
EE319K Spring 2013 Final Exam Page 1 of 12

Jonathan Valvano May 11, 2013

First:________________ Last:____________________

This is a closed book exam. You must put your answers in the boxes provided. You have 3 hours, so
allocate your time accordingly. Please read the entire exam before starting.

Please read and affirm our honor code:
 “The core values of The University of Texas at Austin are learning, discovery, freedom, leadership,
individual opportunity, and responsibility. Each member of the university is expected to uphold these
values through integrity, honesty, trust, fairness, and respect toward peers and community.”

 Signature ______________________________________

EE319K Spring 2013 Final Exam Page 2 of 12

Jonathan Valvano May 11, 2013

(10) Question 1. Consider a game that has 100 bouncing balls. There is an array of specifying the
current status of each ball. Each ball has an (x,y) coordinate, a velocity, a direction and a color. You
may assume the Ball array has been populated with data.
struct thing {
 unsigned char x; // x coordinate, in cm
 unsigned char y; // y coordinate, in cm
 short velocity; // velocity, in cm/sec
 unsigned short angle; // direction, in degrees
 unsigned long color;}; // RGB color
typedef thing thingType;
thingType Ball[100];
Write a C function that searches to see if two balls are occupying the same space (the x coordinates are
equal and the y coordinates are equal). If two balls are occupying the same space, add 90 degrees to the
angle of both balls, making sure the angles remain in the range of 0 to 359. E.g. 300+90 is 390, so set
the angle to 30 degrees. Do not worry about 3 or more balls occupying the same space.

EE319K Spring 2013 Final Exam Page 3 of 12

Jonathan Valvano May 11, 2013

(5) Question 2. Interface a single-pole double-throw (SPDT) switch to input port PA0. If the switch is
not pressed, then pin A is connected to pin B. If the switch is pressed, then pin C is connected to pin
B. Pin A will never be connected to pin C, and pin B is always connected to either pin A or pin C.
Implement the interface such that if the switch is pressed PA0 is high, and if the switch is not pressed
PA0 is low. Do not use internal resistors. Show hardware connections; no software is required.

PA0

Microcontroller

A C

B

(5) Question 3. Interface an LED to PA1. Implement the interface in negative logic. The desired LED
operating point is 1.2V 2mA. The VOH is 3.0V and VOL = 0.1V. Minimize cost of the interface. Show
hardware connections; no software is required.

PA1

Microcontroller

(8) Problem 4. Assume the UART0 has been initialized. Use busy-wait synchronization to implement a C
function outputs a string to UART0. In C, strings are variable-length with null termination; your function uses
call by reference. If you wish to call UART_OutChar, you must show the implementation of this subfunction.
void UART_OutString(unsigned char *pt){

EE319K Spring 2013 Final Exam Page 4 of 12

Jonathan Valvano May 11, 2013

(8) Question 5. Design a 5-bit DAC using the binary-weighted configuration. The DAC is controlled
by five output port pins, PE4-0. Carefully label the signal which is the DAC output.

PE0

PE1

PE2

PE3

PE4

Microcontroller

(6) Question 6. Add C code to define the following variables
v1 should be a public permanently-allocated 32-bit signed variable
v2 should be a temporary 32-bit unsigned variable private to the function Fun_Init
v3 should be a permanently-allocated 16-bit signed variable private to the function Fun_Init
v4 should be a permanently-allocated 16-bit signed variable, private to the file Fun.c.

// This is the first line of the Fun.c code file

void Fun_Init(int in){ // code

}
// this is the last line of the Fun.c code file

(10) Question 7. Assume there is a buffer is defined in assembly with the equivalent size and type as
the one shown in C on the right.
;assembly
Buffer SPACE 400

// C
long Buffer[100];

Show an assembly subroutine that sets each element of the buffer to its index value. Assuming i
varies from 0 to 99, set Buffer[i] = i;

EE319K Spring 2013 Final Exam Page 5 of 12

Jonathan Valvano May 11, 2013

(10) Question 8. Write C or assembly code that creates this output on PA2 using SysTick interrupts.
Assume the bus clock is 50 MHz. The pattern of high for 1 second and low for 3 seconds should repeat
over and over. Hint: since you do not have a calculator run the SysTick period at a convenient value,
such as every 10ms or every 100ms.

1s 1s 1s3s 3s

Part a) Show the initialization code that runs once

Part b) Show the SysTick ISR

EE319K Spring 2013 Final Exam Page 6 of 12

Jonathan Valvano May 11, 2013

(10) Question 9. State the term that is best described by each definition.
Part a) An address that specifies the location of an interrupt service routine.

Part b) A type of computer architecture where data is read from memory in the same
way machine codes are fetched from memory.

Part c) The theorem that says the frequency at which the ADC is sampled must be
higher than the frequency of the signal being sampled.

Part d) An interfacing approach where the hardware causes a specific software
routine to be executed.

Part e) A debugging technique that stores strategic information into an array at run
time, and the contents of the array are observed afterwards.

Part f) A term that describes a variable specifying whether some or all of the software
has access to the variable. Hint: the answer is not private, and the answer is not public.

Part g) A measure of software size, specifying how many bytes of memory are
required for the software.

Part h) A software step that explicitly clears the trigger flag. ------------------------------
-

Part i) The name given to describe 1,048,576 bytes. ---
-

Part j) A type of digital logic where the output is either zero or off. ---------------------

(4) Question 10. The Stellaris LM3S1968 has a 0 to 3V 10-bit ADC. What will be the digital output of
the ADC if the input voltage is 0.75 V? Give the answer in decimal.

(2) Question 11. If R0 equals -10, what will be in register R0 after executing these instructions?

 LSL R1,R0,#3
 ADD R0,R0,R1

EE319K Spring 2013 Final Exam Page 7 of 12

Jonathan Valvano May 11, 2013

(6) Question 12. Consider a SysTick ISR.
Part a) During the context switch from main program to ISR, which registers get pushed on the stack?
Do not include any registers pushed by software as it executes.

Part b) The last instruction of an ISR is BX LR. For a regular subroutine return, BX LR simply puts LR
into PC. For an interrupt return BX LR does something different. How does BX LR know not to put LR
into PC, and instead what does BX LR do?

(10) Question 13. A distance is represented as unsigned binary fixed-point number with resolution of
2-4 cm. Assume the variable integer is 32 bits and unsigned. Assume the variable integer is passed by
value into a subroutine using Register R0. Calculate the cost = (1.5 dollars/cm)*distance. The cost is
represented as an unsigned decimal fixed-point number with resolution of $0.01. The function should
return the variable integer representing cost in Register R0. For example if the distance is 1.25 cm. The
cost will be (1.5 dollars/cm)*1.25 cm = $1.87 (or $1.88 depending on how you round).
Part a) Let I be the variable integer representing distance. Give an equation relating distance and I?

Part b) Let J be the variable integer representing cost. Give an equation relating cost and J?

Part c) Write the assembly subroutine that converts distance to cost. Start with the desired operation
 cost = (1.5 dollars/cm)*distance
and then derive a function that can be used to calculate J from I. Optimize for speed, eliminate
overflow, and minimize dropout. The input I is passed by value in R0, and the output J is returned by
value in R0.

EE319K Spring 2013 Final Exam Page 8 of 12

Jonathan Valvano May 11, 2013

(6) Question 14. Consider this FIFO get function. There are no bugs in either implementation, but
there are three missing values in the assembly version. Fill in the three values on the answer sheet.
pt EQU ??(a)??
Fifo_Get PUSH {R0} ;allocate local
 PUSH {R4,R5}
 LDR R0,=PutPt
 LDR R0,[R0]
 LDR R1,=GetPt
 LDR R2,[R1]
 CMP R2,R0
 BNE NotEmpty
 MOV R0,#0
 B done
NotEmpty LDRSB R3,[R2]
 LDR R4,[SP,#pt]
 STRB R3,[R4]
 ADD R2,R2,#??(b)??
 LDR R5,=Fifo+FIFOSIZE
 CMP R2,R5
 BNE NoWrap
 LDR R2,=Fifo
NoWrap STR R2,[R1]
done POP {R4,R5}
 ADD SP,SP,#??(c)??
 BX LR

#define FIFOSIZE 10
char volatile *PutPt;
char volatile *GetPt;
char static Fifo[FIFOSIZE];
int Fifo_Get(char *pt){
 if(PutPt == GetPt){
 return(0);
 }
 *pt = *(GetPt);
 GetPt++;
 if(GetPt== &Fifo[FIFOSIZE]){
 GetPt = &Fifo[0];
 }
 return(1);
}

Part a) What is ??(a)??

Part b) What is ??(b)??

Part c) What is ??(c)??

EE319K Spring 2013 Final Exam Page 9 of 12

Jonathan Valvano May 11, 2013

Memory access instructions
 LDR Rd, [Rn] ; load 32-bit number at [Rn] to Rd
 LDR Rd, [Rn,#off] ; load 32-bit number at [Rn+off] to Rd
 LDR Rd, =value ; set Rd equal to any 32-bit value (PC rel)
 LDRH Rd, [Rn] ; load unsigned 16-bit at [Rn] to Rd
 LDRH Rd, [Rn,#off] ; load unsigned 16-bit at [Rn+off] to Rd
 LDRSH Rd, [Rn] ; load signed 16-bit at [Rn] to Rd
 LDRSH Rd, [Rn,#off] ; load signed 16-bit at [Rn+off] to Rd
 LDRB Rd, [Rn] ; load unsigned 8-bit at [Rn] to Rd
 LDRB Rd, [Rn,#off] ; load unsigned 8-bit at [Rn+off] to Rd
 LDRSB Rd, [Rn] ; load signed 8-bit at [Rn] to Rd
 LDRSB Rd, [Rn,#off] ; load signed 8-bit at [Rn+off] to Rd
 STR Rt, [Rn] ; store 32-bit Rt to [Rn]
 STR Rt, [Rn,#off] ; store 32-bit Rt to [Rn+off]
 STRH Rt, [Rn] ; store least sig. 16-bit Rt to [Rn]
 STRH Rt, [Rn,#off] ; store least sig. 16-bit Rt to [Rn+off]
 STRB Rt, [Rn] ; store least sig. 8-bit Rt to [Rn]
 STRB Rt, [Rn,#off] ; store least sig. 8-bit Rt to [Rn+off]
 PUSH {Rt} ; push 32-bit Rt onto stack
 POP {Rd} ; pop 32-bit number from stack into Rd
 ADR Rd, label ; set Rd equal to the address at label
 MOV{S} Rd, <op2> ; set Rd equal to op2
 MOV Rd, #im16 ; set Rd equal to im16, im16 is 0 to 65535
 MVN{S} Rd, <op2> ; set Rd equal to -op2
Branch instructions
 B label ; branch to label Always
 BEQ label ; branch if Z == 1 Equal
 BNE label ; branch if Z == 0 Not equal
 BCS label ; branch if C == 1 Higher or same, unsigned ≥
 BHS label ; branch if C == 1 Higher or same, unsigned ≥
 BCC label ; branch if C == 0 Lower, unsigned <
 BLO label ; branch if C == 0 Lower, unsigned <
 BMI label ; branch if N == 1 Negative
 BPL label ; branch if N == 0 Positive or zero
 BVS label ; branch if V == 1 Overflow
 BVC label ; branch if V == 0 No overflow
 BHI label ; branch if C==1 and Z==0 Higher, unsigned >
 BLS label ; branch if C==0 or Z==1 Lower or same, unsigned ≤
 BGE label ; branch if N == V Greater than or equal, signed ≥
 BLT label ; branch if N != V Less than, signed <
 BGT label ; branch if Z==0 and N==V Greater than, signed >
 BLE label ; branch if Z==1 and N!=V Less than or equal, signed ≤
 BX Rm ; branch indirect to location specified by Rm
 BL label ; branch to subroutine at label
 BLX Rm ; branch to subroutine indirect specified by Rm
Interrupt instructions
 CPSIE I ; enable interrupts (I=0)
 CPSID I ; disable interrupts (I=1)

Logical instructions
 AND{S} {Rd,} Rn, <op2> ; Rd=Rn&op2 (op2 is 32 bits)
 ORR{S} {Rd,} Rn, <op2> ; Rd=Rn|op2 (op2 is 32 bits)
 EOR{S} {Rd,} Rn, <op2> ; Rd=Rn^op2 (op2 is 32 bits)
 BIC{S} {Rd,} Rn, <op2> ; Rd=Rn&(~op2) (op2 is 32 bits)
 ORN{S} {Rd,} Rn, <op2> ; Rd=Rn|(~op2) (op2 is 32 bits)

EE319K Spring 2013 Final Exam Page 10 of 12

Jonathan Valvano May 11, 2013

 LSR{S} Rd, Rm, Rs ; logical shift right Rd=Rm>>Rs (unsigned)
 LSR{S} Rd, Rm, #n ; logical shift right Rd=Rm>>n (unsigned)
 ASR{S} Rd, Rm, Rs ; arithmetic shift right Rd=Rm>>Rs (signed)
 ASR{S} Rd, Rm, #n ; arithmetic shift right Rd=Rm>>n (signed)
 LSL{S} Rd, Rm, Rs ; shift left Rd=Rm<<Rs (signed, unsigned)
 LSL{S} Rd, Rm, #n ; shift left Rd=Rm<<n (signed, unsigned)
Arithmetic instructions
 ADD{S} {Rd,} Rn, <op2> ; Rd = Rn + op2
 ADD{S} {Rd,} Rn, #im12 ; Rd = Rn + im12, im12 is 0 to 4095
 SUB{S} {Rd,} Rn, <op2> ; Rd = Rn - op2
 SUB{S} {Rd,} Rn, #im12 ; Rd = Rn - im12, im12 is 0 to 4095
 RSB{S} {Rd,} Rn, <op2> ; Rd = op2 - Rn
 RSB{S} {Rd,} Rn, #im12 ; Rd = im12 – Rn
 CMP Rn, <op2> ; Rn – op2 sets the NZVC bits
 CMN Rn, <op2> ; Rn - (-op2) sets the NZVC bits
 MUL{S} {Rd,} Rn, Rm ; Rd = Rn * Rm signed or unsigned
 MLA Rd, Rn, Rm, Ra ; Rd = Ra + Rn*Rm signed or unsigned
 MLS Rd, Rn, Rm, Ra ; Rd = Ra - Rn*Rm signed or unsigned
 UDIV {Rd,} Rn, Rm ; Rd = Rn/Rm unsigned
 SDIV {Rd,} Rn, Rm ; Rd = Rn/Rm signed
Notes Ra Rd Rm Rn Rt represent 32-bit registers
 value any 32-bit value: signed, unsigned, or address
 {S} if S is present, instruction will set condition codes
 #im12 any value from 0 to 4095
 #im16 any value from 0 to 65535
 {Rd,} if Rd is present Rd is destination, otherwise Rn
 #n any value from 0 to 31
 #off any value from -255 to 4095
 label any address within the ROM of the microcontroller
 op2 the value generated by <op2>
Examples of flexible operand <op2> creating the 32-bit number. E.g., Rd = Rn+op2
 ADD Rd, Rn, Rm ; op2 = Rm
 ADD Rd, Rn, Rm, LSL #n ; op2 = Rm<<n Rm is signed, unsigned
 ADD Rd, Rn, Rm, LSR #n ; op2 = Rm>>n Rm is unsigned
 ADD Rd, Rn, Rm, ASR #n ; op2 = Rm>>n Rm is signed
 ADD Rd, Rn, #constant ; op2 = constant, where X and Y are hexadecimal digits:

 produced by shifting an 8-bit unsigned value left by any number of bits
 in the form 0x00XY00XY
 in the form 0xXY00XY00
 in the form 0xXYXYXYXY

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12

R13 (MSP)
R14 (LR)
R15 (PC)

Stack pointer
Link register

Program counter

General
purpose
registers

256k Flash
ROM

64k RAM

I/O ports

Internal I/O
PPB

0x0000.0000

0x0003.FFFF

0x2000.0000

0x2000.FFFF

0x4000.0000

0x41FF.FFFF

0xE000.0000

0xE004.0FFF

Condition code bits
N negative
Z zero
V signed overflow
C carry or
 unsigned overflow

EE319K Spring 2013 Final Exam Page 11 of 12

Jonathan Valvano May 11, 2013

Address 7 6 5 4 3 2 1 0 Name
$400F.E108 GPIOH GPIOG GPIOF GPIOE GPIOD GPIOC GPIOB GPIOA SYSCTL_RCGC2_R
$4000.43FC DATA DATA DATA DATA DATA DATA DATA DATA GPIO_PORTA_DATA_R
$4000.4400 DIR DIR DIR DIR DIR DIR DIR DIR GPIO_PORTA_DIR_R
$4000.4420 SEL SEL SEL SEL SEL SEL SEL SEL GPIO_PORTA_AFSEL_R
$4000.451C DEN DEN DEN DEN DEN DEN DEN DEN GPIO_PORTA_DEN_R

Table 4.5. Some LM3S1968 parallel ports. Each register is 32 bits wide. Bits 31 – 8 are zero.

We set the direction register (e.g., GPIO_PORTA_DIR_R) to specify which pins are input (0) and which are output (1).
We will set bits in the alternative function register when we wish to activate the alternate functions (not GPIO). We use the
data register (e.g., GPIO_PORTA_DATA_R) to perform input/output on the port. For each I/O pin we wish to use whether
GPIO or alternate function we must enable the digital circuits by setting the bit in the enable register (e.g.,
GPIO_PORTA_DEN_R).

Address 31 30 29-7 6 5 4 3 2 1 0 Name
0xE000E100 G F … UART1 UART0 E D C B A NVIC_EN0_R
0xE000E104 … UART2 H NVIC_EN1_R

Address 31-24 23-17 16 15-3 2 1 0 Name
$E000E010 0 0 COUNT 0 CLK_SRC INTEN ENABLE NVIC_ST_CTRL_R
$E000E014 0 24-bit RELOAD value NVIC_ST_RELOAD_R
$E000E018 0 24-bit CURRENT value of SysTick counter NVIC_ST_CURRENT_R

Address 31-29 28-24 23-21 20-8 7-5 4-0 Name
$E000ED20 TICK 0 PENDSV 0 DEBUG 0 NVIC_SYS_PRI3_R

Table 9.6. SysTick registers.

Table 9.6 shows the SysTick registers used to create a periodic interrupt. SysTick has a 24-bit counter that decrements at
the bus clock frequency. Let fBUS be the frequency of the bus clock, and let n be the value of the RELOAD register. The
frequency of the periodic interrupt will be fBUS/(n+1). First, we clear the ENABLE bit to turn off SysTick during
initialization. Second, we set the RELOAD register. Third, we write to the NVIC_ST_CURRENT_R value to clear the
counter. Lastly, we write the desired mode to the control register, NVIC_ST_CTRL_R. To turn on the SysTick, we set the
ENABLE bit. We must set CLK_SRC=1, because CLK_SRC=0 external clock mode is not implemented on the
LM3S/LM4F family. We set INTEN to enable interrupts. The standard name for the SysTick ISR is SysTick_Handler.

Address 31-17 16 15-10 9 8 7-0 Name
$400F.E000 ADC MAXADCSPD SYSCTL_RCGC0_R

 31-14 13-12 11-10 9-8 7-6 5-4 3-2 1-0
$4003.8020 SS3 SS2 SS1 SS0 ADC_SSPRI_R

 31-16 15-12 11-8 7-4 3-0
$4003.8014 EM3 EM2 EM1 EM0 ADC_EMUX_R

 31-4 3 2 1 0
$4003.8000 ASEN3 ASEN2 ASEN1 ASEN0 ADC_ACTSS_R
$4003.80A0 MUX0 ADC_SSMUX3_R
$4003.80A4 TS0 IE0 END0 D0 ADC_SSCTL3_R
$4003.8028 SS3 SS2 SS1 SS0 ADC_PSSI_R
$4003.8004 INR3 INR2 INR1 INR0 ADC_RIS_R
$4003.8008 MASK3 MASK2 MASK1 MASK0 ADC_IM_R
$4003.800C IN3 IN2 IN1 IN0 ADC_ISC_R

 31-10 9-0
$4003.80A8 DATA ADC_SSFIFO3

Table 10.3. The LM3S ADC registers. Each register is 32 bits wide.

EE319K Spring 2013 Final Exam Page 12 of 12

Jonathan Valvano May 11, 2013

Set MAXADCSPD to 00 for slow speed operation. The ADC has four sequencers, but we will use only sequencer 3. We
set the ADC_SSPRI_R register to 0x3210 to make sequencer 3 the lowest priority. Because we are using just one
sequencer, we just need to make sure each sequencer has a unique priority. We set bits 15–12 (EM3) in the
ADC_EMUX_R register to specify how the ADC will be triggered. If we specify software start (EM3=0x0), then the
software writes an 8 (SS3) to the ADC_PSSI_R to initiate a conversion on sequencer 3. Bit 3 (INR3) in the ADC_RIS_R
register will be set when the conversion is complete. We can enable and disable the sequencers using the ADC_ACTSS_R
register. There are eight on the LM3S1968. Which channel we sample is configured by writing to the ADC_SSMUX3_R
register. The ADC_SSCTL3_R register specifies the mode of the ADC sample. Clear TS0. We set IE0 so that the INR3
bit is set on ADC conversion, and clear it when no flags are needed. We will set IE0 for both interrupt and busy-wait
synchronization. When using sequencer 3, there is only one sample, so END0 will always be set, signifying this sample is
the end of the sequence. Clear the D0 bit. The ADC_RIS_R register has flags that are set when the conversion is complete,
assuming the IE0 bit is set. Do not set bits in the ADC_IM_R register because we do not want interrupts.

UART0 pins are on PA1 (transmit) and PA0 (receive). The UART0_IBRD_R and UART0_FBRD_R registers specify the
baud rate. The baud rate divider is a 22-bit binary fixed-point value with a resolution of 2-6. The Baud16 clock is created
from the system bus clock, with a frequency of (Bus clock frequency)/divider. The baud rate is
 Baud rate = Baud16/16 = (Bus clock frequency)/(16*divider)
We set bit 4 of the UART0_LCRH_R to enable the hardware FIFOs. We set both bits 5 and 6 of the UART0_LCRH_R to
establish an 8-bit data frame. The RTRIS is set on a receiver timeout, which is when the receiver FIFO is not empty and no
incoming frames have occurred in a 32-bit time period. The arm bits are in the UART0_IM_R register. To acknowledge an
interrupt (make the trigger flag become zero), software writes a 1 to the corresponding bit in the UART0_IC_R register.
We set bit 0 of the UART0_CTL_R to enable the UART. Writing to UART0_DR_R register will output on the UART. This
data is placed in a 16-deep transmit hardware FIFO. Data are transmitted first come first serve. Received data are place in a
16-deep receive hardware FIFO. Reading from UART0_DR_R register will get one data from the receive hardware FIFO.
The status of the two FIFOs can be seen in the UART0_FR_R register (FF is FIFO full, FE is FIFO empty). The standard
name for the UART0 ISR is UART0_Handler. RXIFLSEL specifies the receive FIFO level that causes an interrupt (010
means interrupt on ≥ ½ full, or 7 to 8 characters). TXIFLSEL specifies the transmit FIFO level that causes an interrupt (010
means interrupt on ≤ ½ full, or 9 to 8 characters).
 31–12 11 10 9 8 7–0 Name
$4000.C000 OE BE PE FE DATA UART0_DR_R

 31–3 3 2 1 0
$4000.C004 OE BE PE FE UART0_RSR_R

 31–8 7 6 5 4 3 2–0
$4000.C018 TXFE RXFF TXFF RXFE BUSY UART0_FR_R

 31–16 15–0
$4000.C024 DIVINT UART0_IBRD_R

 31–6 5–0
$4000.C028 DIVFRAC UART0_FBRD_R

 31–8 7 6 – 5 4 3 2 1 0
$4000.C02C SPS WPEN FEN STP2 EPS PEN BRK UART0_LCRH_R

 31–10 9 8 7 6–3 2 1 0
$4000.C030 RXE TXE LBE SIRLP SIREN UARTEN UART0_CTL_R

 31–6 5-3 2-0
$4000.C034 RXIFLSEL TXIFLSEL UART0_IFLS_R

 31-11 10 9 8 7 6 5 4
$4000.C038 OEIM BEIM PEIM FEIM RTIM TXIM RXIM UART0_IM_R
$4000.C03C OERIS BERIS PERIS FERIS RTRIS TXRIS RXRIS UART0_RIS_R
$4000.C040 OEMIS BEMIS PEMIS FEMIS RTMIS TXMIS RXMIS UART0_MIS_R
$4000.C044 OEIC BEIC PEIC FEIC RTIC TXIC RXIC UART0_IC_R

Table 11.2. UART0 registers. Each register is 32 bits wide. Shaded bits are zero.

