
EE319K Fall 2013 Exam 1 Page 1

F13 Exam1

HW3: Practice Exam 1

Due Date: 10/2 at time of Exam1

UT EID:

Printed Name:

Last, First

Your signature is your promise that you have not cheated and will not cheat on this exam, nor will you help others to cheat
on this exam:

Signature:

Instructions:
 Closed book and closed notes. No books, no papers, no data sheets (other than the last two pages of this Exam)
 No devices other than pencil, pen, eraser (no calculators, no electronic devices), please turn cell phones off.
 Please be sure that your answers to all questions (and all supporting work that is required) are contained in the

space (boxes) provided. Anything outside the boxes will be ignored in grading.
 You have 75 minutes, so allocate your time accordingly.
 For all questions, unless otherwise stated, find the most efficient (time, resources) solution.
 Unless otherwise stated, make all I/O accesses friendly.
 Please read the entire exam before starting.

Problem 1 10

Problem 2 10

Problem 3 10

Problem 4 10

Problem 5 10

Problem 6 15

Problem 7 25

Problem 8 10

Total 100

EE319K Fall 2013 Exam 1 Page 2

F13 Exam1

(10) Question 1. State the term that is best described by each definition.

Part a) A last in first out data storage system on the computer used to
remember data temporarily.

Part b) Software is added to the system for the purpose of debugging, and this
software has a large and significant effect on the system.

Part c) This C operator is used to perform a right shift.

Part d) The name given to describe 1,000 (103) bytes.

Part e) A type of logic where the voltage representing false is less than the
voltage representing true.

Part f) A property of ROM such that data is not lost if power is removed and
then restored.

Part g) This addressing mode is always used to access memory, shown here as
the source operand of this instruction: LDR R1,[R0]?

Part h) This declaration is used to create a variable in C that has a precision of
8 bits and can take negative values.

Part i) This C operator is used in if-then while-loop and do-while-loops for
checking to see if two numbers are not equal.

Part j) A drawing that describes the sequence of operations of software,
defining what and when software actions will occur.

EE319K Fall 2013 Exam 1 Page 3

F13 Exam1

Question 2 (10 points) Consider the following 8-bit subtraction (assume registers are 8 bits wide)
 Load 0xC0 into R1
 Load 0x1F into R2
 Subtract R3 = R1-R2

a. What will be the 8-bit result in Register R3 (in hex)?

b. What is 8-bit result in Register R3 (as an unsigned decimal)?

c. What is 8-bit result in Register R3 (as a signed decimal)?

d. What will be the value of the carry (C) bit?

e. What will be the value of the overflow (V) bit?

0x8B

139

-117-

EE319K Fall 2013 Exam 1 Page 4

F13 Exam1

(10) Question 3. You will fill in the blanks of this C code that initializes Port B. Make pins PB6, PB4,
PB1 outputs. Make the pin PB0 an input. To get full credit, this code must be friendly. Partial credit
can be obtained by writing code that works, but is not friendly. Mark the box “skip” if it is not required
to be executed at that spot in the initialization. You will use the following definitions:
#define GPIO_PORTB_DATA_R (*((volatile uint32_t *)0x400053FC))
#define GPIO_PORTB_DIR_R (*((volatile uint32_t *)0x40005400))
#define GPIO_PORTB_AFSEL_R (*((volatile uint32_t *)0x40005420))
#define GPIO_PORTB_DEN_R (*((volatile uint32_t *)0x4000551C))
#define SYSCTL_RCGCGPIO_R (*((volatile uint32_t *)0x400FE608))

GPIO_PORTB_DATA_R = ;

SYSCTL_RCGCGPIO_R |= ;

delay = SYSCTL_RCGCGPIO_R; // allow time for clock to settle

GPIO_PORTB_DIR_R &= ;

GPIO_PORTB_DIR_R |= ;

GPIO_PORTB_AFSEL_R &= ;

GPIO_PORTB_DEN_R |= ;

EE319K Fall 2013 Exam 1 Page 5

F13 Exam1

(10) Question 4. Interface the LED to PB1 such that if PB1 is high, the LED is on, and if PB1 is low
the LED is off. The desired LED operating point is 3.0V at 20 mA. The VOH of the microcontroller is
3.1 V. The VOL of the microcontroller is 0.3 V. The maximum current that the microcontroller can
source or sink is 8 mA. The VOL of the 7406 is 0.5 V. The maximum current that the 7406 can sink is
40 mA. Your bag of parts includes the switch, the 7406, the LED, and a resistor (you specify the
resistor value). Pick the fewest components to use. You will not need them all. You may also use 3.3V,
5V power, and/or ground. Show the equations used to calculate the resistor value.

R

PB1

Microcontroller 7406

+3.3V +5V

(10) Question 5. Write an assembly subroutine, called Calc, that calculates Output = (Input/8)-5. The
Input and Output parameters are 8-bit signed numbers located in global RAM. You may use Registers
R0-R3, or R12 as scratch registers without saving and restoring them. Full credit will be given to the
fastest solution. Don’t worry about how Input is initialized, just read from Input and write to Output.

AREA DATA, ALIGN=2
Input SPACE 1
Output SPACE 1
 AREA |.text|, CODE, READONLY, ALIGN=2

EE319K Fall 2013 Exam 1 Page 6

F13 Exam1

(15) Question 6. Answer the following questions with reference to the C and assembly code below.
You may assume that all linkages have been done to be able to call the assembly code from C.
Hint: Recall AAPCS

; C code calling assembly
int32_t Param1;
int32_t Param2;
int32_t Output;

int main() {
 Param1 = 2; Param2 = 7;
 Output = Sub(Param1,Param2);
}

; Assembly code
Bs RN 0
Res RN 1
Ex RN 4
Prod RN 5
Sub PUSH {R4,R5,LR}
 MOV Ex,#0
 MOV Prod,Bs
More CMP Prod,Res
 BGT Done
 MUL Prod,Prod,Bs
 ADD Ex,Ex,#1
 B More
Done MOV R0,Ex
 POP {R4,R5,LR}
 BX LR

(2) Part a) What is the numerical value in register R0 at the start of the assembly subroutine Sub?

 R0 =

(2) Part b) What is the numerical value in register R1 at the start of the assembly subroutine Sub?

 R1 =

(4) Part c) What is the numerical value of the C variable Output after the assignment statement,
 Output = Sub(Param1, Param2); is executed?

 output =

(2) Part d) Why did the subroutine Sub, save the registers R4 and R5 on the stack?
I. The input parameters are on the stack.
II. The output parameter is returned on the stack
III. In order to save the return address
IV. Follows AAPCS convention
V. None of the above.
(5) Part e) Which of the following statements describes what Sub does accurately?

I. Sub returns the product of the two inputs using successive addition

II. Sub returns the largest power to which the first input can be raised and still have it less than or
equal to the second

III. Sub returns the exponent of the first input raised to the second input
IV. Sub returns the smallest power to which the first input needs to be raised so that it is greater than

or equal to the second

V. Sub returns the power to which the first input has to be raised to be equal to the second

EE319K Fall 2013 Exam 1 Page 7

F13 Exam1

(20) Question 7. You are asked to develop the software for a control panel of a home automation
system. You can write software in either assembly or C. Make sure that all of your software is
friendly and follows the AAPCS. You may assume the hardware is already connected, and Port B is
already initialized so PB5 is an output and PB4–0 are inputs. Please use the port definition
GPIO_PORTB_DATA_R to access Port B. You are not allowed to use bit-specific port addressing. The
system has five door/window switches (sensors) connected to pins PB4, PB3, PB2, PB1, PB0.
Door/window signals are high if OK, and low if there is danger. There is an LED connected to pin
PB5, which signifies an alarm. The LED interface is negative logic. Write the main program of the
control panel that continuously checks the sensors and turns the warning LED connected if, and only
if, two or more door/window switches indicate there is danger.

EE319K Fall 2013 Exam 1 Page 8

F13 Exam1

(10) Question 8. Show the contents of the stack after the two marked points in the execution of the
following code. Assume R0=0, R1=10, R2=20, R3=30, R4=40, R5=50, and R6=60. The initial stack
pointer is 0x20001008.
 PUSH {R2,R3}
 ADD R4,R1,R0 ; <---- A
 POP {R5,R6}
 ADD R5,R5,R4
 ADD R6,R6,R5
 PUSH {R0,R4-R6};
 <---- B

a) (4 points) The contents of the stack (SP and contents) after execution point A:

0x20000FF4
0x20000FF8
0x20000FFC
0x20001000
0x20001004
0x20001008
0x2000100C

Initial SP

b) (6 points) The contents of the stack (SP and contents) after execution point B:

0x20000FF4
0x20000FF8
0x20000FFC
0x20001000
0x20001004
0x20001008
0x2000100C

Initial SP

EE319K Fall 2013 Exam 1 Page 9

F13 Exam1

Memory access instructions
 LDR Rd, [Rn] ; load 32-bit number at [Rn] to Rd
 LDR Rd, [Rn,#off] ; load 32-bit number at [Rn+off] to Rd
 LDR Rd, =value ; set Rd equal to any 32-bit value (PC rel)
 LDRH Rd, [Rn] ; load unsigned 16-bit at [Rn] to Rd
 LDRH Rd, [Rn,#off] ; load unsigned 16-bit at [Rn+off] to Rd
 LDRSH Rd, [Rn] ; load signed 16-bit at [Rn] to Rd
 LDRSH Rd, [Rn,#off] ; load signed 16-bit at [Rn+off] to Rd
 LDRB Rd, [Rn] ; load unsigned 8-bit at [Rn] to Rd
 LDRB Rd, [Rn,#off] ; load unsigned 8-bit at [Rn+off] to Rd
 LDRSB Rd, [Rn] ; load signed 8-bit at [Rn] to Rd
 LDRSB Rd, [Rn,#off] ; load signed 8-bit at [Rn+off] to Rd
 STR Rt, [Rn] ; store 32-bit Rt to [Rn]
 STR Rt, [Rn,#off] ; store 32-bit Rt to [Rn+off]
 STRH Rt, [Rn] ; store least sig. 16-bit Rt to [Rn]
 STRH Rt, [Rn,#off] ; store least sig. 16-bit Rt to [Rn+off]
 STRB Rt, [Rn] ; store least sig. 8-bit Rt to [Rn]
 STRB Rt, [Rn,#off] ; store least sig. 8-bit Rt to [Rn+off]
 PUSH {Rt} ; push 32-bit Rt onto stack
 POP {Rd} ; pop 32-bit number from stack into Rd
 ADR Rd, label ; set Rd equal to the address at label
 MOV{S} Rd, <op2> ; set Rd equal to op2
 MOV Rd, #im16 ; set Rd equal to im16, im16 is 0 to 65535
 MVN{S} Rd, <op2> ; set Rd equal to -op2
Branch instructions
 B label ; branch to label Always
 BEQ label ; branch if Z == 1 Equal
 BNE label ; branch if Z == 0 Not equal
 BCS label ; branch if C == 1 Higher or same, unsigned ≥
 BHS label ; branch if C == 1 Higher or same, unsigned ≥
 BCC label ; branch if C == 0 Lower, unsigned <
 BLO label ; branch if C == 0 Lower, unsigned <
 BMI label ; branch if N == 1 Negative
 BPL label ; branch if N == 0 Positive or zero
 BVS label ; branch if V == 1 Overflow
 BVC label ; branch if V == 0 No overflow
 BHI label ; branch if C==1 and Z==0 Higher, unsigned >
 BLS label ; branch if C==0 or Z==1 Lower or same, unsigned ≤
 BGE label ; branch if N == V Greater than or equal, signed ≥
 BLT label ; branch if N != V Less than, signed <
 BGT label ; branch if Z==0 and N==V Greater than, signed >
 BLE label ; branch if Z==1 or N!=V Less than or equal, signed ≤
 BX Rm ; branch indirect to location specified by Rm
 BL label ; branch to subroutine at label
 BLX Rm ; branch to subroutine indirect specified by Rm
Interrupt instructions
 CPSIE I ; enable interrupts (I=0)
 CPSID I ; disable interrupts (I=1)

Logical instructions
 AND{S} {Rd,} Rn, <op2> ; Rd=Rn&op2 (op2 is 32 bits)
 ORR{S} {Rd,} Rn, <op2> ; Rd=Rn|op2 (op2 is 32 bits)
 EOR{S} {Rd,} Rn, <op2> ; Rd=Rn^op2 (op2 is 32 bits)
 BIC{S} {Rd,} Rn, <op2> ; Rd=Rn&(~op2) (op2 is 32 bits)
 ORN{S} {Rd,} Rn, <op2> ; Rd=Rn|(~op2) (op2 is 32 bits)
 LSR{S} Rd, Rm, Rs ; logical shift right Rd=Rm>>Rs (unsigned)

EE319K Fall 2013 Exam 1 Page 10

F13 Exam1

 LSR{S} Rd, Rm, #n ; logical shift right Rd=Rm>>n (unsigned)
 ASR{S} Rd, Rm, Rs ; arithmetic shift right Rd=Rm>>Rs (signed)
 ASR{S} Rd, Rm, #n ; arithmetic shift right Rd=Rm>>n (signed)
 LSL{S} Rd, Rm, Rs ; shift left Rd=Rm<<Rs (signed, unsigned)
 LSL{S} Rd, Rm, #n ; shift left Rd=Rm<<n (signed, unsigned)
Arithmetic instructions
 ADD{S} {Rd,} Rn, <op2> ; Rd = Rn + op2
 ADD{S} {Rd,} Rn, #im12 ; Rd = Rn + im12, im12 is 0 to 4095
 SUB{S} {Rd,} Rn, <op2> ; Rd = Rn - op2
 SUB{S} {Rd,} Rn, #im12 ; Rd = Rn - im12, im12 is 0 to 4095
 RSB{S} {Rd,} Rn, <op2> ; Rd = op2 - Rn
 RSB{S} {Rd,} Rn, #im12 ; Rd = im12 – Rn
 CMP Rn, <op2> ; Rn – op2 sets the NZVC bits
 CMN Rn, <op2> ; Rn - (-op2) sets the NZVC bits
 MUL{S} {Rd,} Rn, Rm ; Rd = Rn * Rm signed or unsigned
 MLA Rd, Rn, Rm, Ra ; Rd = Ra + Rn*Rm signed or unsigned
 MLS Rd, Rn, Rm, Ra ; Rd = Ra - Rn*Rm signed or unsigned
 UDIV {Rd,} Rn, Rm ; Rd = Rn/Rm unsigned
 SDIV {Rd,} Rn, Rm ; Rd = Rn/Rm signed
Notes Ra Rd Rm Rn Rt represent 32-bit registers
 value any 32-bit value: signed, unsigned, or address
 {S} if S is present, instruction will set condition codes
 #im12 any value from 0 to 4095
 #im16 any value from 0 to 65535
 {Rd,} if Rd is present Rd is destination, otherwise Rn
 #n any value from 0 to 31
 #off any value from -255 to 4095
 label any address within the ROM of the microcontroller
 op2 the value generated by <op2>
Examples of flexible operand <op2> creating the 32-bit number. E.g., Rd = Rn+op2
 ADD Rd, Rn, Rm ; op2 = Rm
 ADD Rd, Rn, Rm, LSL #n ; op2 = Rm<<n Rm is signed, unsigned
 ADD Rd, Rn, Rm, LSR #n ; op2 = Rm>>n Rm is unsigned
 ADD Rd, Rn, Rm, ASR #n ; op2 = Rm>>n Rm is signed
 ADD Rd, Rn, #constant ; op2 = constant, where X and Y are hexadecimal digits:

 produced by shifting an 8-bit unsigned value left by any number of bits
 in the form 0x00XY00XY
 in the form 0xXY00XY00
 in the form 0xXYXYXYXY

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12

R13 (MSP)
R14 (LR)
R15 (PC)

Stack pointer
Link register

Program counter

General
purpose
registers

Condition code bits
N negative
Z zero
V signed overflow
C carry or
 unsigned overflow

256k Flash
ROM

32k RAM

I/O ports

Internal I/O
PPB

0x0000.0000

0x0003.FFFF

0x2000.0000

0x2000.7FFF

0x4000.0000

0x400F.FFFF

0xE000.0000

0xE004.1FFF

