
EE319K Spring 2011 Exam 1A Translated from 9S12 to TM4C123 Page 1

Jonathan W. Valvano February 25, 2011 2:00pm-2:50pm

 First:_________________ Last:_____________________
 This is a closed book exam. You must put your answers on pages 1,2,3,4 only. You have 50
minutes, so allocate your time accordingly. Show your work, and put your answers in the boxes. Please
read the entire quiz before starting.
(4) Question 1. Digital logic currently uses binary because it is fast, low power, and very small. In the
future, an EE319K student invents ternary logic that is faster, smaller and lower power than binary.
This means each ternary bit can be 0, 1, or 2. Ternary means base 3 in the same way binary means base
2. What is the value of the unsigned four-digit ternary number 1201? Give your answer as a decimal
number. ---

(3) Question 2. Answer true/false for each of the following three statements
Part a) Flash EEPROM memory on the TM4C123 is volatile. ---------------------------

Part b) I add three 32-bit numbers by executing ADD twice. The order in
which I add the numbers affects the final value of the carry bit. -------------------------

Part c) Dropout error can occur on a logical right shift (e.g., LSR). ------------

(4) Question 3. Consider the following 8-bit subtraction (assume registers are 8 bits wide)
 Load -100 into R1
 Load +50 into R2
 Subtract R3 = R1-R2

What will be the value of the overflow (V) bit?

What will be the value of the carry (C) bit?

(4) Question 4. What is the binary representation of 8-bit signed number -10?

EE319K Spring 2011 Exam 1A Translated from 9S12 to TM4C123 Page 2

Jonathan W. Valvano February 25, 2011 2:00pm-2:50pm

(20) Question 5. Interface the LED to PA0. The desired LED operating point is 2.0V at 25 mA. At 25
mA you can assume the VOL of the 7406 will be 0.5 V. Interface the switch to PB0 using positive logic.
No software is required in this question, and you may assume PA0 is an output and PB0 an input. Your
bag of parts includes the switch, the 7406, the LED, and one resistor each of the values {1Ω, 10Ω,
100Ω, 1kΩ, 10kΩ, 100kΩ and 1MΩ}. Pick the best resistors to use (you will not need them all.)

For questions 6 7, and 8, don’t worry about establishing the reset vector, creating a main program, or
initializing the stack pointer. You may use RAM-based global variables. Include comments. You may
use the following definitions
GPIO_PORTA_DATA_R EQU 0x40004080
GPIO_PORTA_DIR_R EQU 0x40004400
GPIO_PORTA_AFSEL_R EQU 0x40004420
GPIO_PORTA_DEN_R EQU 0x4000451C
SYSCTL_RCGCGPIO_R EQU 0x400FE608
SYSCTL_RCGCGPIO_GPIOA EQU 0x00000001 ; port A Clock Gating Control
(20) Question 6. Assume seven positive logic switches are connected to PA6-PA0, and one LED is
connected to PA7. Assume the direction register is properly initialized. Write an assembly language
subroutine that sets PA7=1, if PA0=1, PA2=0, and PA6=0, regardless of the other 4 switches. For all
other patterns of input switches, do not change the PA7 output.

P B 0

P A 0

TM4C

7 4 0 6

EE319K Spring 2011 Exam 1A Translated from 9S12 to TM4C123 Page 3

Jonathan W. Valvano February 25, 2011 2:00pm-2:50pm

; You should be able to write this in both C and assembly

(20) Question 7. Write an assembly language subroutine that adds two unsigned 32-bit numbers. The
two inputs are passed in Register R0 and Register R1, and the result is returned in Register R0.
Implement ceiling, such that if the sum is too big for 32 bits, return 0xFFFFFFFF.
 ; You should be able to write this in both C and assembly

(20) Question 8. Write an assembly language subroutine that counts the number of binary bits that are
zero in a 32-bit number. The 32-bit input parameter is passed in Register R0 and the result is returned
in Register R1. For example, if Register R0 = 0x00000001, return Register R1=31 because there are 31
binary zeros. If Register R0 = 0xFF0F0FFF, return Register R1 =8 because there are 8 binary zeros.

EE319K Spring 2011 Exam 1A Translated from 9S12 to TM4C123 Page 4

Jonathan W. Valvano February 25, 2011 2:00pm-2:50pm

; You should be able to write this in both C and assembly

EE319K Spring 2011 Exam 1A Translated from 9S12 to TM4C123 Page 5

Jonathan W. Valvano February 25, 2011 2:00pm-2:50pm

Memory access instructions
 LDR Rd, [Rn] ; load 32-bit number at [Rn] to Rd
 LDR Rd, [Rn,#off] ; load 32-bit number at [Rn+off] to Rd
 LDR Rd, =value ; set Rd equal to any 32-bit value (PC rel)
 LDRH Rd, [Rn] ; load unsigned 16-bit at [Rn] to Rd
 LDRH Rd, [Rn,#off] ; load unsigned 16-bit at [Rn+off] to Rd
 LDRSH Rd, [Rn] ; load signed 16-bit at [Rn] to Rd
 LDRSH Rd, [Rn,#off] ; load signed 16-bit at [Rn+off] to Rd
 LDRB Rd, [Rn] ; load unsigned 8-bit at [Rn] to Rd
 LDRB Rd, [Rn,#off] ; load unsigned 8-bit at [Rn+off] to Rd
 LDRSB Rd, [Rn] ; load signed 8-bit at [Rn] to Rd
 LDRSB Rd, [Rn,#off] ; load signed 8-bit at [Rn+off] to Rd
 STR Rt, [Rn] ; store 32-bit Rt to [Rn]
 STR Rt, [Rn,#off] ; store 32-bit Rt to [Rn+off]
 STRH Rt, [Rn] ; store least sig. 16-bit Rt to [Rn]
 STRH Rt, [Rn,#off] ; store least sig. 16-bit Rt to [Rn+off]
 STRB Rt, [Rn] ; store least sig. 8-bit Rt to [Rn]
 STRB Rt, [Rn,#off] ; store least sig. 8-bit Rt to [Rn+off]
 PUSH {Rt} ; push 32-bit Rt onto stack
 POP {Rd} ; pop 32-bit number from stack into Rd
 ADR Rd, label ; set Rd equal to the address at label
 MOV{S} Rd, <op2> ; set Rd equal to op2
 MOV Rd, #im16 ; set Rd equal to im16, im16 is 0 to 65535
 MVN{S} Rd, <op2> ; set Rd equal to -op2
Branch instructions
 B label ; branch to label Always
 BEQ label ; branch if Z == 1 Equal
 BNE label ; branch if Z == 0 Not equal
 BCS label ; branch if C == 1 Higher or same, unsigned ≥
 BHS label ; branch if C == 1 Higher or same, unsigned ≥
 BCC label ; branch if C == 0 Lower, unsigned <
 BLO label ; branch if C == 0 Lower, unsigned <
 BMI label ; branch if N == 1 Negative
 BPL label ; branch if N == 0 Positive or zero
 BVS label ; branch if V == 1 Overflow
 BVC label ; branch if V == 0 No overflow
 BHI label ; branch if C==1 and Z==0 Higher, unsigned >
 BLS label ; branch if C==0 or Z==1 Lower or same, unsigned ≤
 BGE label ; branch if N == V Greater than or equal, signed ≥
 BLT label ; branch if N != V Less than, signed <
 BGT label ; branch if Z==0 and N==V Greater than, signed >
 BLE label ; branch if Z==1 or N!=V Less than or equal, signed ≤
 BX Rm ; branch indirect to location specified by Rm
 BL label ; branch to subroutine at label
 BLX Rm ; branch to subroutine indirect specified by Rm
Interrupt instructions
 CPSIE I ; enable interrupts (I=0)
 CPSID I ; disable interrupts (I=1)

Logical instructions
 AND{S} {Rd,} Rn, <op2> ; Rd=Rn&op2 (op2 is 32 bits)
 ORR{S} {Rd,} Rn, <op2> ; Rd=Rn|op2 (op2 is 32 bits)
 EOR{S} {Rd,} Rn, <op2> ; Rd=Rn^op2 (op2 is 32 bits)
 BIC{S} {Rd,} Rn, <op2> ; Rd=Rn&(~op2) (op2 is 32 bits)
 ORN{S} {Rd,} Rn, <op2> ; Rd=Rn|(~op2) (op2 is 32 bits)
 LSR{S} Rd, Rm, Rs ; logical shift right Rd=Rm>>Rs (unsigned)
 LSR{S} Rd, Rm, #n ; logical shift right Rd=Rm>>n (unsigned)

EE319K Spring 2011 Exam 1A Translated from 9S12 to TM4C123 Page 6

Jonathan W. Valvano February 25, 2011 2:00pm-2:50pm

 ASR{S} Rd, Rm, Rs ; arithmetic shift right Rd=Rm>>Rs (signed)
 ASR{S} Rd, Rm, #n ; arithmetic shift right Rd=Rm>>n (signed)
 LSL{S} Rd, Rm, Rs ; shift left Rd=Rm<<Rs (signed, unsigned)
 LSL{S} Rd, Rm, #n ; shift left Rd=Rm<<n (signed, unsigned)
Arithmetic instructions
 ADD{S} {Rd,} Rn, <op2> ; Rd = Rn + op2
 ADD{S} {Rd,} Rn, #im12 ; Rd = Rn + im12, im12 is 0 to 4095
 SUB{S} {Rd,} Rn, <op2> ; Rd = Rn - op2
 SUB{S} {Rd,} Rn, #im12 ; Rd = Rn - im12, im12 is 0 to 4095
 RSB{S} {Rd,} Rn, <op2> ; Rd = op2 - Rn
 RSB{S} {Rd,} Rn, #im12 ; Rd = im12 – Rn
 CMP Rn, <op2> ; Rn – op2 sets the NZVC bits
 CMN Rn, <op2> ; Rn - (-op2) sets the NZVC bits
 MUL{S} {Rd,} Rn, Rm ; Rd = Rn * Rm signed or unsigned
 MLA Rd, Rn, Rm, Ra ; Rd = Ra + Rn*Rm signed or unsigned
 MLS Rd, Rn, Rm, Ra ; Rd = Ra - Rn*Rm signed or unsigned
 UDIV {Rd,} Rn, Rm ; Rd = Rn/Rm unsigned
 SDIV {Rd,} Rn, Rm ; Rd = Rn/Rm signed
Notes Ra Rd Rm Rn Rt represent 32-bit registers
 value any 32-bit value: signed, unsigned, or address
 {S} if S is present, instruction will set condition codes
 #im12 any value from 0 to 4095
 #im16 any value from 0 to 65535
 {Rd,} if Rd is present Rd is destination, otherwise Rn
 #n any value from 0 to 31
 #off any value from -255 to 4095
 label any address within the ROM of the microcontroller
 op2 the value generated by <op2>
Examples of flexible operand <op2> creating the 32-bit number. E.g., Rd = Rn+op2
 ADD Rd, Rn, Rm ; op2 = Rm
 ADD Rd, Rn, Rm, LSL #n ; op2 = Rm<<n Rm is signed, unsigned
 ADD Rd, Rn, Rm, LSR #n ; op2 = Rm>>n Rm is unsigned
 ADD Rd, Rn, Rm, ASR #n ; op2 = Rm>>n Rm is signed
 ADD Rd, Rn, #constant ; op2 = constant, where X and Y are hexadecimal digits:

• produced by shifting an 8-bit unsigned value left by any number of bits
• in the form 0x00XY00XY
• in the form 0xXY00XY00
• in the form 0xXYXYXYXY

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12

R13 (MSP)
R14 (LR)
R15 (PC)

Stack pointer
Link register

Program counter

General
purpose

registers

256k Flash
ROM

64k RAM

I/O ports

Internal I/O
PPB

0x0000.0000

0x0003.FFFF

0x2000.0000

0x2000.FFFF

0x4000.0000

0x41FF.FFFF

0xE000.0000

0xE004.0FFF

Condition code bits
N negative
Z zero
V signed overflow
C carry or
 unsigned overflow

