
EE319K Spring 2016 Final Exam UT EID:_____________________ Page 1

Janapa Reddi, Tiwari, Valvano, Yerraballi May 13, 2016 7:00pm-10:00pm

Final Exam
Date: May 13th 2016

 Circle one: MT, NT, JV, RY, VJR

Printed Name:

Last, First

Your signature is your promise that you have not cheated and will not cheat on this exam, nor will you help others to cheat
on this exam. You will not reveal the contents of this exam to others who are taking the makeup thereby giving them an
undue advantage:

Signature:

Instructions:
• Write your UT EID on all pages (at the top) and circle your instructor’s name at the bottom.
• Closed book and closed notes. No books, no papers, no data sheets (other than the last four pages of this Exam)
• No devices other than pencil, pen, eraser (no calculators, no electronic devices), please turn cell phones off.
• Please be sure that your answers to all questions (and all supporting work that is required) are contained in the

space (boxes) provided. Anything outside the boxes will be ignored in grading.
• You have 180 minutes, so allocate your time accordingly.
• For all questions, unless otherwise stated, find the most efficient (time, resources) solution.
• Unless otherwise stated, make all I/O accesses friendly.
• Please read the entire exam before starting. See supplement pages for Device I/O registers.

Problem 1 10

Problem 2 15

Problem 3 10

Problem 4 15

Problem 5 15

Problem 6 10

Problem 7 15

Problem 8 10

Total 100

EE319K Spring 2016 Final Exam UT EID:_____________________ Page 2

Janapa Reddi, Tiwari, Valvano, Yerraballi May 13, 2016 7:00pm-10:00pm

(10) Question 1. Please place one word or short phrase that best answers each question in the box.

(1) Part a) Which registers are NOT pushed on the stack when an interrupt occurs?

(1) Part b) Why did we use the 7406 driver for interfacing the LED? …………………………

(1) Part c) If the average rate at which you call Fifo_Put to enter data into a FIFO
is less than the average rate at which you call Fifo_Get to remove data, ………………
could the FIFO ever become full?

(1) Part d) Why do we add static to an otherwise local variable? …………………………………………

(1) Part e) Why do we add const to an otherwise global variable? ………………………………

(1) Part f) Why do we add static to an otherwise global variable? …………………………………………

(1) Part g) Why would you ever wish to use the PLL and slow down ……………………
the bus clock so the software runs slower?

(3) Part h) The following is the project window for my Lab 10 game. Draw a subset of the call graph of this system
showing all the arrows into and out of the Sound module. Put your answer in the box.

EE319K Spring 2016 Final Exam UT EID:_____________________ Page 3

Janapa Reddi, Tiwari, Valvano, Yerraballi May 13, 2016 7:00pm-10:00pm

(15) Question 2: SysTick and Fixed-point
(6) Part a) Write a function in C or assembly that uses SysTick delay for 1 millisecond. Assume that
the SysTick is already initialized with NVIC_ST_RELOAD=0x00FFFFFF; NVIC_ST_CTRL=0x05;
Assume that the clock is running at 50 MHz, such that each bus cycle is 20 ns.
void Delay1ms(){

(6) Part b) Write C code initialization that initializes SysTick to interrupt every 100 us. In this
initialization, in addition to enabling and arming SysTick interrupts you should also enable interrupts
in the processor. Run at priority level 1. Assume the bus clock is 80 MHz. You do not need to write the
SysTick ISR.

(3) Part c) Consider the use of decimal fixed-point representation with a resolution of 0.01cm. What is
the area of a rectangle in cm2 whose width and length are represented by fixed-point integer values 250
and 110 respectively?

void SysTick_Init100us(void){

EE319K Spring 2016 Final Exam UT EID:_____________________ Page 4

Janapa Reddi, Tiwari, Valvano, Yerraballi May 13, 2016 7:00pm-10:00pm

(10) Question 3: FSM
(5) Part a) A Moore FSM has 10 states, a 3-bit input (PB5-7), a 5-bit output (PB0-4) and a state dwell
(or wait) time that can vary between 300ms to 1800ms. Complete the missing pieces in the definition
of the struct for the State and FSM array declaration needed to implement the FSM.

#define Init 0
struct State{

}
typedef struct State State_t;

 FSM[]= { … contents are defined for you …}

uint8_t CS; // Index into the FSM array indicating current state
(5) Part a) Complete the FSM engine loop inside the main below. Assume you are given a function
Delay1ms(unit32_t count) that delays for count milliseconds.

int main(void){
 PORTB_Init(); // Port B Initialization is done for you
 CS = Init;
 while(1){

 }
}

EE319K Spring 2016 Final Exam UT EID:_____________________ Page 5

Janapa Reddi, Tiwari, Valvano, Yerraballi May 13, 2016 7:00pm-10:00pm

(15) Question 4: Interfacing
(3) Part a) Consider this negative logic switch circuit used in a +5V digital
system. Do not consider the switch to be ideal. Rather, assume the resistance of
the switch when the switch is open is 1 MΩ, and the resistance of the switch
when the switch is closed is 1 Ω. How much current flows in mA through the
switch when the switch is not pressed?

How much current in mA flows through the switch when the switch is pressed?

(6) Part b) The output on PA7 controls this LED. For LED voltages
less than 2 volts, the LED current is 0. Assume the output high voltage
of PA7 is 3.3V. For voltages above 2 volts, the LED current is

I = 3 * (V - 2), where I is in mA, V is in volts.

What are the current, voltage, and power to the LED when it is on?

(6) Part c) Design a 3-bit DAC using multiple 10k resistors. No values other than 10k are allowed.

PB2

PB1

PB0

Microcontroller

DACout

Vout

+5V

1kΩ

Switch
I

V =

I =

P =

100Ω

0 1 2 3 4 volts

4
3
2
1
0

mA

+
V
-

I I

V

PA7

EE319K Spring 2016 Final Exam UT EID:_____________________ Page 6

Janapa Reddi, Tiwari, Valvano, Yerraballi May 13, 2016 7:00pm-10:00pm

(15) Question 5: FIFO queue
You are asked to implement a FIFO that can handle up to SIZE elements. You cannot add additional
global variables. You cannot change the function prototypes.
(3) Part a) Write the routine that initializes the FIFO.

#define SIZE 10
uint8_t FIFO[SIZE],GetI,PutI,Count;
void Fifo_Init(void){ // Initialize FIFO

}

(6) Part b) Write the routine that puts data into the FIFO. If the FIFO is full, this routine should spin
(i.e., wait) until there is room in FIFO for the data. You can add local variables.

// enter one byte into the FIFO
void Fifo_Put(uint8_t data){

}

(6) Part c) Write the routine that gets data from the FIFO. If the FIFO is empty, this routine should
spin (i.e., wait) until there is data in FIFO to return. You can add local variables.

// return one byte of data
// if empty spin until there is data in FIFO
uint8_t Fifo_Get(void){

}

EE319K Spring 2016 Final Exam UT EID:_____________________ Page 7

Janapa Reddi, Tiwari, Valvano, Yerraballi May 13, 2016 7:00pm-10:00pm

(10) Question 6: Local variables
(3) Part a) What does LCD_OutDec print to screen?
void add1(uint32_t *in){
 *in = (*in)+1;
}
void func(void){
 uint32_t a = 10;
 add1(&a);
 LCD_OutDec(a);
}
(7) Part b) Implement both subroutines func and add1 in assembly. For the subroutine func, use
binding, allocation, access and deallocation of the local variable a on the stack. Implement each line of
C explicitly in assembly. Use AAPCS. You must clearly identify each of the different stages. Use C
statements as comments.

add1

func

Answer (select one option):
a) 11
b) 10
c) Some address of the stack region
d) Address of a
e) Unknown, unable to determine

EE319K Spring 2016 Final Exam UT EID:_____________________ Page 8

Janapa Reddi, Tiwari, Valvano, Yerraballi May 13, 2016 7:00pm-10:00pm

(15) Question 7: UART and ADC
(3) Part a) A programmer set the UART0_IBRD_R to 50 and UART0_FBRD_R to 0. If the bus
clock frequency were 80 MHz, what would be the baud rate? Pick one answer.

i. 80 kbps
ii. 100 kbps

iii. 1 Mbps
iv. 120 kbps
v. 16 kbps

vi. None of the above

(6) Part b) Assume a serial port operating with a baud rate of 2000 bits per second. Draw the UART
waveform when the decimal value 140 is transmitted. You may assume the channel is idle before and
after the frame. Time flows from left to right. The dark vertical black lines correspond to 1-ms
boundaries. Assume the frame begins at time = 1 ms, and show the waveform from 0 to 12 ms.

(3) Part c) You have a 12-bit, 0 to 3V range ADC. If the ADC input is 1.25 V, what will be the
digital value in hex returned by this ADC?

(3) Part d) You are attempting to capture a sinusoidal sound with a frequency of 8 kHz. The
ADC0_PC_R is set to 0001, which supports a maximum of 125k samples/sec. Using the 12-bit ADC
and periodic interrupt, you have programmed the SysTick to interrupt at a frequency of 12 kHz. During
the SysTick ISR you collect one ADC sample. Is it possible to recreate the original signal from the
captured samples? If your answer is yes, explain how. If your answer is no, what is the term used to
refer to this loss of information?

5

0
0 1 2 3 4 5 6 7 8 9 10 11 12 ms

EE319K Spring 2016 Final Exam UT EID:_____________________ Page 9

Janapa Reddi, Tiwari, Valvano, Yerraballi May 13, 2016 7:00pm-10:00pm

(10) Question 8: Design Problem
You are to implement one-directional communication between two microcontrollers (sender and
receiver) using two pins PA0 and PA1. The sender microcontroller programs these pins as output and
the receiver programs them as input. PA0 is used as the control and PA1 is used to transfer the actual
data. The bit-level protocol is as follows: when it has data to transmit, the sender sends a pulse on PA0,
which is a low for 2 ms, followed by a high for 2 ms. The first bit of transmission (on PA1)
immediately follows, with each bit sent lasting for exactly 2 ms. Each 4-bit transmission is preceded by
a pulse on PA0. The time between transmissions can be any value greater than or equal to zero. See in
the timeline below that the first byte transferred is 0x29. Note that each byte of data is transmitted as
two 4-bit nibbles with the bit order as 0,1,2,3 then 4,5,6,7. The vertical arrows mark when you should
read the input data. You may assume PA1 and PA0 are initialized to inputs.
(8) Part a) The overall goal of the
communication is to transfer data
from the sender to the receiver. In
this section you will write a
function that receives one byte of
data. You may assume that you
are given a function Delay1ms().
You may assume the software execution time is negligible compared to the Delay function

(2) Part b) What is maximum achievable bandwidth in bits/sec for this communication scenario?

PA0

PA1

exactly 4ms any time >= 0

0 2 4 6 8 10 12 in ms

uint8_t ReceiveChar(void){

EE319K Spring 2016 Final Exam UT EID:_____________________ Page 10

Janapa Reddi, Tiwari, Valvano, Yerraballi May 13, 2016 7:00pm-10:00pm

Memory access instructions
 LDR Rd, [Rn] ; load 32-bit number at [Rn] to Rd
 LDR Rd, [Rn,#off] ; load 32-bit number at [Rn+off] to Rd
 LDR Rd, =value ; set Rd equal to any 32-bit value (PC rel)
 LDRH Rd, [Rn] ; load unsigned 16-bit at [Rn] to Rd
 LDRH Rd, [Rn,#off] ; load unsigned 16-bit at [Rn+off] to Rd
 LDRSH Rd, [Rn] ; load signed 16-bit at [Rn] to Rd
 LDRSH Rd, [Rn,#off] ; load signed 16-bit at [Rn+off] to Rd
 LDRB Rd, [Rn] ; load unsigned 8-bit at [Rn] to Rd
 LDRB Rd, [Rn,#off] ; load unsigned 8-bit at [Rn+off] to Rd
 LDRSB Rd, [Rn] ; load signed 8-bit at [Rn] to Rd
 LDRSB Rd, [Rn,#off] ; load signed 8-bit at [Rn+off] to Rd
 STR Rt, [Rn] ; store 32-bit Rt to [Rn]
 STR Rt, [Rn,#off] ; store 32-bit Rt to [Rn+off]
 STRH Rt, [Rn] ; store least sig. 16-bit Rt to [Rn]
 STRH Rt, [Rn,#off] ; store least sig. 16-bit Rt to [Rn+off]
 STRB Rt, [Rn] ; store least sig. 8-bit Rt to [Rn]
 STRB Rt, [Rn,#off] ; store least sig. 8-bit Rt to [Rn+off]
 PUSH {Rt} ; push 32-bit Rt onto stack
 POP {Rd} ; pop 32-bit number from stack into Rd
 ADR Rd, label ; set Rd equal to the address at label
 MOV{S} Rd, <op2> ; set Rd equal to op2
 MOV Rd, #im16 ; set Rd equal to im16, im16 is 0 to 65535
 MVN{S} Rd, <op2> ; set Rd equal to -op2
Branch instructions
 B label ; branch to label Always
 BEQ label ; branch if Z == 1 Equal
 BNE label ; branch if Z == 0 Not equal
 BCS label ; branch if C == 1 Higher or same, unsigned ≥
 BHS label ; branch if C == 1 Higher or same, unsigned ≥
 BCC label ; branch if C == 0 Lower, unsigned <
 BLO label ; branch if C == 0 Lower, unsigned <
 BMI label ; branch if N == 1 Negative
 BPL label ; branch if N == 0 Positive or zero
 BVS label ; branch if V == 1 Overflow
 BVC label ; branch if V == 0 No overflow
 BHI label ; branch if C==1 and Z==0 Higher, unsigned >
 BLS label ; branch if C==0 or Z==1 Lower or same, unsigned ≤
 BGE label ; branch if N == V Greater than or equal, signed ≥
 BLT label ; branch if N != V Less than, signed <
 BGT label ; branch if Z==0 and N==V Greater than, signed >
 BLE label ; branch if Z==1 or N!=V Less than or equal, signed ≤
 BX Rm ; branch indirect to location specified by Rm
 BL label ; branch to subroutine at label
 BLX Rm ; branch to subroutine indirect specified by Rm
Interrupt instructions
 CPSIE I ; enable interrupts (I=0)
 CPSID I ; disable interrupts (I=1)
Logical instructions
 AND{S} {Rd,} Rn, <op2> ; Rd=Rn&op2 (op2 is 32 bits)
 ORR{S} {Rd,} Rn, <op2> ; Rd=Rn|op2 (op2 is 32 bits)
 EOR{S} {Rd,} Rn, <op2> ; Rd=Rn^op2 (op2 is 32 bits)
 BIC{S} {Rd,} Rn, <op2> ; Rd=Rn&(~op2) (op2 is 32 bits)
 ORN{S} {Rd,} Rn, <op2> ; Rd=Rn|(~op2) (op2 is 32 bits)
 LSR{S} Rd, Rm, Rs ; logical shift right Rd=Rm>>Rs (unsigned)
 LSR{S} Rd, Rm, #n ; logical shift right Rd=Rm>>n (unsigned)
 ASR{S} Rd, Rm, Rs ; arithmetic shift right Rd=Rm>>Rs (signed)

EE319K Spring 2016 Final Exam UT EID:_____________________ Page 11

Janapa Reddi, Tiwari, Valvano, Yerraballi May 13, 2016 7:00pm-10:00pm

 ASR{S} Rd, Rm, #n ; arithmetic shift right Rd=Rm>>n (signed)
 LSL{S} Rd, Rm, Rs ; shift left Rd=Rm<<Rs (signed, unsigned)
 LSL{S} Rd, Rm, #n ; shift left Rd=Rm<<n (signed, unsigned)
Arithmetic instructions
 ADD{S} {Rd,} Rn, <op2> ; Rd = Rn + op2
 ADD{S} {Rd,} Rn, #im12 ; Rd = Rn + im12, im12 is 0 to 4095
 SUB{S} {Rd,} Rn, <op2> ; Rd = Rn - op2
 SUB{S} {Rd,} Rn, #im12 ; Rd = Rn - im12, im12 is 0 to 4095
 RSB{S} {Rd,} Rn, <op2> ; Rd = op2 - Rn
 RSB{S} {Rd,} Rn, #im12 ; Rd = im12 – Rn
 CMP Rn, <op2> ; Rn – op2 sets the NZVC bits
 CMN Rn, <op2> ; Rn - (-op2) sets the NZVC bits
 MUL{S} {Rd,} Rn, Rm ; Rd = Rn * Rm signed or unsigned
 MLA Rd, Rn, Rm, Ra ; Rd = Ra + Rn*Rm signed or unsigned
 MLS Rd, Rn, Rm, Ra ; Rd = Ra - Rn*Rm signed or unsigned
 UDIV {Rd,} Rn, Rm ; Rd = Rn/Rm unsigned
 SDIV {Rd,} Rn, Rm ; Rd = Rn/Rm signed
Notes Ra Rd Rm Rn Rt represent 32-bit registers
 value any 32-bit value: signed, unsigned, or address
 {S} if S is present, instruction will set condition codes
 #im12 any value from 0 to 4095
 #im16 any value from 0 to 65535
 {Rd,} if Rd is present Rd is destination, otherwise Rn
 #n any value from 0 to 31
 #off any value from -255 to 4095
 label any address within the ROM of the microcontroller
 op2 the value generated by <op2>
Examples of flexible operand <op2> creating the 32-bit number. E.g., Rd = Rn+op2
 ADD Rd, Rn, Rm ; op2 = Rm
 ADD Rd, Rn, Rm, LSL #n ; op2 = Rm<<n Rm is signed, unsigned
 ADD Rd, Rn, Rm, LSR #n ; op2 = Rm>>n Rm is unsigned
 ADD Rd, Rn, Rm, ASR #n ; op2 = Rm>>n Rm is signed
 ADD Rd, Rn, #constant ; op2 = constant, where X and Y are hexadecimal digits:

• produced by shifting an 8-bit unsigned value left by any number of bits
• in the form 0x00XY00XY
• in the form 0xXY00XY00
• in the form 0xXYXYXYXY

 DCB 1,2,3 ; allocates three 8-bit byte(s)
 DCW 1,2,3 ; allocates three 16-bit halfwords
 DCD 1,2,3 ; allocates three 32-bit words
 SPACE 4 ; reserves 4 bytes

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12

R13 (MSP)
R14 (LR)
R15 (PC)

Stack pointer
Link register

Program counter

General
purpose
registers

Condition code bits
N negative
Z zero
V signed overflow
C carry or
 unsigned overflow

256k Flash
ROM

32k RAM

I/O ports

Internal I/O
PPB

0x0000.0000

0x0003.FFFF

0x2000.0000

0x2000.7FFF

0x4000.0000

0x400F.FFFF

0xE000.0000

0xE004.1FFF

EE319K Spring 2016 Final Exam UT EID:_____________________ Page 12

Janapa Reddi, Tiwari, Valvano, Yerraballi May 13, 2016 7:00pm-10:00pm

Address 7 6 5 4 3 2 1 0 Name
$400F.E608 GPIOF GPIOE GPIOD GPIOC GPIOB GPIOA SYSCTL_RCGCGPIO_R
$4000.53FC DATA DATA DATA DATA DATA DATA DATA DATA GPIO_PORTB_DATA_R
$4000.5400 DIR DIR DIR DIR DIR DIR DIR DIR GPIO_PORTB_DIR_R
$4000.5420 SEL SEL SEL SEL SEL SEL SEL SEL GPIO_PORTB_AFSEL_R
$4000.551C DEN DEN DEN DEN DEN DEN DEN DEN GPIO_PORTB_DEN_R

Table 4.5. TM4C123 Port B parallel ports. Each register is 32 bits wide. Bits 31 – 8 are zero.

Address 31 30 29-7 6 5 4 3 2 1 0 Name
0xE000E100 F … UART1 UART0 E D C B A NVIC_EN0_R

Address 31-24 23-17 16 15-3 2 1 0 Name
$E000E010 0 0 COUNT 0 CLK_SRC INTEN ENABLE NVIC_ST_CTRL_R
$E000E014 0 24-bit RELOAD value NVIC_ST_RELOAD_R
$E000E018 0 24-bit CURRENT value of SysTick counter NVIC_ST_CURRENT_R

Address 31-29 28-24 23-21 20-8 7-5 4-0 Name
$E000ED20 SYSTICK 0 PENDSV 0 DEBUG 0 NVIC_SYS_PRI3_R

Table 9.6. SysTick registers.
Table 9.6 shows the SysTick registers used to create a periodic interrupt. SysTick has a 24-bit counter that decrements at
the bus clock frequency. Let fBUS be the frequency of the bus clock, and let n be the value of the RELOAD register. The
frequency of the periodic interrupt will be fBUS/(n+1). First, we clear the ENABLE bit to turn off SysTick during
initialization. Second, we set the RELOAD register. Third, we write to the NVIC_ST_CURRENT_R value to clear the
counter. Lastly, we write the desired mode to the control register, NVIC_ST_CTRL_R. To turn on the SysTick, we set the
ENABLE bit. We must set CLK_SRC=1, because CLK_SRC=0 external clock mode is not implemented. We set INTEN
to arm SysTick interrupts. The standard name for the SysTick ISR is SysTick_Handler.

Address 31-2 1 0 Name
$400F.E638 ADC1 ADC0 SYSCTL_RCGCADC_R

 31-14 13-12 11-10 9-8 7-6 5-4 3-2 1-0
$4003.8020 SS3 SS2 SS1 SS0 ADC0_SSPRI_R

 31-16 15-12 11-8 7-4 3-0
$4003.8014 EM3 EM2 EM1 EM0 ADC0_EMUX_R

 31-4 3 2 1 0
$4003.8000 ASEN3 ASEN2 ASEN1 ASEN0 ADC0_ACTSS_R
$4003.80A0 MUX0 ADC0_SSMUX3_R
$4003.80A4 TS0 IE0 END0 D0 ADC0_SSCTL3_R
$4003.8028 SS3 SS2 SS1 SS0 ADC0_PSSI_R
$4003.8004 INR3 INR2 INR1 INR0 ADC0_RIS_R
$4003.8008 MASK3 MASK2 MASK1 MASK0 ADC0_IM_R
$4003.8FC4 Speed ADC0_PC_R

 31-12 11-0
$4003.80A8 DATA ADC0_SSFIFO3_R

Table 10.3. The TM4C ADC registers. Each register is 32 bits wide. LM3S has 10-bit data.
Set Speed to 0001 for slow speed operation. The ADC has four sequencers, but we will use only sequencer 3. We set the
ADC_SSPRI_R register to 0x3210 to make sequencer 3 the lowest priority. Because we are using just one sequencer, we
just need to make sure each sequencer has a unique priority. We set bits 15–12 (EM3) in the ADC_EMUX_R register to
specify how the ADC will be triggered. If we specify software start (EM3=0x0), then the software writes an 8 (SS3) to the
ADC_PSSI_R to initiate a conversion on sequencer 3. Bit 3 (INR3) in the ADC_RIS_R register will be set when the
conversion is complete. We can enable and disable the sequencers using the ADC_ACTSS_R register. Which channel we
sample is configured by writing to the ADC_SSMUX3_R register. The ADC_SSCTL3_R register specifies the mode of
the ADC sample. Clear TS0. We set IE0 so that the INR3 bit is set on ADC conversion, and clear it when no flags are
needed. We will set IE0 for both interrupt and busy-wait synchronization. When using sequencer 3, there is only one
sample, so END0 will always be set, signifying this sample is the end of the sequence. Clear the D0 bit. The ADC_RIS_R

EE319K Spring 2016 Final Exam UT EID:_____________________ Page 13

Janapa Reddi, Tiwari, Valvano, Yerraballi May 13, 2016 7:00pm-10:00pm

register has flags that are set when the conversion is complete, assuming the IE0 bit is set. Do not set bits in the
ADC_IM_R register because we do not want interrupts. Write one to ADC_ISC_R to clear the corresponding bit in the
ADC_RIS_R register.

UART0 pins are on PA1 (transmit) and PA0 (receive). The UART0_IBRD_R and UART0_FBRD_R registers specify the
baud rate. The baud rate divider is a 22-bit binary fixed-point value with a resolution of 2-6. The Baud16 clock is created
from the system bus clock, with a frequency of (Bus clock frequency)/divider. The baud rate is
 Baud rate = Baud16/16 = (Bus clock frequency)/(16*divider)
We set bit 4 of the UART0_LCRH_R to enable the hardware FIFOs. We set both bits 5 and 6 of the UART0_LCRH_R to
establish an 8-bit data frame. The RTRIS is set on a receiver timeout, which is when the receiver FIFO is not empty and no
incoming frames have occurred in a 32-bit time period. The arm bits are in the UART0_IM_R register. To acknowledge an
interrupt (make the trigger flag become zero), software writes a 1 to the corresponding bit in the UART0_IC_R register.
We set bit 0 of the UART0_CTL_R to enable the UART. Writing to UART0_DR_R register will output on the UART. This
data is placed in a 16-deep transmit hardware FIFO. Data are transmitted first come first serve. Received data are place in a
16-deep receive hardware FIFO. Reading from UART0_DR_R register will get one data from the receive hardware FIFO.
The status of the two FIFOs can be seen in the UART0_FR_R register (FF is FIFO full, FE is FIFO empty). The standard
name for the UART0 ISR is UART0_Handler. RXIFLSEL specifies the receive FIFO level that causes an interrupt (010
means interrupt on ≥ ½ full, or 7 to 8 characters). TXIFLSEL specifies the transmit FIFO level that causes an interrupt (010
means interrupt on ≤ ½ full, or 9 to 8 characters).

 31–12 11 10 9 8 7–0 Name
$4000.C000 OE BE PE FE DATA UART0_DR_R

 31–3 3 2 1 0
$4000.C004 OE BE PE FE UART0_RSR_R

 31–8 7 6 5 4 3 2–0
$4000.C018 TXFE RXFF TXFF RXFE BUSY UART0_FR_R

 31–16 15–0
$4000.C024 DIVINT UART0_IBRD_R

 31–6 5–0
$4000.C028 DIVFRAC UART0_FBRD_R

 31–8 7 6 – 5 4 3 2 1 0
$4000.C02C SPS WPEN FEN STP2 EPS PEN BRK UART0_LCRH_R

 31–10 9 8 7 6–3 2 1 0
$4000.C030 RXE TXE LBE SIRLP SIREN UARTEN UART0_CTL_R

 31–6 5-3 2-0
$4000.C034 RXIFLSEL TXIFLSEL UART0_IFLS_R

 31-11 10 9 8 7 6 5 4
$4000.C038 OEIM BEIM PEIM FEIM RTIM TXIM RXIM UART0_IM_R
$4000.C03C OERIS BERIS PERIS FERIS RTRIS TXRIS RXRIS UART0_RIS_R
$4000.C040 OEMIS BEMIS PEMIS FEMIS RTMIS TXMIS RXMIS UART0_MIS_R
$4000.C044 OEIC BEIC PEIC FEIC RTIC TXIC RXIC UART0_IC_R

Table 11.2. UART0 registers. Each register is 32 bits wide. Shaded bits are zero.

