
EE319K Spring 2012 Final Exam Version B LM3S1968 version Page 1 of 12

Jonathan Valvano May 10, 2012

First:________________ Last:____________________

This is a closed book exam. You must put your answers in the boxes provided. You have 3 hours, so
allocate your time accordingly. Please read the entire exam before starting.

Please read and affirm our honor code:
 “The core values of The University of Texas at Austin are learning, discovery, freedom, leadership,
individual opportunity, and responsibility. Each member of the university is expected to uphold these
values through integrity, honesty, trust, fairness, and respect toward peers and community.”

 Signature ______________________________________

(10) Question 1. State the term that is described by each definition.
Part a) You are given an ADC to test. You measure a change in voltage, V, such that whenever the
input changes by at least this much the ADC result becomes different. Conversely, if you change the
input by less than this amount, sometimes the ADC result does not change.

Part b) A drawing with circles and rectangles. The circles are software modules and the rectangles are
hardware. If a software module modifies hardware there is an arrow from the circle to the rectangle. If
the software in a first module invokes a function in a second module there is an arrow from the first to
second circle.

Part c) A non-divisible entity when transmitting serial data. In the UART lab this semester this entity
was 10 bits wide.

Part d) A property of a system such that the time delay between a request and the service of the request
is always less than a constant. This time response is acceptable to our customers.

Part e) A data structure that implements last in first out behavior. In other words, the information
retrieved is always the information that was most recently entered.

EE319K Spring 2012 Final Exam Version B LM3S1968 version Page 2 of 12

Jonathan Valvano May 10, 2012

Part f) A rule that states if we sample the ADC at a rate of fs, the digital samples can represent the
frequencies from 0 to ½ fs.

Part g) A type of software comprised of these building blocks: sequence, if-then, and while-loop.

Part h) A debugging process run by determining in advance, either by analytical algorithm or explicit
calculations, the expected outputs of strategic intermediate stages and final results for typical inputs.
We then run our program and compare the actual outputs with this template of expected results.

Part i) The name given to describe 1,048,576 bits.

Part j) The specification defining where software will start when power is first applied to the system.

(5) Question 2. Consider what happens when a program calls a function. This invocation creates a
stack frame. List three objects that may be present in the stack frame.

EE319K Spring 2012 Final Exam Version B LM3S1968 version Page 3 of 12

Jonathan Valvano May 10, 2012

(5) Question 3. What is the output voltage Vout when PE2 is high, PE1 is high, and PE0 is low?
Assume VOH is 3.3V and VOL = 0V.

(5) Question 4. Assume Height is the integer part of an 8-bit signed fixed-point variable with a
resolution of 0.1 cm. The goal is to subtract 0.5 cm from the value of the variable. Will the following
software always operate properly?
 LDR R0,=Height
 LDRSB R1,[R0] ;read and promote to 32 bits
 SUB R1,R1,#5 ;perform the subtraction in 32-bit mode
 STRB [R0] ;demote back to 8 bits, store into variable
A) Yes, the program has no errors.
B) No, an error occurs if the V bit is set by the SUB instruction.
C) No, error can occur during the demotion.
D) No, an error occurs if the C bit is set by the SUB instruction.
E) No, one needs to divide by 10 to get the correct result.
F) No, the SUB instruction should have been SUB R1,R1,#0.5
G) No, dropout can occur.

(5) Question 5. Design the circuit that interfaces an LED to Port E bit 0. Assume the LED voltage
drop is 2 V and the desired LED current is 2 mA. When the software outputs a high, the voltage on
PE0 becomes 3.2 V (LED on). When the software outputs a low, the voltage on PE0 becomes 0.2 V
(LED off). Show the interface (a 7406 driver will not be needed because the current is low)

10 k
Vout

10 k
PE1

PE0

10 k

PE2

EE319K Spring 2012 Final Exam Version B LM3S1968 version Page 4 of 12

Jonathan Valvano May 10, 2012

(15) Question 6. There are arrays of 16-bit signed numbers. The arrays are variable length with -32768
termination. The entry -32768 is not a data point in the array. For example, here are three such possible
arrays. If -32768 is the first entry, the array is empty.
short buf1[5]={4,1000,-1000,0,-32768};
short buf2[7]={6,-4,100,200,2,0,-32768};
short buf3[1]={-32768};
Part a) Write a C function that takes a pointer to an array and returns the sum of all the data points. For
example
Result1 = Sum(buf1); // should return 4 = 4+1000-1000
Result2 = Sum(buf2); // should return 304 = 6-4+100+200+2+0
Result3 = Sum(buf3); // should return 0 because array is empty
You are not allowed to add any global variables. For the C implementation, do not worry about
overflow when calculating the sum.

Part b) Write an assembly subroutine that performs the same operation. The pointer to the array is
passed in Register R0, and the 16-bit result is returned in Register R0. You are not allowed to add any
global variables. Different from the C implementation, return Register R0 equal to -32768 if overflow
occurs during the calculations.

EE319K Spring 2012 Final Exam Version B LM3S1968 version Page 5 of 12

Jonathan Valvano May 10, 2012

(10) Question 7. In this question, the subroutine implements a call by reference parameter passed on
the stack. There are no return parameters. Call by reference means an address to the data is pushed on
the stack. A typical calling sequence is
 AREA |.text|, CODE, READONLY, ALIGN=2
Data DCD 100 ;32-bit information
Main LDR R0,=Data ;pointer to Data
 PUSH {R0} ;pointer to the Data is pushed
 MOV R0,#0 ;no cheating, parameter not in R0, on stack
 BL Subroutine
 ADD SP,SP,#4 ;discard parameter
The subroutine allocates one 32-bit local variable, L1, and uses SP stack pointer addressing to access
the local variable and parameter. The binding for these two are
Pt EQU ??? ;32-bit pointer to 32-bit data
L1 EQU ??? ;32-bit local variable
Subroutine
 SUB SP,SP,#4 ;allocate L1
 PUSH {R10,R11}
;---------start of body-------------------
 ???????? ;Reg R10 points to data
 LDR R11,[R10] ;R11= value of the data
 STR [SP,#L1] ;save parameter into local L1
;---------end of body---------------------
 POP {R10,R11}
 ADD SP,SP,#4 ;deallocate L1
 BX LR

Part a) Show the binding for the ??? parameters in the above program.

Pt EQU

L1 EQU

Part b) Show the instruction(s) for the ???????? in the above program. In particular, you must use
SP stack frame addressing, Pt binding, and bring the value of the parameter into Register R10. It
should be done in one instruction. It has to work in general, but for this example calling sequence, the
instruction LDR R11,[R10] will load the value of 100 into Register R11.

EE319K Spring 2012 Final Exam Version B LM3S1968 version Page 6 of 12

Jonathan Valvano May 10, 2012

(10) Question 8. Write C function that samples the ADC. The channel number 0 to 7 is passed into the
function using call by value. The function returns the 10-bit sample value in right-justified format.
Your function should start the ADC, wait for the ADC to finish using busy-wait synchronization, then
read one 10-bit conversion from the ADC. You may assume the ADC interface is already initialized to
sample one channel in 10-bit mode. The result should vary from 0 to 1023.

Part a) Show the C code you would place in the header file (ADC.h). Comments will be graded.

Part b) Show the C code you would place in the code file (ADC.c). Comments are not required for this
part.

(5) Question 9. Assume the bus clock is operating at 50 MHz. The SysTick initialization executes
these instructions.
SysTick_Init
 LDR R1, =NVIC_ST_RELOAD_R ; R1 = &NVIC_ST_RELOAD_R
 ?????????
 STR R0, [R1]
 LDR R1, =NVIC_ST_CTRL_R ; R1 = &NVIC_ST_CTRL_R
 ?????????
 STR R2, [R1]
 BX LR ; return
What value goes in the two ????? placea to make the interrupt frequency 100 Hz?

EE319K Spring 2012 Final Exam Version B LM3S1968 version Page 7 of 12

Jonathan Valvano May 10, 2012

happy
'H' thirsty

'T'

sleepy
'S'

'A'

'B'

'C'

rest

'A'

'B'

'C'
rest

'A'
'B'

'C'

rest

(5) Question 10. You observe the following waveform at the output of a UART port. You know the
format is 1 start, 8 data and 1 stop bit.

2ms 2ms 2ms 2ms 2ms 2ms

Part a) What is the baud rate?

Part b) What 8-bit number is being transmitted? Give your answer in hexadecimal.

(25) Question 11. In this problem, your software will implement a Moore FSM using the UART0
serial port. You must use UART0 RTRIS input interrupts, but not output interrupts. The baud rate is
10000 bits/sec. You may assume the bus clock is 50 MHz. The input arrives as ASCII characters from
the UART receiver. The output leaves as ASCII characters out of the UART transmitter. The arrow
labeled “rest” should be taken for any input not ‘A’ ‘B’ or ‘C’. The code for the FSM structure is given
const struct State{
 unsigned char Out; // Output via UART
 const struct State *Next[4]; // if input =’A’, ‘B’, ‘C’ or other
};
typedef const struct State StateType;
typedef StateType * StatePtr;

#define happy &fsm[0]
#define thirsty &fsm[1]
#define sleepy &fsm[2]
StateType fsm[3]={
 {‘H’, {thirsty,happy,thirsty,sleepy}},
 {‘T’, {thirsty,sleepy,happy,thirsty}},
 {‘S’, {happy,sleepy,happy,thirsty}}
};
StatePtr Pt; // Current State

Part a) Write the initialization function in C that sets up the UART0. The main program will call this
initialization once at the beginning, and then perform unrelated tasks. This function should arm and
enable interrupts. Initialize the current state pointer Pt to the happy state. No loops are allowed.

EE319K Spring 2012 Final Exam Version B LM3S1968 version Page 8 of 12

Jonathan Valvano May 10, 2012

Part c) Write the ISR in C that runs the FSM using UART0. There will be exactly one input and one
output for each invocation of the ISR. No loops are allowed. For each RTRIS interrupt:
 Read the input frame (clear RTRIS)
 Go to the next state (depending on the current state and the input)
 Perform the output of that new state
 Return from interrupt

EE319K Spring 2012 Final Exam Page 9 of 12

Jonathan Valvano May 10, 2012

Memory access instructions
 LDR Rd, [Rn] ; load 32-bit number at [Rn] to Rd
 LDR Rd, [Rn,#off] ; load 32-bit number at [Rn+off] to Rd
 LDR Rd, =value ; set Rd equal to any 32-bit value (PC rel)
 LDRH Rd, [Rn] ; load unsigned 16-bit at [Rn] to Rd
 LDRH Rd, [Rn,#off] ; load unsigned 16-bit at [Rn+off] to Rd
 LDRSH Rd, [Rn] ; load signed 16-bit at [Rn] to Rd
 LDRSH Rd, [Rn,#off] ; load signed 16-bit at [Rn+off] to Rd
 LDRB Rd, [Rn] ; load unsigned 8-bit at [Rn] to Rd
 LDRB Rd, [Rn,#off] ; load unsigned 8-bit at [Rn+off] to Rd
 LDRSB Rd, [Rn] ; load signed 8-bit at [Rn] to Rd
 LDRSB Rd, [Rn,#off] ; load signed 8-bit at [Rn+off] to Rd
 STR Rt, [Rn] ; store 32-bit Rt to [Rn]
 STR Rt, [Rn,#off] ; store 32-bit Rt to [Rn+off]
 STRH Rt, [Rn] ; store least sig. 16-bit Rt to [Rn]
 STRH Rt, [Rn,#off] ; store least sig. 16-bit Rt to [Rn+off]
 STRB Rt, [Rn] ; store least sig. 8-bit Rt to [Rn]
 STRB Rt, [Rn,#off] ; store least sig. 8-bit Rt to [Rn+off]
 PUSH {Rt} ; push 32-bit Rt onto stack
 POP {Rd} ; pop 32-bit number from stack into Rd
 ADR Rd, label ; set Rd equal to the address at label
 MOV{S} Rd, <op2> ; set Rd equal to op2
 MOV Rd, #im16 ; set Rd equal to im16, im16 is 0 to 65535
 MVN{S} Rd, <op2> ; set Rd equal to -op2
Branch instructions
 B label ; branch to label Always
 BEQ label ; branch if Z == 1 Equal
 BNE label ; branch if Z == 0 Not equal
 BCS label ; branch if C == 1 Higher or same, unsigned ≥
 BHS label ; branch if C == 1 Higher or same, unsigned ≥
 BCC label ; branch if C == 0 Lower, unsigned <
 BLO label ; branch if C == 0 Lower, unsigned <
 BMI label ; branch if N == 1 Negative
 BPL label ; branch if N == 0 Positive or zero
 BVS label ; branch if V == 1 Overflow
 BVC label ; branch if V == 0 No overflow
 BHI label ; branch if C==1 and Z==0 Higher, unsigned >
 BLS label ; branch if C==0 or Z==1 Lower or same, unsigned ≤
 BGE label ; branch if N == V Greater than or equal, signed ≥
 BLT label ; branch if N != V Less than, signed <
 BGT label ; branch if Z==0 and N==V Greater than, signed >
 BLE label ; branch if Z==1 and N!=V Less than or equal, signed ≤
 BX Rm ; branch indirect to location specified by Rm
 BL label ; branch to subroutine at label
 BLX Rm ; branch to subroutine indirect specified by Rm
Interrupt instructions
 CPSIE I ; enable interrupts (I=0)
 CPSID I ; disable interrupts (I=1)

Logical instructions
 AND{S} {Rd,} Rn, <op2> ; Rd=Rn&op2 (op2 is 32 bits)
 ORR{S} {Rd,} Rn, <op2> ; Rd=Rn|op2 (op2 is 32 bits)
 EOR{S} {Rd,} Rn, <op2> ; Rd=Rn^op2 (op2 is 32 bits)
 BIC{S} {Rd,} Rn, <op2> ; Rd=Rn&(~op2) (op2 is 32 bits)
 ORN{S} {Rd,} Rn, <op2> ; Rd=Rn|(~op2) (op2 is 32 bits)

EE319K Spring 2012 Final Exam Page 10 of 12

Jonathan Valvano May 10, 2012

 LSR{S} Rd, Rm, Rs ; logical shift right Rd=Rm>>Rs (unsigned)
 LSR{S} Rd, Rm, #n ; logical shift right Rd=Rm>>n (unsigned)
 ASR{S} Rd, Rm, Rs ; arithmetic shift right Rd=Rm>>Rs (signed)
 ASR{S} Rd, Rm, #n ; arithmetic shift right Rd=Rm>>n (signed)
 LSL{S} Rd, Rm, Rs ; shift left Rd=Rm<<Rs (signed, unsigned)
 LSL{S} Rd, Rm, #n ; shift left Rd=Rm<<n (signed, unsigned)
Arithmetic instructions
 ADD{S} {Rd,} Rn, <op2> ; Rd = Rn + op2
 ADD{S} {Rd,} Rn, #im12 ; Rd = Rn + im12, im12 is 0 to 4095
 SUB{S} {Rd,} Rn, <op2> ; Rd = Rn - op2
 SUB{S} {Rd,} Rn, #im12 ; Rd = Rn - im12, im12 is 0 to 4095
 RSB{S} {Rd,} Rn, <op2> ; Rd = op2 - Rn
 RSB{S} {Rd,} Rn, #im12 ; Rd = im12 – Rn
 CMP Rn, <op2> ; Rn – op2 sets the NZVC bits
 CMN Rn, <op2> ; Rn - (-op2) sets the NZVC bits
 MUL{S} {Rd,} Rn, Rm ; Rd = Rn * Rm signed or unsigned
 MLA Rd, Rn, Rm, Ra ; Rd = Ra + Rn*Rm signed or unsigned
 MLS Rd, Rn, Rm, Ra ; Rd = Ra - Rn*Rm signed or unsigned
 UDIV {Rd,} Rn, Rm ; Rd = Rn/Rm unsigned
 SDIV {Rd,} Rn, Rm ; Rd = Rn/Rm signed
Notes Ra Rd Rm Rn Rt represent 32-bit registers
 value any 32-bit value: signed, unsigned, or address
 {S} if S is present, instruction will set condition codes
 #im12 any value from 0 to 4095
 #im16 any value from 0 to 65535
 {Rd,} if Rd is present Rd is destination, otherwise Rn
 #n any value from 0 to 31
 #off any value from -255 to 4095
 label any address within the ROM of the microcontroller
 op2 the value generated by <op2>
Examples of flexible operand <op2> creating the 32-bit number. E.g., Rd = Rn+op2
 ADD Rd, Rn, Rm ; op2 = Rm
 ADD Rd, Rn, Rm, LSL #n ; op2 = Rm<<n Rm is signed, unsigned
 ADD Rd, Rn, Rm, LSR #n ; op2 = Rm>>n Rm is unsigned
 ADD Rd, Rn, Rm, ASR #n ; op2 = Rm>>n Rm is signed
 ADD Rd, Rn, #constant ; op2 = constant, where X and Y are hexadecimal digits:

 produced by shifting an 8-bit unsigned value left by any number of bits
 in the form 0x00XY00XY
 in the form 0xXY00XY00
 in the form 0xXYXYXYXY

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12

R13 (MSP)
R14 (LR)
R15 (PC)

Stack pointer
Link register

Program counter

General
purpose
registers

256k Flash
ROM

64k RAM

I/O ports

Internal I/O
PPB

0x0000.0000

0x0003.FFFF

0x2000.0000

0x2000.FFFF

0x4000.0000

0x41FF.FFFF

0xE000.0000

0xE004.0FFF

Condition code bits
N negative
Z zero
V signed overflow
C carry or
 unsigned overflow

EE319K Spring 2012 Final Exam Page 11 of 12

Jonathan Valvano May 10, 2012

Address 7 6 5 4 3 2 1 0 Name
$400F.E108 GPIOH GPIOG GPIOF GPIOE GPIOD GPIOC GPIOB GPIOA SYSCTL_RCGC2_R
$4000.43FC DATA DATA DATA DATA DATA DATA DATA DATA GPIO_PORTA_DATA_R
$4000.4400 DIR DIR DIR DIR DIR DIR DIR DIR GPIO_PORTA_DIR_R
$4000.4420 SEL SEL SEL SEL SEL SEL SEL SEL GPIO_PORTA_AFSEL_R
$4000.451C DEN DEN DEN DEN DEN DEN DEN DEN GPIO_PORTA_DEN_R

Table 4.5. Some LM3S1968 parallel ports. Each register is 32 bits wide. Bits 31 – 8 are zero.

We set the direction register (e.g., GPIO_PORTA_DIR_R) to specify which pins are input (0) and which are output (1).
We will set bits in the alternative function register when we wish to activate the alternate functions (not GPIO). We use the
data register (e.g., GPIO_PORTA_DATA_R) to perform input/output on the port. For each I/O pin we wish to use whether
GPIO or alternate function we must enable the digital circuits by setting the bit in the enable register (e.g.,
GPIO_PORTA_DEN_R).

Address 31 30 29-7 6 5 4 3 2 1 0 Name
0xE000E100 G F … UART1 UART0 E D C B A NVIC_EN0_R
0xE000E104 … UART2 H NVIC_EN1_R

Address 31-24 23-17 16 15-3 2 1 0 Name
$E000E010 0 0 COUNT 0 CLK_SRC INTEN ENABLE NVIC_ST_CTRL_R
$E000E014 0 24-bit RELOAD value NVIC_ST_RELOAD_R
$E000E018 0 24-bit CURRENT value of SysTick counter NVIC_ST_CURRENT_R

Address 31-29 28-24 23-21 20-8 7-5 4-0 Name
$E000ED20 TICK 0 PENDSV 0 DEBUG 0 NVIC_SYS_PRI3_R

Table 9.6. SysTick registers.

Table 9.6 shows the SysTick registers used to create a periodic interrupt. SysTick has a 24-bit counter that decrements at
the bus clock frequency. Let fBUS be the frequency of the bus clock, and let n be the value of the RELOAD register. The
frequency of the periodic interrupt will be fBUS/(n+1). First, we clear the ENABLE bit to turn off SysTick during
initialization. Second, we set the RELOAD register. Third, we write to the NVIC_ST_CURRENT_R value to clear the
counter. Lastly, we write the desired mode to the control register, NVIC_ST_CTRL_R. To turn on the SysTick, we set the
ENABLE bit. We must set CLK_SRC=1, because CLK_SRC=0 external clock mode is not implemented on the
LM3S/LM4F family. We set INTEN to enable interrupts. The standard name for the SysTick ISR is SysTick_Handler.

Address 31-17 16 15-10 9 8 7-0 Name
$400F.E000 ADC MAXADCSPD SYSCTL_RCGC0_R

 31-14 13-12 11-10 9-8 7-6 5-4 3-2 1-0
$4003.8020 SS3 SS2 SS1 SS0 ADC_SSPRI_R

 31-16 15-12 11-8 7-4 3-0
$4003.8014 EM3 EM2 EM1 EM0 ADC_EMUX_R

 31-4 3 2 1 0
$4003.8000 ASEN3 ASEN2 ASEN1 ASEN0 ADC_ACTSS_R
$4003.80A0 MUX0 ADC_SSMUX3_R
$4003.80A4 TS0 IE0 END0 D0 ADC_SSCTL3_R
$4003.8028 SS3 SS2 SS1 SS0 ADC_PSSI_R
$4003.8004 INR3 INR2 INR1 INR0 ADC_RIS_R
$4003.8008 MASK3 MASK2 MASK1 MASK0 ADC_IM_R
$4003.800C IN3 IN2 IN1 IN0 ADC_ISC_R

 31-10 9-0
$4003.80A8 DATA ADC_SSFIFO3

Table 10.3. The LM3S ADC registers. Each register is 32 bits wide.

Set MAXADCSPD to 00 for slow speed operation. The ADC has four sequencers, but we will use only sequencer 3. We
set the ADC_SSPRI_R register to 0x3210 to make sequencer 3 the lowest priority. Because we are using just one
sequencer, we just need to make sure each sequencer has a unique priority. We set bits 15–12 (EM3) in the

EE319K Spring 2012 Final Exam Page 12 of 12

Jonathan Valvano May 10, 2012

ADC_EMUX_R register to specify how the ADC will be triggered. If we specify software start (EM3=0x0), then the
software writes an 8 (SS3) to the ADC_PSSI_R to initiate a conversion on sequencer 3. Bit 3 (INR3) in the ADC_RIS_R
register will be set when the conversion is complete. We can enable and disable the sequencers using the ADC_ACTSS_R
register. There are eight on the LM3S1968. Which channel we sample is configured by writing to the ADC_SSMUX3_R
register. The ADC_SSCTL3_R register specifies the mode of the ADC sample. Clear TS0. We set IE0 so that the INR3
bit is set on ADC conversion, and clear it when no flags are needed. We will set IE0 for both interrupt and busy-wait
synchronization. When using sequencer 3, there is only one sample, so END0 will always be set, signifying this sample is
the end of the sequence. Clear the D0 bit. The ADC_RIS_R register has flags that are set when the conversion is complete,
assuming the IE0 bit is set. Do not set bits in the ADC_IM_R register because we do not want interrupts.

UART0 pins are on PA1 (transmit) and PA0 (receive).

The UART0_IBRD_R and UART0_FBRD_R registers specify the baud rate. The baud rate divider is a 22-bit binary fixed-
point value with a resolution of 2-6. The Baud16 clock is created from the system bus clock, with a frequency of (Bus clock
frequency)/divider. The baud rate is 16 times slower than Baud16

 Baud rate = Baud16/16 = (Bus clock frequency)/(16*divider)

We set bit 4 of the UART0_LCRH_R to enable the hardware FIFOs. We set both bits 5 and 6 of the UART0_LCRH_R to
establish an 8-bit data frame. The RTRIS is set on a receiver timeout, which is when the receiver FIFO is not empty and no
incoming frames have occurred in a 32-bit time period. The arm bits are in the UART0_IM_R register. To acknowledge an
interrupt (make the trigger flag become zero), software writes a 1 to the corresponding bit in the UART0_IC_R register.
We set bit 0 of the UART0_CTL_R to enable the UART.

Writing to UART0_DR_R register will output on the UART. This data is placed in a 16-deep transmit hardware FIFO. Data
are transmitted first come first serve. Received data are place in a 16-deep receive hardware FIFO. Reading from
UART0_DR_R register will get one data from the receive hardware FIFO. The status of the two FIFOs can be seen in the
UART0_FR_R register (FF is FIFO full, FE is FIFO empty). The standard name for the UART0 ISR is UART0_Handler.

 31–12 11 10 9 8 7–0 Name
$4000.C000 OE BE PE FE DATA UART0_DR_R

 31–3 3 2 1 0
$4000.C004 OE BE PE FE UART0_RSR_R

 31–8 7 6 5 4 3 2–0
$4000.C018 TXFE RXFF TXFF RXFE BUSY UART0_FR_R

 31–16 15–0
$4000.C024 DIVINT UART0_IBRD_R

 31–6 5–0
$4000.C028 DIVFRAC UART0_FBRD_R

 31–8 7 6 – 5 4 3 2 1 0
$4000.C02C SPS WPEN FEN STP2 EPS PEN BRK UART0_LCRH_R

 31–10 9 8 7 6–3 2 1 0
$4000.C030 RXE TXE LBE SIRLP SIREN UARTEN UART0_CTL_R

 31–6 5-3 2-0
$4000.C034 RXIFLSEL TXIFLSEL UART0_IFLS_R

 31-11 10 9 8 7 6 5 4
$4000.C038 OEIM BEIM PEIM FEIM RTIM TXIM RXIM UART0_IM_R
$4000.C03C OERIS BERIS PERIS FERIS RTRIS TXRIS RXRIS UART0_RIS_R
$4000.C040 OEMIS BEMIS PEMIS FEMIS RTMIS TXMIS RXMIS UART0_MIS_R
$4000.C044 OEIC BEIC PEIC FEIC RTIC TXIC RXIC UART0_IC_R

Table 11.2. UART0 registers. Each register is 32 bits wide. Shaded bits are zero.

