
Homework 4 Due: Monday (10/13) in Class (turn in two pieces of paper)

1) Read EdX Chapters 7 and 9: all sections; watch the videos

http://users.ece.utexas.edu/~valvano/Volume1/E-Book/

2) Log into Zybooks and read Sections 4.1, 4.2, 4.8, 5.1, 5.2, and 5.3

The purpose of this homework is to learn arrays in C programming.

You are allowed to work in groups of 2 on homework. Each student must turn in their

own solution. If you will miss class you are allowed to turn in homework to your

professor before class. To get credit for homework you must complete all questions, but

the official score will be completion. I.e., we will not check the answers. However, the

professors have answers to the homework, so if you are uncertain about your answers go

to their office hours to check your answers against the solution key. We will not post the

answers.

The exercises are practice programs to write, but not turn in. The assignment is a program

you will write, debug and turn in. Create a one page print out of a screen shot showing

some of the program code and run time output. In this homework we will look at basics

of arrays and revisit the for-loop as a natural fit for traversing an array. We will also look

at subroutines and parameter passing. If you are referring to Yale Patt's book, you may

want to read chapters 13, 14 and 16.

Exercise 4.1: Do all activities in section 5.1, 5.2 and 5.4.

Assignment 4.1: Submit one sheet (screenshot) your code for Homework challenge 5.4.1

and 5.4.3 from the Zybooks C book.

To declare an array of a particular type of size N we use the declaration:
 type arrayname[N];

The arrayname is the name by which the array will be referred. The choices for type

are

unsigned char means 8-bit unsigned.

char means 8-bit signed.

signed char means 8-bit signed.

unsigned short means 16-bit unsigned.

short means 16-bit signed.

signed short means 16-bit signed.

unsigned long means 32-bit unsigned.

long means 32-bit signed.

signed long means 32-bit signed.

Examples:
 unsigned char anums[5]; // array of 5 8-bit unsigned numbers

 signed char bnums[8]; // array of 8 8-bit signed numbers

 unsigned short scores[25]; // array of 25 16-bit unsigned numbers

 long data[200]; // array of 200 32-bit signed numbers

Notice the size of the array is a constant defined at compile time. To access individual

elements of the array you use the square brackets with the index of the element you wish

to access. Note that indexes start from 0. So, the first element’s index is 0 and the last

element’s index is (Size-1). Starting at an index of zero is called “zero-indexing” and C

always uses zero-indexing.

Exercise 4.1: Download and unzip HW4_Exercise4_1.zip. You can run this in the

simulator and observe the output in a UART#1 window. Assume someone has given us

the function Sum(n) to test. They claim this function calculates the sum of the numbers

n down to 1. For example Sum(5) is 5+4+3+2+1 which equals 15. One approach to

functional debugging is to collect input and output data for the software for typical input

values. In particular we define a set of input values, run the software, and record the

output data generated by the software. In this exercise we will test the software using

input values from 0 to N-1, where N is 25. Furthermore, we will test the hypothesis that

the sum of n numbers can be expressed as the simple calculation of (n*(n+1))/2.

2

)1(*
1

+
=∑

=

nn
i

n

i

This test program will evaluate the function Sum(n)and store the result in the array at

SumBuf[n]. We define a second function Fun(n) that simply calculates (n*(n+1))/2.

We have another array FunBuf that we use to store the first 25 calculations of this

second function. We will check for equivalence of the two functions by comparing

elements of SumBuf to the elements of FunBuf. In the previous homework examples,

we employed a top-down approach by placing the main program on the top and the

functions after. In this example, we will configure the system as bottom up by placing the

functions first and the main program at the end. Notice that bottom up organization does

not need prototypes for the functions. Run this example.
#define TRUE 1

#define FALSE 0

#define N 25 // The Size of the Array

unsigned long Sum(unsigned long n){

 unsigned long partial, count;

 partial = 0; // holds the running sum as we compute it

 for(count = 1; count <= n; count++){

 partial += count;

 }

 return partial;

}

unsigned long Fun(unsigned long n){

 return (n*(n+1))/2;

}

int main(void){

 unsigned long num;

 unsigned long SumBuf[N], FunBuf[N]; // arrays to store values

 int correct;

 UART_Init(); // initialize UART

 printf("HW4, Exercise 4.1 \n");

 for(num = 0; num < N; num++){

 SumBuf[num] = Sum(num);

 FunBuf[num] = Fun(num);

 }

 // Check if the formula and computation agree

 correct = TRUE; // Assume they match and change to false if mismatch

 for(num = 0; num < N; num++){

 if (SumBuf[num] != FunBuf[num]) {

 correct = FALSE;

 }

 }

 if(correct == TRUE){

 printf("Formula Works\n");

 } else{

 printf("Formula Wrong\n");

 }

}

Exercise 4.2: Download and unzip HW4_Exercise4_2.zip. You can run this in the

simulator and observe the output in a UART#1 window. Write a program that searches an

array of 16-bit numbers (call it haystack) to see if a particular value (call it needle) is

present in it. You can declare an array and initialize it in one step like so:

haystack[0] has 12, haystack[1] has 4, haystack[2] has 13,

haystack[3] has 2, and haystack[4] has 15. We add the const qualifier for

objects that are defined at compile time and not allowed to change during execution. On

the microcontroller, constant arrays will be stored in ROM.

unsigned short const haystack[5] = {12, 4 , 13, 2, 15};

Your function will be passed a 16-bit unsigned number. Return a 1 (true) if that number

is in the array haystack, and return a 0 (false if that number is not in the array

haystack.

long InHay(unsigned short needle); // prototype

unsigned short const haystack[5] = {12, 4 , 13, 2, 15};
void main(void){ unsigned short i;

 for(i=0; i<65535; i++){

 if(InHay(i)){

 printf("Number %5d is in the haystack.\n",i);

 }

 }

}

long InHay(unsigned short needle){

 // put your code here

 return 0; // replace this line

}

Your output should be something like this
HW4, Exercise 4.2

Number 2 is in the haystack.

Number 4 is in the haystack.

Number 12 is in the haystack.

Number 13 is in the haystack.

Number 15 is in the haystack.

Assignment 4.2: Download and unzip HW4_Assignment4_2.zip. You can run this in

the simulator and observe the output in a UART#1 window. Write a function that counts

the number of instances of letter in a string. The strings are null-terminated. All strings

are 11 characters long (12 bytes including null.) Complete the implementation of the

function Count, and test it using the following Keil project in HW4_Assignment4_2.

You may use pointer or index syntax to access data from the string. Take a screenshot of

the Keil debugger showing your code and the output results of running your code. Show

this printed page to your TA at the start of class. You are expected to write the function

Count. It is not necessary that you understand the rest of the code. What you need to

know is what the Count function is supposed to count the number of occurrences of

letter in string. This main program is an example of functional debugging; it defines a set

of input parameters, calls your function, and evaluates the equivalence of your output to

the expected output.

