Final Exam

Date: May 8, 2014

UT EID:		Circle one: VJR, NT, RY	•
Printed Name:	Last,	First	
Your signature is your pro on this exam. <u>You will no</u> <u>undue advantage</u> :	mise that you have not cheated and y t reveal the contents of this exam to	will not cheat on this exam, nor wi	ll you help others to cheat <u>In thereby giving them an</u>
Signature:			
Instructions: • Closed book and	closed notes. No books, no papers, n	o data sheets (other than the last for	ur pages of this Exam)
 No devices other 	than pencil pen eraser (no calculato	rs no electronic devices) please tu	rn cell phones off

- No devices other than pencil, pen, eraser (no calculators, no electronic devices), please turn cell phones off.
 Please be sure that your answers to all questions (and all supporting work that is required) are contained in the space (boxes) provided. *Anything outside the boxes will be ignored in grading*.
- You have 180 minutes, so allocate your time accordingly.
- For all questions, unless otherwise stated, find the most efficient (time, resources) solution.
- Unless otherwise stated, make all I/O accesses friendly.
- Please read the entire exam before starting. See supplement pages for Device I/O registers.

Problem 1	10	
Problem 2	10	
Problem 3	15	
Problem 4	10	
Problem 5	10	
Problem 6	10	
Problem 7	15	
Problem 8	10	
Problem 9	10	
Total	100	

EE319K Spring 2014

Final Exam

KIDV

(**10**) **Question 1**:

(i) What is the name given to 1024 bytes?

provid

Background thread

(ii) The $\underline{ }$ thread is the execution of the main program, while the $\underline{ }$ is the execution of the ISR.

(iii) Name the type of FSM where the output value depends on both the current state and input.

(iv) Name the C programming language term that describes the storage of a data structure where the elements of each row are stored in succession.

ame.

(v) The smallest complete unit of serial transmission is called a

(vi) The term given to the collection of software functions that allow the higher level software to utilize an I/O device.

(vii) The name given to a local variable with permanent allocation.

Static

(viii) Name the step in an interrupt service routine where the trigger flag is cleared? Acknowledgement

(ix) What two actions are implicitly performed after the SysTick counter reaches a zero.

Set bit 16 of CTL rig (2) Kload value into current

(x) The assembler directive that places a 32 bit word into memory.

DCD

(10) Question 2 (Local Variables).

Given the following C code and its equivalent Assembly code, answer each of the sub-questions.

Line#			Assembly Code	C Code
1	sum	EQU	0 number	uint32_t comp(void)
2	n	EQU	4 number	{
3	comp	PUSH	{R4,R5,R11,LR}	
4		MOV	R11,SP	uint32_t sum,n;
5		SUB	R11,#8	sum = 0;
6		MOV	R0,#0	for(n=1000; n>0 ; n)
7		STR	R0,[R11,#sum]	{
8		MOV	R1,#1000	<pre>sum=sum+n;</pre>
9		STR	R1,[R11,#n]	
10	loop	LDR	R1,[R11,#n]	}
11		LDR	R0,[R11,#sum]	
12		ADD	R0,R1	return sum;
13		STR	R0,[R11,sum]	
14		LDR	R1,[R11,#n]	}
15		SUBS	R1,#1	
16		STR	R1,[R11,#n]	
17		BNE	loop	
18		ADD	R11,#8	
19		POP	{R4,R5,R11,PC}	

a) (4 points) There are four key stages in the implementation of local variables. Identify each of those stages in the assembly routine above. Write the instruction number that marks the beginning of a stage and provide a brief one-line statement explaining the purpose of the stage.

D Binding (2) Allocation (3) Access line Line 5 line 7 used as Spect storage for locale (7) DeAllocation Une 18

b) (**2** points) Identify the base pointer in the assembly code and explain its usefulness. In other words, can we always use the stack pointer for accessing local variables?

RII is the frame pointer (Base)

c) (4 points) Assuming n were changed from uint32_t to a uint16_t data type, identify all lines of assembly code that require changing. List below the corrected versions of these lines.

N FON 2 STR-> STRH (Lines 7,9,13,16) SUB RIL:#4 (DR-> LDRH (Gnes 10,11,14) R11,#4

(15) Question 3 (C Programming with struct).

a) (4 points) Define a generic C struct called MyString that contains two attributes, an array of chars and an index variable. The character array must be large enough to hold the string "ABCDEFGHIJ".

struct Mysting & char Am[1]; // 10+ null vintet idx;

b) (5 points) Write a function called LCDOut which accepts a pointer to a struct of type MyString as a parameter and prints the character at the current index-th location to the LCD using LCDOutChar(char c). It should then increment the index by 1.

Void LCDOut (Struct Mysting *5) { LCDOutchor (S > Arr[S > idx]); S->idn++ S -> can be replaced by (* }

c) (6 points) Call the LCDOut function in a loop from your main program until all characters of the variable, outStr, are output to the LCD.

void main() { MyString outStr; // Assume outStr already initialized Vinto-t i=0.; outstr.idx=0 while (ontstr. Arr (13) { LCDONT (&OUTSTY); * can also hs Just a for Loop and iterate 10 times (Not perfect) }

(10) Ouestion 4 (Interrupts).

Using SysTick Interrupt only to generate the following signal on Port E pin 2.

a) (3 points) Assuming the following initialization steps have been done for you:

- Clock is setup at 50MHz
- GPIO Port E pin 2 has been configured and an initial value of 0 written to it.

What values should these three	registers be initialized to?	50 MHZ
NVIC_ST_CTRL_R	0x07	900000
NVIC_ST_RELOAD_R	Q00000	Ame =7 all picks
NVIC_ST_CURRENT_R	0	

b) (7 points) Complete the SysTick_Handler ISR that generates the desired signal. You may . assume a global variable called hilo, is initialized to zero and use it in your ISR.

Final Exam Bolw = 50× 10×8 bps

Page 6

(10) Question 5 (UART).

a) (3 points) A serial port (UART1) is configured with default settings to run with a *bandwidth* of 50K bytes/sec. What is the *baud-rate* of this port in bits/sec?

 $BW = \frac{8}{10} BR = \frac{10}{8} \times 50 \times 10^3 \times 8 = 500,000 \text{ bps}$

a) (7 points) Complete the subroutine UART_InString that reads a CR-terminated string

from the UART0. The subroutine uses call-by-reference parameter passing. For each character, it waits for new input using busy-wait synchronization. Read the input character and place it in the string passed as input. When a CR is read, insert a Zero (Null) in the string and return. You don't need to write the UART initialization. The ASCII code for Carriage Return (CR) is 13. You may write the routine in C **OR** Assembly

<pre>; Input; R0 has the address of the ; location where the read ; string of characters ; are to be placed UART_InString</pre> ; Input: str is a pointer to ; the location where the ; string of characters read ; are to be placed void UART_InString(char *str) {
<pre>; location where the read ; string of characters ; are to be placed UART_InString</pre> ; the location where the ; string of characters read ; are to be placed void UART_InString(char *str){
<pre>; string of characters ; are to be placed UART_InString</pre> ; string of characters read ; are to be placed void UART_InString(char *str){
; are to be placed UART_InString ; are to be placed void UART_InString(char *str){
UART_InString (char *str) {
le le le le
$\begin{array}{c} \text{Uint} & \text{tipo}; \text{chard} \\ \text{While}(1) & \text{While}(1) \\ \text{While}(1) & \text{RTO}_{FR} & \text{R} & 0 \\ \text{Chardron - DR}_{R} & \text{Chardron - DR}_{R} \\ \text{If}(1) & $

(10) Question 6 (ADC).

a) (3 points) For a 12-bit ADC with an analog input voltage of 0-3V, what are the following:

(i)	ADC precision 12 in bits 212= A096 (levels)
(ii)	ADC range input range is 0 to 3V, output range is 0 to 4095
(iii)	ADC resolution $\frac{\frac{3}{4095}}{V}$

b) (2 points) What will the above 12-bit ADC return if the input voltage is 1.0V?

1×4095

c) (5 points) Write an *ADC0_In* function (in C) that uses busy-wait synchronization to sample the ADC. The function reads the ADC output, and returns the 12-bit binary number. Assume the ADC has already been initialized to use sequencer 3 with a software trigger and channel 1. See supplement pages for ADC registers.

uint32_t ADC0_In(void) { while ((ADC_RIS_R & 0x08)== 0) { } retwn (ADC_95F1F03);

(15) Question 7 (Hardware)
a) (5 points) For the ADC in the previous question, the input analog voltage is provided by the voltage drop across a resistance consisting of a variable resistor R in series with a resistance Rs. The resistance Rs (in series with R), is due to the connecting wires, the source resistance and any extraneous effects, and is roughly 10% of R.

Draw this external circuit in the box below with the series resistances shown clearly. Mark the source voltage connected across the series resistance connection clearly. Pick any suitable value of R. What is the voltage that needs to be connected across the series resistance such that the maximum voltage at the ADC input is 3V?

b) (10 points) The desired LED operating point is 1V, 10mA. Interface this LED to PA2 using *negative* logic. You can use any number of 7406 inverters, and any number of resistors. Assume the V_{OL} of the 7406 is 0.5V. Assume the microcontroller output voltages are $V_{OH} = 3.1V$ and $V_{OL} = 0.2V$. Specify values for any resistors needed. Show equations of your calculations used to select resistor values.

Page 9

(10) Question 8 (FIFO).

a) (2 points) What is the most important feature that first-in-first-out (FIFO) offers for I/O devices?

Baffering

b) (3 points) In the FIFO implementation using a dummy slot, what are the checks for *Full* and *Empty* FIFO.

Empty: (PutI == GetI) Ful: ((PutI+1)% N == GetI)

c) (5 points) You are designing a low-budget embedded systems microcontroller and are told to reuse hardware structures aggressively to keep the costs low. Assume you have multiple stacks in your micro-controller. Explain how you can implement FIFO using only stack(s) that are last-in-first-out (LIFO)?

FIFO -> Push to SILK A Two Stacks Add A-B FIFO _ Pop all Elements from A, push Get to B UNFI Empty John Top Pop from B and push to A

(10) Question 9 (FSM). Given the following Moore FSM implementation:

```
const struct State{
      uint8_t out; // Output to PT0
uint8_t wait; // Wait time in 500ns units
      const struct State next[4]; // Next states
};
typedef const struct State StateType;
#define S0 &fsm[0]
#define S1 &fsm[1]
#define S2 &fsm[2]
#define S3 &fsm[3]
StateType fsm[4] = \{
  \{0x00, 80, \{S0, S1, S0, S2\}\},\
  {0x01, 200, {S1, S2, S1, S3}},
  {0x10, 80, {S2, S3, S2, S0}},
  {0x00, 200, {S3, S0, S3, S1}}
};
StateType *cState; // Current State
```

a. (7 points) Draw a FSM diagram for the implementation provided. The diagram must capture all the information included in the implementation.

b. (3 points)Assuming, S0 is the initial state, and the 2-bit input is from Port E pins 1 and 0 what output sequence is produced upon this sequence of inputs on PE1-0:
 01, 11, 11, 10, 00, 11

Page 11

Memory access instructions

	LDR	Rd,	[Rn]		;	.oad 32-bit	: number at	[Rn] to Rd	
	LDR	Rd,	[Rn,#	off]	;	oad 32-bit	: number at	[Rn+off] to	Rd
	LDR	Rd,	=valu	e	;	set Rd equa	al to any 32	-bit value	(PC rel)
	LDRH	Rd,	[Rn]		;	oad unsign	ned 16-bit a	t [Rn] to Ro	1
	LDRH	Rd,	[Rn,#	off]	;	oad unsign	ned 16-bit a	t [Rn+off] t	o Rd
	LDRSH	Rd,	[Rn]		;	oad signed	1 16-bit at	[Rn] to Rd	
	LDRSH	Rd,	[Rn, #	off]	;	oad signed	1 16-bit at	[Rn+off] to	Rd
	LDRB	Rd,	[Rn]	-	;	.oad unsign	ned 8-bit at	[Rn] to Rd	
	LDRB	Rd.	[Rn,#	off1	:	oad unsign	ned 8-bit at	[Rn+off] to	Rd
	LDRSB	Rd.	[Rn]	•	:	oad signed	18-bit at [Rnl to Rd	-
	LDRSB	Rd.	[Rn.#	off1	:	oad signed	18-bit at [Rn+offl to F	۶d
	STR	Rt.	[Rn]	1	:	store 32-bi	it Rt to [Rn	1	
	STR	Rt.	[Rn.#	off1		store 32-bi	it Rt to [Rn	- +offl	
	STRH	Rt.	[Rn]	1	:	store least	sig. 16-bi	t Rt to [Rn]	
	STRH	Rt	[Rn #	off1		store least	sig 16-bi	t Rt to [Rn]	off1
	STRB	Rt ,	[Rn]	011]		store least	sig 2-bit	R + + o [Rn]	UII]
	CTDB	D+	[Pn #	offl		tore least	sig. 0 bit sig. 8-bit	Pt to [Pn+c]	ff1
	DIIGH	το, τρ+ι	[Ι, #	OII]	· · ·	uch 32-hit	- Bt onto st	ack	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	DOD	1041				32 bit	number from	etack into	Pd
		L L L L L L L L L L L L L L L L L L L	label			op 32-Dic	l to the ad	droad at lak	
	MOVICI	Ru, Pd	Laber			set Rd equa	$\frac{1}{1}$ to the au	uless at lat)er
	MOV	Ru, Pd	-0p2/ #im16			set Rd equa	$\frac{1}{1} + 0 \frac{1}{2}$	im16 is 0 to	65535
	MUNICI	Rd, Pd	<pre>~</pre>			set Rd equa	1 to -on2		00000
Bre	noh instr	nations	(OPZ)		'	sec na eque			
DI	B 1	abol	, • ъ	ranch	+~	label Z	lwave		
		abei	, D • h	ranch	i f	7 = 1	iiways Tomal		
	BNF 1	abel	, D . h	ranch	 ; f		Jot equal		
	BCG 1	abei	, D • h	ranch	 ; f	2 = 0 F	ligher or sa	me unsigned	a >
	BUG 1	abei	, D • h	ranch	 ; f	C = 1 E	ligher or sa	me, unsigned	4 >
	BCC 1	abei	, D • h	ranch	 ; f		Cower unsig	me, unsigned	. -
	BLO 1	abel	, D • h	ranch	if	C == 0 I	lower, unsig	med <	
	BMT 1	abel	, 2 . h	ranch	if	N = 1 N	Jonet; andig Jonative	incu (
	BDI 1	abel	, D • h	ranch	if	N == 0 F	ositive or	70r0	
	BVS 1	abel	, 2 • h	ranch	if	V == 1	verflow	1010	
	BVC 1	abel	, 2 . h	ranch	if	$\mathbf{v} = 1$	Jo overflow		
	BHT 1	abel	, D • h	ranch	if	C == 1 and Z	Ke=0 Higher	unsigned	
		abel	, D	ranch	 	C = 1 and 2 C = 0 or 7	zeel Lower	, unsigned >	ianod <
	BCF 1	abel	, D . h	ranch	 ; f	N = V	Prostor than	or equal is	signed \geq
	BUT 1	abel	, D • h	ranch	if		Less than s	igned <	signed =
	BGT 1	abel	, 5 • h	ranch	if	Z = 0 and N	Jess chan, s J==V Greate	rthan sign	ned >
	BLE 1	abel	, 2 • h	ranch	if	Z=1 or N	=V Less th	an or equal	signed <
	BX R	m	,	ranch	in	lirect to 1	location spe	cified by Bn	n
	BT. 1	abol	, D • h	ranch	+0	subroutine	at label	cified by id	
	BLX R	m	, 2 • h	ranch	+0	subroutine	indirect s	pecified by	Rm
Int	arrunt ind	un structio	, .	Lancu	20	Subioucine	s indirect 5	pectified by	1. dii
1110	CPSTE	T	115			enable int	errupts (T	=0)	
	CPSID	T				disable in	terrupts (I	=1)	
Loc	vical instr	- nictions	2		'	4104010 11		-,	
LUž	AND {S}	{Rd.	, } Rn.	<002>	•	Rd=Rn&op2	(op2 is	32 bits)	
	ORR {S}	{Rd.	} Rn.	<0p2>	:	Rd=Rn op2	(op2 is	32 bits)	
	EOR {S}	{Rd	} Rn.	<0p2>	:	Rd=Rn^op2	(op2 is	32 bits)	
	BIC(S)	{Rd	} Rn	<0p2>	:	Rd=Rn& (~or	(0p2 is)	32 bits)	
	ORN {S}	{Rd	} Rn.	<0p2>	:	Rd=Rn (~or	(0p2 is)	32 bits)	
	LSR(S)	Rd.	Rm, R	s	:	logical sh	nift right R	d=Rm>>Rs (1	unsigned)
	LSR{S}	Rd.	Rm, #	n	:	logical sh	nift right R	.d=Rm>>n (1	insigned)
	ASR{S}	Rd,	Rm, R	s	;	arithmetic	shift righ	t Rd=Rm>>Rs	(signed)
		,	,					-	

Final Exam

```
ASR{S} Rd, Rm, #n
                           ; arithmetic shift right Rd=Rm>>n (signed)
                           ; shift left Rd=Rm<<Rs (signed, unsigned)
   LSL{S} Rd, Rm, Rs
   LSL{S} Rd, Rm, #n
                          ; shift left Rd=Rm<<n (signed, unsigned)
Arithmetic instructions
   ADD{S} {Rd}, Rn, <op2>; Rd = Rn + op2
  ADD{S} {Rd,} Rn, #im12; Rd = Rn + im12, im12 is 0 to 4095
   SUB{S} {Rd}, Rn, <op2>; Rd = Rn - op2
   SUB{S} {Rd}, Rn, \#im12; Rd = Rn - im12, im12 is 0 to 4095
  RSB{S} {Rd_{1}} Rn_{1} < op2 > ; Rd = op2 - Rn
  RSB{S} {Rd,} Rn, \#im12; Rd = im12 - Rn
                        ; Rn – op2
   CMP
          Rn, <op2>
                                             sets the NZVC bits
                          ; Rn - (-op2)
   CMN
          Rn, <op2>
                                             sets the NZVC bits
  MUL{S} {Rd,} Rn, Rm ; Rd = Rn * Rm signed or unsigned
  MLA
          Rd, Rn, Rm, Ra ; Rd = Ra + Rn*Rm signed or unsigned
          Rd, Rn, Rm, Ra ; Rd = Ra - Rn*Rm signed or unsigned
  MLS
                           ; Rd = Rn/Rm
   UDIV
          {Rd,} Rn, Rm
                                                  unsigned
   SDIV
          {Rd, } Rn, Rm
                           ; Rd = Rn/Rm
                                                  signed
Notes Ra Rd Rm Rn Rt represent 32-bit registers
     value
             any 32-bit value: signed, unsigned, or address
     {S}
             if S is present, instruction will set condition codes
     #im12 any value from 0 to 4095
     #im16
             any value from 0 to 65535
     {Rd, }
             if Rd is present Rd is destination, otherwise Rn
     #n
            any value from 0 to 31
             any value from -255 to 4095
     #off
     label
             any address within the ROM of the microcontroller
             the value generated by <op2>
     op2
Examples of flexible operand <op2> creating the 32-bit number. E.g., Rd = Rn+op2
   ADD Rd, Rn, Rm
                           ; op2 = Rm
  ADD Rd, Rn, Rm, LSL #n ; op2 = Rm<<n Rm is signed, unsigned
  ADD Rd, Rn, Rm, LSR #n; op2 = Rm>>n Rm is unsigned
  ADD Rd, Rn, Rm, ASR #n ; op2 = Rm>>n Rm is signed
   ADD Rd, Rn, #constant ; op2 = constant, where X and Y are hexadecimal digits:
                produced by shifting an 8-bit unsigned value left by any number of bits
                in the form 0x00XY00XY
                in the form 0xXY00XY00
                in the form 0xXYXYXYX
                 R0
                                                                   0x0000.0000
                 R1
                                                       256k Flash
                 R2
                                                                   0x0003.FFFF
                                                         ROM
                           Condition code bits
                 R3
                           N negative
                 R4
                                                                   0x2000.0000
   General
                 R5
                                                       64k RAM
                           Z zero
   purpose -
                 R6
                           V signed overflow
                                                                   0x2000.FFFF
   registers
                 R7
                           C carry or
                 R8
                                                                   0x4000.0000
                              unsigned overflow
                 R9
                                                       I/O ports
                 R10
                                                                   0x41FF.FFFF
                 R11
                 R12
                                                                   0xE000.0000
              R13 (MSP)
R14 (LR)
    Stack pointer
                                                      Internal I/O
    Link register
                                                                   0xE004.0FFF
                                                         PPB
              R15 (PC)
  Program counter
            1,2,3 ; allocates three 8-bit byte(s)
      DCB
            1,2,3 ; allocates three 16-bit halfwords
      DCW
            1,2,3 ; allocates three 32-bit words
      DCD
      SPACE 4
               ; reserves 4 bytes
```

Address	7	6	5	4	3	2	1	0	Name
\$400F.E108			GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA	SYSCTL_RCGCGPIO_R
\$4000.43FC	DATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA	GPIO_PORTA_DATA_R
\$4000.4400	DIR	DIR	DIR	DIR	DIR	DIR	DIR	DIR	GPIO_PORTA_DIR_R
\$4000.4420	SEL	SEL	SEL	SEL	SEL	SEL	SEL	SEL	GPIO_PORTA_AFSEL_R
\$4000.451C	DEN	DEN	DEN	DEN	DEN	DEN	DEN	DEN	GPIO_PORTA_DEN_R

Table 4.5. Some TM4C123/LM4F120 parallel ports. Each register is 32 bits wide. Bits 31 – 8 are zero.

	Address		31	30	29-7	6	5	4	3	2	1		0	Name
	0xE000E100)		F		UART1	UART0	Е	D	С	В		А	NVIC_EN0_R
-														
Ad	ldress	31-24	4 2	3-17	16	15-3	2		1	0		Nar	ne	
\$E	000E010	0		0	COUN	Г 0	CLK_SR	CI	NTEN	ENA	BLE	NV	IC_ST	_CTRL_R
\$E	000E014	0				24-bit I	RELOAD v	alue				NV	IC_ST	_RELOAD_R
\$E	000E018	0			24-bit	CURRENT	value of S	ysTic	k counte	er		NV	IC_ST	_CURRENT_R

Address	31-29	28-24	23-21	20-8	7-5	4-0	Name
\$E000ED20	SYSTICK	0	PENDSV	0	DEBUG	0	NVIC_SYS_PRI3_R

Table 9.6. SysTick registers.

Table 9.6 shows the SysTick registers used to create a periodic interrupt. SysTick has a 24-bit counter that decrements at the bus clock frequency. Let f_{BUS} be the frequency of the bus clock, and let *n* be the value of the **RELOAD** register. The frequency of the periodic interrupt will be $f_{BUS}/(n+1)$. First, we clear the **ENABLE** bit to turn off SysTick during initialization. Second, we set the **RELOAD** register. Third, we write to the **NVIC_ST_CURRENT_R** value to clear the counter. Lastly, we write the desired mode to the control register, **NVIC_ST_CTRL_R**. To turn on the SysTick, we set the **ENABLE** bit. We must set **CLK_SRC=1**, because **CLK_SRC=0** external clock mode is not implemented on the LM3S/LM4F family. We set **INTEN** to enable interrupts. The standard name for the SysTick ISR is **SysTick_Handler**.

Address	31-17	16	15-10	9	8		7-0		Name
\$400F.E000		ADC		MAXA	ADCSPD				SYSCTL_RCGC0_R
	31-14	13-12	11-10	9-8	7-6	5-4	3-2	1-0	
\$4003.8020		SS3		SS2		SS1		SS0	ADC_SSPRI_R
		31-	-16		15-12	11-8	7-4	3-0	
\$4003.8014					EM3	EM2	EM1	EM0	ADC_EMUX_R
		31	-4		3	2	1	0	
\$4003.8000					ASEN3	ASEN2	ASEN1	ASEN0	ADC_ACTSS_R
\$4003.80A0						MU	X0		ADC_SSMUX3_R
\$4003.80A4					TS0	IE0	END0	D0	ADC_SSCTL3_R
\$4003.8028					SS3	SS2	SS1	SS0	ADC_PSSI_R
\$4003.8004					INR3	INR2	INR1	INR0	ADC_RIS_R
\$4003.8008					MASK3	MASK2	MASK1	MASK0	ADC_IM_R
\$4003.800C					IN3	IN2	IN1	IN0	ADC_ISC_R
		31	-12			11-	-0		
\$4003 8048						12-bit I	λτα		ADC SSEIE03

Table 10.3. The TM4C123/LM4F120ADC registers. Each register is 32 bits wide.

Set MAXADCSPD to 00 for slow speed operation. The ADC has four sequencers, but we will use only sequencer 3. We set the ADC_SSPRI_R register to 0x3210 to make sequencer 3 the lowest priority. Because we are using just one sequencer, we just need to make sure each sequencer has a unique priority. We set bits 15–12 (EM3) in the ADC_EMUX_R register to specify how the ADC will be triggered. If we specify software start (EM3=0x0), then the software writes an 8 (SS3) to the ADC_PSSI_R to initiate a conversion on sequencer 3. Bit 3 (INR3) in the ADC_RIS_R register will be set when the conversion is complete. We can enable and disable the sequencers using the ADC_ACTSS_R register. There are 11 on the TM4C123/LM4F120. Which channel we sample is configured by writing to the ADC_SSMUX3_R register. The ADC_SSCTL3_R register specifies the mode of the ADC sample. Clear TS0. We set IE0 so that the INR3 bit is set on ADC conversion, and clear it when no flags are needed. We will set IE0 for both interrupt and busy-wait synchronization. When using sequencer 3, there is only one sample, so END0 will always be set, signifying this sample is the end of the sequence. Clear the **D0** bit. The **ADC_RIS_R** register has flags that are set when the conversion is complete, assuming the **IE0** bit is set. Do not set bits in the **ADC_IM_R** register because we do not want interrupts. Write one to **ADC_ISC_R** to clear the corresponding bit in the **ADC_RIS_R** register.

UARTO pins are on PA1 (transmit) and PA0 (receive). The **UARTO_IBRD_R** and **UARTO_FBRD_R** registers specify the baud rate. The baud rate **divider** is a 22-bit binary fixed-point value with a resolution of 2⁻⁶. The **Baud16** clock is created from the system bus clock, with a frequency of (Bus clock frequency)/**divider**. The baud rate is

Baud rate = Baud16/16 = (Bus clock frequency)/(16*divider) We set bit 4 of the UART0_LCRH_R to enable the hardware FIFOs. We set both bits 5 and 6 of the UART0_LCRH_R to establish an 8-bit data frame. The **RTRIS** is set on a receiver timeout, which is when the receiver FIFO is not empty and no incoming frames have occurred in a 32-bit time period. The arm bits are in the UART0_IM_R register. To acknowledge an interrupt (make the trigger flag become zero), software writes a 1 to the corresponding bit in the UART0_IC_R register. We set bit 0 of the UART0_CTL_R to enable the UART. Writing to UART0_DR_R register will output on the UART. This data is placed in a 16-deep transmit hardware FIFO. Data are transmitted first come first serve. Received data are place in a 16-deep receive hardware FIFO. Reading from UART0_DR_R register will get one data from the receive hardware FIFO. The status of the two FIFOs can be seen in the UART0_FR_R register (FF is FIFO full, FE is FIFO empty). The standard name for the UART0 ISR is UART0_Handler. RXIFLSEL specifies the receive FIFO level that causes an interrupt (010 means interrupt on $\geq \frac{1}{2}$ full, or 7 to 8 characters). TXIFLSEL specifies the transmit FIFO level that causes an interrupt (010 means interrupt on $\leq \frac{1}{2}$ full, or 9 to 8 characters).

\$4000.C000 OE BE PE FE DATA UAR \$4000.C004 31-3 3 2 1 0 \$4000.C004 OE BE PE FE UAR \$31-8 7 6 5 4 3 2-0	T0_DR_R T0_RSR_R
31-3 3 2 1 0 \$4000.C004 OE BE PE FE UAR 31-8 7 6 5 4 3 2-0	T0_RSR_R
\$4000.C004 OE BE PE FE UAR 31-8 7 6 5 4 3 2-0	T0_RSR_R
31-8 7 6 5 4 3 2-0	10_K3K_K
31-8 7 6 5 4 3 2-0	
\$4000.C018 TXFE RXFF TXFF RXFE BUSY UAR	T0_FR_R
31-16 15-0	
\$4000.C024 DIVINT UAR	T0_IBRD_R
31-6 5-0 UAD	TO EDDD D
\$400.C028 DIVFRAC UAR	10_FBRD_R
31-8 7 6-5 4 3 2 1 0	
\$4000.C02C SPS WPEN FEN STP2 EPS PEN BRK UAR	T0_LCRH_R
31-10 9 8 7 6-3 2 1 0	
31-10 9 8 7 6-3 2 1 0 \$4000.C030 RXE TXE LBE SIRLP SIREN UARTEN UAR	T0_CTL_R
\$4000.C030 31-10 9 8 7 6-3 2 1 0 \$4000.C030 RXE TXE LBE SIRLP SIREN UARTEN UAR 31 6 5.3 2.0	T0_CTL_R
31-10 9 8 7 6-3 2 1 0 \$4000.C030 RXE TXE LBE SIRLP SIREN UARTEN UAR 31-6 5-3 2-0 \$4000.C034 RXE TXE LBE TXE TXE UAR	TO_CTL_R
31-10 9 8 7 6-3 2 1 0 \$4000.C030 RXE TXE LBE SIRLP SIREN UARTEN UAR 31-6 5-3 2-0 \$4000.C034 RXIFLSEL TXIFLSEL UAR	T0_CTL_R T0_IFLS_R
31-10 9 8 7 6-3 2 1 0 \$4000.C030 RXE TXE LBE SIRLP SIREN UARTEN UAR \$4000.C034 31-6 5-3 2-0 RXIFLSEL TXIFLSEL UAR \$4000.C034 31-11 10 9 8 7 6 5 4	T0_CTL_R T0_IFLS_R
31-10 9 8 7 6-3 2 1 0 \$4000.C030 RXE TXE LBE SIRLP SIREN UARTEN UAR 31-6 5-3 2-0 \$4000.C034 RXIFLSEL TXIFLSEL UAR 31-11 10 9 8 7 6 5 4 \$4000.C038 OEIM BEIM PEIM FEIM RTIM TXIM RXIM UAR	T0_CTL_R T0_IFLS_R T0_IM_R
31-10 9 8 7 6-3 2 1 0 \$4000.C030 RXE TXE LBE SIRLP SIREN UARTEN UAR 31-6 5-3 2-0 \$4000.C034 RXIFLSEL TXIFLSEL UAR 31-11 10 9 8 7 6 5 4 \$4000.C038 OEIM BEIM PEIM FEIM RTIM TXIM RXIM UAR \$4000.C036 OERIS BERIS PERIS FERIS RTRIS TXRIS UAR	T0_CTL_R T0_IFLS_R T0_IM_R T0_RIS_R
31-10 9 8 7 6-3 2 1 0 \$4000.C030 RXE TXE LBE SIRLP SIRLN UARTEN UAR \$4000.C034 31-6 5-3 2-0 \$4000.C034 \$31-11 10 9 8 7 6 5 4 \$4000.C038 OEIM BEIM PEIM FEIM RTIM TXIM RXIM UAR \$4000.C036 OEIM BEIM PEIM FEIN RTIM TXIM UAR \$4000.C037 OERIS BERIS PERIS FERIS RTRIS TXRIS UAR \$4000.C040 OEMIS BEMIS PEMIS FEMIS RTMIS TXMIS UAR	T0_CTL_R T0_IFLS_R T0_IM_R T0_RIS_R T0_MIS_R

Table 11.2. UART0 registers. Each register is 32 bits wide. Shaded bits are zero.