrupts. The standard name for the SysTick ISR is SysTick_Handler.

Address 31-17 16 15-10 9 8 7-0 Name
$400F.E000 ADC MAXADCSPD SYSCTL_RCGC0_R

 31-14 13-12 11-10 9-8 7-6 5-4 3-2 1-0
$4003.8020 SS3 SS2 SS1 SS0 ADC_SSPRI_R

 31-16 15-12 11-8 7-4 3-0
$4003.8014 EM3 EM2 EM1 EM0 ADC_EMUX_R

 31-4 3 2 1 0
$4003.8000 ASEN3 ASEN2 ASEN1 ASEN0 ADC_ACTSS_R
$4003.80A0 MUX0 ADC_SSMUX3_R
$4003.80A4 TS0 IE0 END0 D0 ADC_SSCTL3_R
$4003.8028 SS3 SS2 SS1 SS0 ADC_PSSI_R
$4003.8004 INR3 INR2 INR1 INR0 ADC_RIS_R
$4003.8008 MASK3 MASK2 MASK1 MASK0 ADC_IM_R
$4003.800C IN3 IN2 IN1 IN0 ADC_ISC_R

 31-12 11-0
$4003.80A8 12-bit DATA ADC_SSFIFO3

Table 10.3. The TM4C123/LM4F120ADC registers. Each register is 32 bits wide.
Set MAXADCSPD to 00 for slow speed operation. The ADC has four sequencers, but we will use only sequencer 3. We set
the ADC_SSPRI_R register to 0x3210 to make sequencer 3 the lowest priority. Because we are using just one sequencer,
we just need to make sure each sequencer has a unique priority. We set bits 15–12 (EM3) in the ADC_EMUX_R register
to specify how the ADC will be triggered. If we specify software start (EM3=0x0), then the software writes an 8 (SS3) to
the ADC_PSSI_R to initiate a conversion on sequencer 3. Bit 3 (INR3) in the ADC_RIS_R register will be set when the
conversion is complete. We can enable and disable the sequencers using the ADC_ACTSS_R register. There are 11 on the
TM4C123/LM4F120. Which channel we sample is configured by writing to the ADC_SSMUX3_R register. The
ADC_SSCTL3_R register specifies the mode of the ADC sample. Clear TS0. We set IE0 so that the INR3 bit is set on
ADC conversion, and clear it when no flags are needed. We will set IE0 for both interrupt and busy-wait synchronization.
When using sequencer 3, there is only one sample, so END0 will always be set, signifying this sample is the end of the

EE319K Spring 2015 Final Exam Solutions Page 15

Janapa Reddi, Telang, Tiwari, Valvano, Yerraballi May 14, 2015 7:00pm-10:00pm

sequence. Clear the D0 bit. The ADC_RIS_R register has flags that are set when the conversion is complete, assuming the
IE0 bit is set. Do not set bits in the ADC_IM_R register because we do not want interrupts. Write one to ADC_ISC_R to
clear the corresponding bit in the ADC_RIS_R register.

UART0 pins are on PA1 (transmit) and PA0 (receive). The UART0_IBRD_R and UART0_FBRD_R registers specify the
baud rate. The baud rate divider is a 22-bit binary fixed-point value with a resolution of 2-6. The Baud16 clock is created
from the system bus clock, with a frequency of (Bus clock frequency)/divider. The baud rate is
 Baud rate = Baud16/16 = (Bus clock frequency)/(16*divider)
We set bit 4 of the UART0_LCRH_R to enable the hardware FIFOs. We set both bits 5 and 6 of the UART0_LCRH_R to
establish an 8-bit data frame. The RTRIS is set on a receiver timeout, which is when the receiver FIFO is not empty and no
incoming frames have occurred in a 32-bit time period. The arm bits are in the UART0_IM_R register. To acknowledge an
interrupt (make the trigger flag become zero), software writes a 1 to the corresponding bit in the UART0_IC_R register.
We set bit 0 of the UART0_CTL_R to enable the UART. Writing to UART0_DR_R register will output on the UART. This
data is placed in a 16-deep transmit hardware FIFO. Data are transmitted first come first serve. Received data are place in a
16-deep receive hardware FIFO. Reading from UART0_DR_R register will get one data from the receive hardware FIFO.
The status of the two FIFOs can be seen in the UART0_FR_R register (FF is FIFO full, FE is FIFO empty). The standard
name for the UART0 ISR is UART0_Handler. RXIFLSEL specifies the receive FIFO level that causes an interrupt (010
means interrupt on ≥ ½ full, or 7 to 8 characters). TXIFLSEL specifies the transmit FIFO level that causes an interrupt (010
means interrupt on ≤ ½ full, or 9 to 8 characters).
 31–12 11 10 9 8 7–0 Name
$4000.C000 OE BE PE FE DATA UART0_DR_R

 31–3 3 2 1 0
$4000.C004 OE BE PE FE UART0_RSR_R

 31–8 7 6 5 4 3 2–0
$4000.C018 TXFE RXFF TXFF RXFE BUSY UART0_FR_R

 31–16 15–0
$4000.C024 DIVINT UART0_IBRD_R

 31–6 5–0
$4000.C028 DIVFRAC UART0_FBRD_R

 31–8 7 6 – 5 4 3 2 1 0
$4000.C02C SPS WPEN FEN STP2 EPS PEN BRK UART0_LCRH_R

 31–10 9 8 7 6–3 2 1 0
$4000.C030 RXE TXE LBE SIRLP SIREN UARTEN UART0_CTL_R

 31–6 5-3 2-0
$4000.C034 RXIFLSEL TXIFLSEL UART0_IFLS_R

 31-11 10 9 8 7 6 5 4
$4000.C038 OEIM BEIM PEIM FEIM RTIM TXIM RXIM UART0_IM_R
$4000.C03C OERIS BERIS PERIS FERIS RTRIS TXRIS RXRIS UART0_RIS_R
$4000.C040 OEMIS BEMIS PEMIS FEMIS RTMIS TXMIS RXMIS UART0_MIS_R
$4000.C044 OEIC BEIC PEIC FEIC RTIC TXIC RXIC UART0_IC_R

Table 11.2. UART0 registers. Each register is 32 bits wide. Shaded bits are zero.

