
ARM® Compiler toolchain v4.1 for
µVision

Using ARM® C and C++ Libraries and Floating-Point
Support
Copyright © 2007-2008, 2011 ARM. All rights reserved.
ARM DUI 0378C (ID061811)

ARM Compiler toolchain v4.1 for µVision
Using ARM C and C++ Libraries and Floating-Point Support

Copyright © 2007-2008, 2011 ARM. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

Words and logos marked with or are registered trademarks or trademarks of ARM in the EU and other countries, except
as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the trademarks
of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be
adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the
product and its use contained in this document are given by ARM in good faith. However, all warranties implied or
expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM shall not be liable for any loss or
damage arising from the use of any information in this document, or any error or omission in such information, or any
incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Some material in this document is based on IEEE 754 - 1985 IEEE Standard for Binary Floating-Point Arithmetic. The
IEEE disclaims any responsibility or liability resulting from the placement and use in the described manner.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this
document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Change History

Date Issue Confidentiality Change

May 2007 A Non-Confidential Release for RVCT v3.1 for µVision

December 2008 B Non-Confidential Release for RVCT v4.0 for µVision

June 2011 C Non-Confidential Release for ARM Compiler toolchain v4.1 for
µVision
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. ii
ID061811 Non-Confidential

Contents
ARM Compiler toolchain v4.1 for µVision Using ARM
C and C++ Libraries and Floating-Point Support

Chapter 1 Conventions and feedback

Chapter 2 The ARM C and C++ libraries
2.1 Mandatory linkage with the C library .. 2-5
2.2 C and C++ runtime libraries ... 2-6
2.3 C and C++ library features ... 2-7
2.4 Library heap usage requirements of the ARM C and C++ libraries 2-8
2.5 Compliance with the Application Binary Interface (ABI) for the ARM architecture .. 2-9
2.6 Increasing portability of object files to other CLIBABI implementations 2-10
2.7 ARM C and C++ library directory structure .. 2-11
2.8 Selection of ARM C and C++ library variants based on build options 2-12
2.9 Thumb C libraries .. 2-14
2.10 C++ and C libraries and the std namespace ... 2-15
2.11 ARM C libraries and multithreading ... 2-16
2.12 ARM C libraries and reentrant functions .. 2-17
2.13 ARM C libraries and thread-safe functions .. 2-18
2.14 Use of static data in the C libraries .. 2-19
2.15 Use of the __user_libspace static data area by the C libraries 2-21
2.16 C library functions to access subsections of the __user_libspace static data area 2-22
2.17 Re-implementation of legacy function __user_libspace() in the C library 2-23
2.18 Management of locks in multithreaded applications .. 2-24
2.19 How to ensure re-implemented mutex functions are called 2-26
2.20 Using the ARM C library in a multithreaded environment 2-27
2.21 Thread safety in the ARM C library .. 2-29
2.22 Thread safety in the ARM C++ library ... 2-30
2.23 The floating-point status word in a multithreaded environment 2-32
2.24 Using the C library with an application ... 2-33
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. iii
ID061811 Non-Confidential

Contents
2.25 Using the C and C++ libraries with an application in a semihosting environment . 2-34
2.26 Using $Sub$$ to mix semihosted and nonsemihosted I/O functionality 2-35
2.27 Using the libraries in a nonsemihosting environment .. 2-36
2.28 C++ exceptions in a non-semihosting environment ... 2-37
2.29 Direct semihosting C library function dependencies .. 2-38
2.30 Indirect semihosting C library function dependencies ... 2-39
2.31 C library API definitions for targeting a different environment 2-40
2.32 Building an application without the C library .. 2-41
2.33 Creating an application as bare machine C without the C library 2-44
2.34 Integer and floating-point compiler functions and building an application without the C

library ... 2-45
2.35 Bare machine integer C ... 2-46
2.36 Bare machine C with floating-point processing .. 2-47
2.37 Customized C library startup code and access to C library functions 2-48
2.38 Program design when exploiting the C library ... 2-49
2.39 Using low-level functions when exploiting the C library ... 2-50
2.40 Using high-level functions when exploiting the C library .. 2-51
2.41 Using malloc() when exploiting the C library .. 2-52
2.42 Tailoring the C library to a new execution environment ... 2-53
2.43 How C and C++ programs use the library functions .. 2-54
2.44 Initialization of the execution environment and execution of the application 2-55
2.45 C++ initialization, construction and destruction ... 2-56
2.46 Legacy support for C$$pi_ctorvec instead of .init_array .. 2-58
2.47 Exceptions system initialization ... 2-59
2.48 Emergency buffer memory for exceptions ... 2-60
2.49 Library functions called from main() ... 2-61
2.50 Program exit and the assert macro .. 2-62
2.51 Assembler macros that tailor locale functions in the C library 2-63
2.52 Link time selection of the locale subsystem in the C library 2-64
2.53 ISO8859-1 implementation .. 2-65
2.54 Shift-JIS and UTF-8 implementation .. 2-66
2.55 Runtime selection of the locale subsystem in the C library 2-67
2.56 Definition of locale data blocks in the C library .. 2-68
2.57 LC_CTYPE data block ... 2-71
2.58 LC_COLLATE data block .. 2-74
2.59 LC_MONETARY data block .. 2-76
2.60 LC_NUMERIC data block .. 2-77
2.61 LC_TIME data block .. 2-78
2.62 Modification of C library functions for error signaling, error handling, and program exit .

2-80
2.63 Modification of memory management functions in the C library 2-81
2.64 Avoiding the heap and heap-using library functions supplied by ARM 2-82
2.65 C library support for memory allocation functions .. 2-83
2.66 Heap1, standard heap implementation .. 2-84
2.67 Heap2, alternative heap implementation ... 2-85
2.68 Using a heap implementation from bare machine C .. 2-86
2.69 Stack pointer initialization and heap bounds ... 2-87
2.70 Defining __initial_sp, __heap_base and __heap_limit .. 2-89
2.71 Extending heap size at runtime ... 2-90
2.72 Legacy support for __user_initial_stackheap() .. 2-91
2.73 Tailoring input/output functions in the C and C++ libraries 2-92
2.74 Target dependencies on low-level functions in the C and C++ libraries 2-93
2.75 The C library printf family of functions ... 2-95
2.76 The C library scanf family of functions ... 2-96
2.77 Redefining low-level library functions to enable direct use of high-level library functions

2-97
2.78 The C library functions fread(), fgets() and gets() .. 2-100
2.79 Re-implementing __backspace() in the C library ... 2-101
2.80 Re-implementing __backspacewc() in the C library .. 2-102
2.81 Target-dependent I/O support functions in the C library 2-103
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. iv
ID061811 Non-Confidential

Contents
2.82 Tailoring non-input/output C library functions .. 2-104
2.83 Real-time integer division in the ARM libraries .. 2-105
2.84 Selecting real-time division in the ARM libraries .. 2-106
2.85 How the ARM C library fulfills ISO C specification requirements 2-107
2.86 mathlib error handling .. 2-108
2.87 ISO-compliant implementation of signals supported by the signal() function in the C

library and additional type arguments .. 2-110
2.88 ISO-compliant C library input/output characteristics .. 2-112
2.89 Standard C++ library implementation definition ... 2-114
2.90 C library functions and extensions ... 2-115
2.91 Persistence of C and C++ library names across releases of the ARM compilation tools

2-116
2.92 Link time selection of C and C++ libraries ... 2-117
2.93 Managing projects that have explicit C or C++ library names in makefiles 2-118
2.94 Compiler generated and library-resident helper functions 2-119
2.95 C and C++ library naming conventions .. 2-120
2.96 Using macro__ARM_WCHAR_NO_IO to disable FILE declaration and wide I/O function

prototypes .. 2-122

Chapter 3 The ARM C micro-library
3.1 About microlib .. 3-2
3.2 Differences between microlib and the default C library ... 3-3
3.3 Library heap usage requirements of the ARM C micro-library 3-4
3.4 ISO C features missing from microlib .. 3-5
3.5 Building an application with microlib .. 3-7
3.6 Creating an initial stack pointer for use with microlib ... 3-8
3.7 Creating the heap for use with microlib ... 3-9
3.8 Entering and exiting programs linked with microlib .. 3-10
3.9 Tailoring the microlib input/output functions .. 3-11

Chapter 4 Floating-point support
4.1 About floating-point support ... 4-3
4.2 The software floating-point library, fplib ... 4-4
4.3 Calling fplib routines .. 4-5
4.4 fplib arithmetic on numbers in a particular format .. 4-6
4.5 fplib conversions between floats, doubles, and ints ... 4-8
4.6 fplib conversion between long longs, floats, and doubles .. 4-9
4.7 fplib comparisons between floats and doubles .. 4-10
4.8 fplib C99 functions ... 4-12
4.9 Controlling the ARM floating-point environment .. 4-13
4.10 Floating-point functions for compatibility with Microsoft products 4-14
4.11 C99-compatible functions for controlling the ARM floating-point environment 4-15
4.12 C99 rounding mode and floating-point exception macros 4-16
4.13 Exception flag handling .. 4-17
4.14 Functions for handling rounding modes ... 4-18
4.15 Functions for saving and restoring the whole floating-point environment 4-19
4.16 Functions for temporarily disabling exceptions .. 4-20
4.17 ARM floating-point compiler extensions to the C99 interface 4-21
4.18 Writing a custom exception trap handler ... 4-22
4.19 Example of a custom exception handler .. 4-26
4.20 Exception trap handling by signals .. 4-28
4.21 Using C99 signalling NaNs provided by mathlib (_WANT_SNAN) 4-29
4.22 mathlib double and single-precision floating-point functions 4-30
4.23 Nonstandard functions in mathlib .. 4-31
4.24 IEEE 754 arithmetic ... 4-32
4.25 Basic data types for IEEE 754 arithmetic .. 4-33
4.26 Single precision data type for IEEE 754 arithmetic .. 4-34
4.27 Double precision data type for IEEE 754 arithmetic .. 4-36
4.28 Sample single precision floating-point values for IEEE 754 arithmetic 4-37
4.29 Sample double precision floating-point values for IEEE 754 arithmetic 4-39
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. v
ID061811 Non-Confidential

Contents
4.30 IEEE 754 arithmetic and rounding ... 4-41
4.31 Exceptions arising from IEEE 754 floating-point arithmetic 4-42
4.32 Ignoring exceptions from IEEE 754 floating-point arithmetic operations 4-43
4.33 Trapping exceptions from IEEE 754 floating-point arithmetic operations 4-44
4.34 Exception types recognized by the ARM floating-point environment 4-45
4.35 Using the Vector Floating-Point (VFP) support libraries .. 4-47
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. vi
ID061811 Non-Confidential

Chapter 1
Conventions and feedback

The following describes the typographical conventions and how to give feedback:

Typographical conventions
The following typographical conventions are used:
monospace Denotes text that can be entered at the keyboard, such as commands,

file and program names, and source code.
monospace Denotes a permitted abbreviation for a command or option. The

underlined text can be entered instead of the full command or option
name.

monospace italic
Denotes arguments to commands and functions where the argument is
to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

italic Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Also used for
emphasis in descriptive lists, where appropriate, and for ARM®
processor signal names.

Feedback on this product
If you have any comments and suggestions about this product, contact your
supplier and give:
• your name and company
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 1-1
ID061811 Non-Confidential

Conventions and feedback
• the serial number of the product
• details of the release you are using
• details of the platform you are using, such as the hardware platform,

operating system type and version
• a small standalone sample of code that reproduces the problem
• a clear explanation of what you expected to happen, and what actually

happened
• the commands you used, including any command-line options
• sample output illustrating the problem
• the version string of the tools, including the version number and build

numbers.

Feedback on documentation
If you have comments on the documentation, e-mail errata@arm.com. Give:
• the title
• the number, ARM DUI 0378C
• if viewing online, the topic names to which your comments apply
• if viewing a PDF version of a document, the page numbers to which your

comments apply
• a concise explanation of your comments.
ARM also welcomes general suggestions for additions and improvements.

ARM periodically provides updates and corrections to its documentation on the ARM
Information Center, together with knowledge articles and Frequently Asked Questions (FAQs).

Other information
• ARM Product Manuals, http://www.keil.com/support/man_arm.htm
• Keil Support Knowledgebase, http://www.keil.com/support/knowledgebase.asp
• Keil Product Support, http://www.keil.com/support/
• ARM Glossary,

http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 1-2
ID061811 Non-Confidential

Chapter 2
The ARM C and C++ libraries

The following topics describe the ARM C and C++ libraries:

• Mandatory linkage with the C library on page 2-5

• C and C++ runtime libraries on page 2-6

• C and C++ library features on page 2-7

• Library heap usage requirements of the ARM C and C++ libraries on page 2-8

• Compliance with the Application Binary Interface (ABI) for the ARM architecture on
page 2-9

• Increasing portability of object files to other CLIBABI implementations on page 2-10

• ARM C and C++ library directory structure on page 2-11

• Selection of ARM C and C++ library variants based on build options on page 2-12

• Thumb C libraries on page 2-14

• C++ and C libraries and the std namespace on page 2-15

• ARM C libraries and multithreading on page 2-16

• ARM C libraries and reentrant functions on page 2-17

• ARM C libraries and thread-safe functions on page 2-18

• Use of static data in the C libraries on page 2-19

• Use of the __user_libspace static data area by the C libraries on page 2-21
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-1
ID061811 Non-Confidential

The ARM C and C++ libraries
• C library functions to access subsections of the __user_libspace static data area on
page 2-22

• Re-implementation of legacy function __user_libspace() in the C library on page 2-23

• Management of locks in multithreaded applications on page 2-24

• How to ensure re-implemented mutex functions are called on page 2-26

• Using the ARM C library in a multithreaded environment on page 2-27

• Thread safety in the ARM C library on page 2-29

• Thread safety in the ARM C++ library on page 2-30

• The floating-point status word in a multithreaded environment on page 2-32

• Using the C library with an application on page 2-33

• Using the C library with an application on page 2-33

• Using the C and C++ libraries with an application in a semihosting environment on
page 2-34

• Using $Sub$$ to mix semihosted and nonsemihosted I/O functionality on page 2-35

• Using the libraries in a nonsemihosting environment on page 2-36

• C++ exceptions in a non-semihosting environment on page 2-37

• Direct semihosting C library function dependencies on page 2-38

• Indirect semihosting C library function dependencies on page 2-39

• C library API definitions for targeting a different environment on page 2-40

• Building an application without the C library on page 2-41

• Creating an application as bare machine C without the C library on page 2-44

• Integer and floating-point compiler functions and building an application without the C
library on page 2-45

• Bare machine integer C on page 2-46

• Bare machine C with floating-point processing on page 2-47

• Customized C library startup code and access to C library functions on page 2-48

• Program design when exploiting the C library on page 2-49

• Using low-level functions when exploiting the C library on page 2-50

• Using high-level functions when exploiting the C library on page 2-51

• Using malloc() when exploiting the C library on page 2-52

• Tailoring the C library to a new execution environment on page 2-53

• How C and C++ programs use the library functions on page 2-54

• Initialization of the execution environment and execution of the application on page 2-55

• C++ initialization, construction and destruction on page 2-56

• Legacy support for C$$pi_ctorvec instead of .init_array on page 2-58
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-2
ID061811 Non-Confidential

The ARM C and C++ libraries
• Exceptions system initialization on page 2-59

• Emergency buffer memory for exceptions on page 2-60

• Library functions called from main() on page 2-61

• Program exit and the assert macro on page 2-62

• Assembler macros that tailor locale functions in the C library on page 2-63

• Link time selection of the locale subsystem in the C library on page 2-64

• ISO8859-1 implementation on page 2-65

• Shift-JIS and UTF-8 implementation on page 2-66

• Runtime selection of the locale subsystem in the C library on page 2-67

• Definition of locale data blocks in the C library on page 2-68

• LC_CTYPE data block on page 2-71

• LC_COLLATE data block on page 2-74

• LC_MONETARY data block on page 2-76

• LC_NUMERIC data block on page 2-77

• LC_TIME data block on page 2-78

• Modification of C library functions for error signaling, error handling, and program exit
on page 2-80

• Modification of memory management functions in the C library on page 2-81

• Avoiding the heap and heap-using library functions supplied by ARM on page 2-82

• C library support for memory allocation functions on page 2-83

• Heap1, standard heap implementation on page 2-84

• Heap2, alternative heap implementation on page 2-85

• Using a heap implementation from bare machine C on page 2-86

• Stack pointer initialization and heap bounds on page 2-87

• Defining __initial_sp, __heap_base and __heap_limit on page 2-89

• Extending heap size at runtime on page 2-90

• Legacy support for __user_initial_stackheap() on page 2-91

• Tailoring input/output functions in the C and C++ libraries on page 2-92

• Target dependencies on low-level functions in the C and C++ libraries on page 2-93

• The C library printf family of functions on page 2-95

• The C library scanf family of functions on page 2-96

• Redefining low-level library functions to enable direct use of high-level library functions
on page 2-97

• The C library functions fread(), fgets() and gets() on page 2-100
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-3
ID061811 Non-Confidential

The ARM C and C++ libraries
• Re-implementing __backspace() in the C library on page 2-101

• Re-implementing __backspacewc() in the C library on page 2-102

• Target-dependent I/O support functions in the C library on page 2-103

• Tailoring non-input/output C library functions on page 2-104

• Real-time integer division in the ARM libraries on page 2-105

• Selecting real-time division in the ARM libraries on page 2-106

• How the ARM C library fulfills ISO C specification requirements on page 2-107

• mathlib error handling on page 2-108

• ISO-compliant implementation of signals supported by the signal() function in the C
library and additional type arguments on page 2-110

• ISO-compliant C library input/output characteristics on page 2-112

• Standard C++ library implementation definition on page 2-114

• C library functions and extensions on page 2-115

• Persistence of C and C++ library names across releases of the ARM compilation tools on
page 2-116

• Link time selection of C and C++ libraries on page 2-117

• Managing projects that have explicit C or C++ library names in makefiles on page 2-118

• Compiler generated and library-resident helper functions on page 2-119

• C and C++ library naming conventions on page 2-120

• Using macro__ARM_WCHAR_NO_IO to disable FILE declaration and wide I/O function
prototypes on page 2-122.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-4
ID061811 Non-Confidential

The ARM C and C++ libraries
2.1 Mandatory linkage with the C library
If you write an application in C, you must link it with the C library, even if it makes no direct
use of C library functions. This is because the compiler might implicitly generate calls to C
library functions to improve your application, even though calls to such functions might not
exist in your source code.

Even if your application does not have a main() function, meaning that the C library is not
initialized, some C library functions are still legitimately available and the compiler might
implicitly generate calls to these functions.

2.1.1 See also

Concepts
• Building an application without the C library on page 2-41.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-5
ID061811 Non-Confidential

The ARM C and C++ libraries
2.2 C and C++ runtime libraries
The following ARM runtime libraries are provided to support compiled C and C++:

C standardlib
This is a C library consisting of:
• All functions defined by the ISO C99 library standard.
• Target-dependent functions used to implement the C library functions in the

semihosted execution environment. You can redefine these functions in
your own application.

• Functions called implicitly by the compiler.
• ARM extensions that are not defined by the ISO C library standard, but are

included in the library.

C microlib
This is a C library that can be used as an alternative to C standardlib. It is a
micro-library that is ideally suited for deeply embedded applications that have to
fit within small-sized memory. The C micro-library, microlib, consists of:
• Functions that are highly optimized to achieve the minimum code size.
• Functions that are not compliant with the ISO C library standard.
• Functions that are not compliant with the 1985 IEEE 754 standard for

binary floating-point arithmetic.

C++
This is a C++ library that can be used with C standardlib. It consists of:
• functions defined by the ISO C++ library standard
• the Rogue Wave Standard C++ library
• additional C++ functions not supported by the Rogue Wave library
• functions called implicitly by the compiler.
The C++ libraries depend on the C library for target-specific support. There are
no target dependencies in the C++ libraries.

2.2.1 See also

Concepts
• Mandatory linkage with the C library on page 2-5
• Chapter 2 The ARM C and C++ libraries
• Chapter 3 The ARM C micro-library.

Other information
• ISO C library standard, http://www.iso.org
• IEEE Standard for Floating-Point Arithmetic (IEEE 754), 1985 version,

http://ieeexplore.ieee.org
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-6
ID061811 Non-Confidential

The ARM C and C++ libraries
2.3 C and C++ library features
The C library uses the standard ARM semihosted environment to provide facilities such as file
input/output. This environment is supported by the ARM RVI™ debug unit and the Real-Time
Simulator Model (RTSM).

You can re-implement any of the target-dependent functions of the C library as part of your
application. This enables you to tailor the C library and, therefore, the C++ library, to your own
execution environment.

You can also tailor many of the target-independent functions to your own application-specific
requirements. For example:
• the malloc family
• the ctype family
• all the locale-specific functions.

Many of the C library functions are independent of any other function and contain no target
dependencies. You can easily exploit these functions from assembler code.

Functions in the C library are responsible for:

• Creating an environment in which a C or C++ program can execute. This includes:
— creating a stack
— creating a heap, if required
— initializing the parts of the library the program uses.

• Starting execution by calling main().

• Supporting use of ISO-defined functions by the program.

• Catching runtime errors and signals and, if required, terminating execution on error or
program exit.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-7
ID061811 Non-Confidential

The ARM C and C++ libraries
2.4 Library heap usage requirements of the ARM C and C++ libraries
Functions such as malloc() and other dynamic memory allocation functions explicitly allocate
memory when used. However, some library functions and mechanisms implicitly allocate
memory from the heap. If heap usage requirements are significant to your code development
(for example, you might be developing code for an embedded system with a tiny memory
footprint), you must be aware of both implicit and explicit heap requirements.

In C standardlib, implicit heap usage occurs as a result of:
• calling the library function fopen() and the first time that an I/O operation is applied to the

resulting stream
• passing command-line arguments into the main() function.

The size of heap memory allocated for fopen() is 80 bytes for the FILE structure. When the first
I/O operation occurs, and not until the operation occurs, an additional default of 512 bytes of
heap memory is allocated for a buffer associated with the operation. You can reconfigure the
size of this buffer using setvbuf().

When fclose() is called, the default 80 bytes of memory is kept on a freelist for possible re-use.
The 512-byte buffer is freed on fclose().

Declaring main() to take arguments requires 256 bytes of implicitly allocated memory from the
heap. This memory is never freed because it is required for the duration of main(). In microlib,
main() must not be declared to take arguments, so this heap usage requirement only applies to
standardlib. In the standardlib context, it only applies if you have a heap.

Note
 The memory sizes quoted might change in future releases.

2.4.1 See also
• Library heap usage requirements of the ARM C micro-library on page 3-4
• Modification of memory management functions in the C library on page 2-81.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-8
ID061811 Non-Confidential

The ARM C and C++ libraries
2.5 Compliance with the Application Binary Interface (ABI) for the ARM architecture
The ABI for the ARM Architecture is a family of specifications that describe the
processor-specific aspects of the translation of a source program into object files. Object files
produced by any toolchain that conforms to the relevant aspects of the ABI can be linked
together to produce a final executable image or library.

Each document in the specification covers a specific area of compatibility. For example, the C
Library ABI for the ARM Architecture (CLIBABI) describes the parts of the C library that are
expected to be common to all conforming implementations.

The ABI documents contain several areas that are marked as platform specific. To define a
complete execution environment these platform-specific details have to be provided. This gives
rise to a number of supplemental specifications.

The Base Standard ABI for the ARM Architecture (BSABI) enables you to use ARM, Thumb,
and Thumb-2 objects and libraries from different producers that support the ABI for the ARM
Architecture. The ARM compilation tools fully support the BSABI, including support for
Debug With Arbitrary Record Format (DWARF) 3 debug tables (DWARF Debugging Standard
Version 3).

The ARM C and C++ libraries conform to the standards described in the BSABI, the CLIBABI,
and the C++ ABI (CPPABI) for the ARM Architecture.

2.5.1 See also

Concepts
• Increasing portability of object files to other CLIBABI implementations on page 2-10.

Other information
• ABI for the ARM Architecture suite of specifications,

http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.abi
• DWARF Debugging Standard, http://dwarfstd.org/
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-9
ID061811 Non-Confidential

The ARM C and C++ libraries
2.6 Increasing portability of object files to other CLIBABI implementations
You can request full CLIBABI portability to increase the portability of your object files to other
implementations of the CLIBABI. To do this, either:

• specify #define _AEABI_PORTABILITY_LEVEL 1 before you #include any library headers,
such as <stdlib.h>

• specify -D_AEABI_PORTABILITY_LEVEL=1 on the compiler command line.

Note
 This reduces the performance of some library operations.

2.6.1 See also

Concepts
• Compliance with the Application Binary Interface (ABI) for the ARM architecture on

page 2-9.

Reference
Compiler Reference:
• -Dname[(parm-list)][=def] on page 3-22.

Other information
• Application Binary Interface (ABI) for the ARM Architecture,

http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.abi
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-10
ID061811 Non-Confidential

The ARM C and C++ libraries
2.7 ARM C and C++ library directory structure
The libraries are installed in subdirectories of the lib directory:

armlib Contains the variants of the ARM C library, the floating-point arithmetic library
(fplib), and the math library (mathlib).

cpplib Contains the variants of the Rogue Wave C++ library (cpp_*) and supporting
ARM C++ functions (cpprt_*), referred to collectively as the ARM C++
Libraries.

The accompanying header files for these libraries are installed in the inc directory.

The environment variable ARMCCnnLIB must be set to point to the lib directory, or if this variable
is not set, ARMLIB. Alternatively, use the --libpath argument to the linker to identify the directory
holding the library subdirectories. You must not identify the armlib and cpplib directories
separately because this directory structure might change in future releases. The linker finds them
from the location of lib.

Note
 • The ARM C libraries are supplied in binary form only.

• The ARM libraries must not be modified. If you want to create a new implementation of
a library function, place the new function in an object file, or your own library, and include
it when you link the application. Your version of the function is used instead of the
standard library version.

• Normally, only a few functions in the ISO C library require re-implementation to create a
target-dependent application.

• The source for the Rogue Wave Standard C++ Library is not freely distributable. It can be
obtained from Rogue Wave Software Inc., or through ARM, for an additional license fee.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-11
ID061811 Non-Confidential

The ARM C and C++ libraries
2.8 Selection of ARM C and C++ library variants based on build options
When you build your application, you must make certain choices. For example:

Target Architecture and instruction set

ARM, Thumb®, or Thumb-2.

Byte order Big-endian or little-endian.

Floating-point support
Software (SoftVFP), hardware (VFP), software or hardware with half-precision
or double-precision extensions, or no floating-point support.

Position independence
Different ways to access your data are as follows:
• by absolute address
• relative to sb (read/write position-independent)
• relative to pc (fpic).
Different ways to access your code are as follows:
• by absolute address when appropriate
• relative to pc (read-only position independent).
The standard C libraries provide variants to support all of these options.
Position-independent C++ code can only be achieved with --apcs=/fpic.

Note
 Position independence is not supported in microlib.

When you link your assembler code, C or C++ code, the linker selects appropriate C and C++
library variants compatible with the build options you specified. There is a variant of the ISO C
library for each combination of major build options.

2.8.1 See also

Tasks
Creating Static Software Libraries with armar:
• Creating a new object library on page 3-2.

Concepts
Using the Compiler:
• Code compatibility between separately compiled and assembled modules on page 3-21.

Reference
Compiler Reference:
• --apcs=qualifer...qualifier on page 3-7
• --arm on page 3-11
• --bigend on page 3-14
• --fpu=name on page 3-44
• --littleend on page 3-61
• --thumb on page 3-90.
Linker Reference:
• --fpu=name on page 2-57
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-12
ID061811 Non-Confidential

The ARM C and C++ libraries
• --ropi on page 2-105
• --rwpi on page 2-108.
Assembler Reference:
• --arm on page 2-6
• --bigend on page 2-6
• --fpu=name on page 2-13
• --littleend on page 2-16
• --thumb on page 2-23.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-13
ID061811 Non-Confidential

The ARM C and C++ libraries
2.9 Thumb C libraries
The linker automatically links in the Thumb C library if it detects that one or more of the objects
to be linked have been built for:
• Thumb or Thumb-2, either using the --thumb option or #pragma thumb
• interworking, using the --apcs /interwork option on architecture ARMv4T
• an ARMv6-M architecture target or processor, for example, Cortex-M1 or Cortex-M0
• an ARMv7-M architecture target or processor, for example, Cortex-M3.

Despite its name, the Thumb C library might not contain exclusively Thumb code. If ARM
instructions are available, the Thumb library might use them to improve the performance of
critical functions such as memcpy(), memset(), and memclr(). The bulk of the Thumb C library,
however, is coded in Thumb for the best code density.

For an ARM instruction-only build, compile with the --arm_only option.

Note
 The Thumb C library used for ARMv6-M targets contains only Thumb-1 code.

The Thumb C library used for ARMv7-M targets contains only Thumb-2 code.

2.9.1 See also

Concepts
• Chapter 2 The ARM C and C++ libraries.

Reference
Compiler Reference:
• --arm_only on page 3-11
• --thumb on page 3-90
• #pragma thumb on page 5-60.

Other information
• Cortex processors,

http://infocenter.arm.com/help/topic/com.arm.doc.set.cortex/index.html
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-14
ID061811 Non-Confidential

The ARM C and C++ libraries
2.10 C++ and C libraries and the std namespace
All C++ standard library names, including the C library names, if you include them, are defined
in the namespace std using the following C++ syntax:

#include <cstdlib> // instead of stdlib.h

This means that you must qualify all the library names using one of the following methods:

• specify the standard namespace, for example:
std::printf("example\n");

• use the C++ keyword using to import a name to the global namespace:
using namespace std;
printf("example\n");

• use the compiler option --using_std.

Note
 errno is a macro, so it is not necessary to qualify it with a namespace.

2.10.1 See also

Reference
Compiler Reference:
• --using_std, --no_using_std on page 3-94.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-15
ID061811 Non-Confidential

The ARM C and C++ libraries
2.11 ARM C libraries and multithreading
The ARM C libraries support multithreading, for example, where you are using a Real-Time
Operating System (RTOS). In this context, the following definitions are used:

Threads Mean multiple streams of execution sharing global data between them.

Process Means a collection of all the threads that share a particular set of global data.

If there are multiple processes on a machine, they can be entirely separate and do not share any
data (except under unusual circumstances). Each process might be a single-threaded process or
might be divided into multiple threads.

Where you have single-threaded processes, there is only one flow of control. In multithreaded
applications, however, several flows of control might try to access the same functions, and the
same resources, concurrently. To protect the integrity of resources, any code you write for
multithreaded applications must be reentrant and thread-safe.

Reentrancy and thread safety are both related to the way functions in a multithreaded application
handle resources.

2.11.1 See also

Concepts
• ARM C libraries and reentrant functions on page 2-17
• ARM C libraries and thread-safe functions on page 2-18
• Using the ARM C library in a multithreaded environment on page 2-27.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-16
ID061811 Non-Confidential

The ARM C and C++ libraries
2.12 ARM C libraries and reentrant functions
A reentrant function does not hold static data over successive calls, and does not return a pointer
to static data. For this type of function, the caller provides all the data that the function requires,
such as pointers to any workspace. This means that multiple concurrent invocations of the
function do not interfere with each other.

Note
 A reentrant function must not call non-reentrant functions.

2.12.1 See also

Concepts
• ARM C libraries and multithreading on page 2-16
• ARM C libraries and thread-safe functions on page 2-18.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-17
ID061811 Non-Confidential

The ARM C and C++ libraries
2.13 ARM C libraries and thread-safe functions
A thread-safe function protects shared resources from concurrent access using locks. Thread
safety concerns only how a function is implemented and not its external interface. In C, local
variables are held in processor registers, or if the compiler runs out of registers, are dynamically
allocated on the stack. Therefore, any function that does not use static data, or other shared
resources, is thread-safe.

2.13.1 See also

Tasks
• Management of locks in multithreaded applications on page 2-24
• Using the ARM C library in a multithreaded environment on page 2-27.

Concepts
• ARM C libraries and multithreading on page 2-16
• ARM C libraries and reentrant functions on page 2-17
• Management of locks in multithreaded applications on page 2-24
• Thread safety in the ARM C library on page 2-29
• Thread safety in the ARM C++ library on page 2-30.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-18
ID061811 Non-Confidential

The ARM C and C++ libraries
2.14 Use of static data in the C libraries
Static data refers to persistent read/write data that is not stored on the stack or the heap. This
persistent data can be external or internal in scope, and is:

• at a fixed address, when compiled with --apcs /norwpi

• at a fixed address relative to the static base, register r9, when compiled with --apcs /rwpi.

Libraries that use static data might be reentrant, but this depends on their use of the
__user_libspace static data area, and on the build options you choose:

• When compiled with --apcs /norwpi, read/write static data is addressed in a
position-dependent fashion. This is the default. Code from these variants is
single-threaded because it uses read/write static data.

• When compiled with --apcs /rwpi, read/write static data is addressed in a
position-independent fashion using offsets from the static base register sb. Code from
these variants is reentrant and can be multithreaded if each thread uses a different static
base value.

The following describes how the C libraries use static data:

• The default floating-point arithmetic libraries fz_* and fj_* do not use static data and are
always reentrant. However, the f_* and g_* libraries do use static data.

• All statically-initialized data in the C libraries is read-only.

• All writable static data is zero initialized.

• Most C library functions use no writable static data and are reentrant whether built with
default build options, --apcs /norwpi or reentrant build options, --apcs /rwpi.

• Some functions have static data implicit in their definitions. You must not use these in a
reentrant application unless you build it with --apcs /rwpi and the callers use different
values in sb.

Note
 Exactly which functions use static data in their definitions might change in future releases.

Callouts from the C library enable access to static data. C library functions that use static data
can be categorized as:

• functions that do not use any static data of any kind, for example fprintf()

• functions that manage a static state, such as malloc(), rand(), and strtok()

• functions that do not manage a static state, but use static data in a way that is specific to
the implementation in the ARM compiler, for example isalpha().
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-19
ID061811 Non-Confidential

The ARM C and C++ libraries
When the C library does something that requires implicit static data, it uses a callout to a
function you can replace. These functions are shown in Table 2-1. They do not use semihosting.

The default implementation of __user_libspace creates a 96-byte block in the ZI region. Even
if your application does not have a main() function, the __user_libspace() function does not
normally have to be redefined.

Note
 Exactly which functions use static data in their definitions might change in future releases.

2.14.1 See also

Concepts
• Re-implementation of legacy function __user_libspace() in the C library on page 2-23.
Using the Compiler:
• Code compatibility between separately compiled and assembled modules on page 3-21.

Reference
• Assembler macros that tailor locale functions in the C library on page 2-63
• ARM C libraries and multithreading on page 2-16.
Compiler Reference:
• --apcs=qualifer...qualifier on page 3-7.
ARM® C and C++ Libraries and Floating-Point Support Reference:
• __rt_errno_addr() on page 2-29
• __rt_fp_status_addr() on page 2-31.

Table 2-1 C library callouts

Function Description

__rt_errno_addr() Called to get the address of the variable errno.

__rt_fp_status_addr() Called by the floating-point support code to get the address of
the floating-point status word.

locale functions The function __user_libspace() creates a block of private
static data for the library.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-20
ID061811 Non-Confidential

The ARM C and C++ libraries
2.15 Use of the __user_libspace static data area by the C libraries
The __user_libspace static data area holds the static data for the C libraries. This is a block of
96 bytes of zero-initialized data, supplied by the C library. It is also used as a temporary stack
during C library initialization.

The default ARM C libraries use the __user_libspace area to hold:

• errno, used by any function that is capable of setting errno. By default, __rt_errno_addr()
returns a pointer to errno.

• The Floating-Point (FP) status word for software floating-point (exception flags,
rounding mode). It is unused in hardware floating-point. By default,
__rt_fp_status_addr() returns a pointer to the FP status word.

• A pointer to the base of the heap (that is, the __Heap_Descriptor), used by all the
malloc-related functions.

• The current locale settings, used by functions such as setlocale(), but also used by all
other library functions that depend on them. For example, the ctype.h functions have to
access the LC_CTYPE setting.

The C++ libraries use the __user_libspace area to hold:

• the new_handler field and ddtor_pointer:
— the new_handler field is used to keep track of the value passed to

std::set_new_handler()

— the ddtor_pointer, that points to a list of destructions to be performed on program
exit. For example, objects constructed outside function scope exist for the duration
of the program, but require destruction on program exit. The ddtor_pointer is used
by __cxa_atexit() and __aeabi_atexit().

• C++ exception handling information for functions such as std::set_terminate() and
std::set_unexpected().

Note
 How the C and C++ libraries use the __user_libspace area might change in future releases.

2.15.1 See also

Other information
• __aeabi_atexit() in C++ ABI for the ARM Architecture,

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0041-/index.html.
• std::set_terminate(), std::set_unexpected(), in Exception Handling ABI for the ARM

Architecture, http://infocenter.arm.com/help/topic/com.arm.doc.ihi0038-/index.html
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-21
ID061811 Non-Confidential

The ARM C and C++ libraries
2.16 C library functions to access subsections of the __user_libspace static data area
Two wrapper functions are provided to return a subsection of the __user_libspace static data
area:

__user_perproc_libspace()
Returns a pointer to 96 bytes used to store data that is global to an entire process.
This data is shared between all threads.

__user_perthread_libspace()
Returns a pointer to 96 bytes used to store data that is local to a particular thread.
This means that __user_perthread_libspace() returns a different address
depending on the thread it is called from.

2.16.1 See also

Concepts
• Use of the __user_libspace static data area by the C libraries on page 2-21
• Re-implementation of legacy function __user_libspace() in the C library on page 2-23.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-22
ID061811 Non-Confidential

The ARM C and C++ libraries
2.17 Re-implementation of legacy function __user_libspace() in the C library
The __user_libspace() function returns a pointer to a block of private static data for the C
library. This function does not normally have to be redefined.

If you are writing an operating system or a process switcher, then typically you use the
__user_perproc_libspace() and __user_perthread_libspace() functions (which are always
available) rather than re-implement __user_libspace().

If you have legacy source code that re-implements __user_libspace(), you do not have to
change the re-implementation for single-threaded processes. However, you are likely to be
required to do so for multi-threaded applications. For multi-threaded applications, use either or
both of __user_perproc_libspace() and __user_perthread_libspace(), instead of
__user_libspace().

2.17.1 See also

Concepts
• C library functions to access subsections of the __user_libspace static data area on

page 2-22
• Using the ARM C library in a multithreaded environment on page 2-27
• Use of the __user_libspace static data area by the C libraries on page 2-21
• Use of static data in the C libraries on page 2-19.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-23
ID061811 Non-Confidential

The ARM C and C++ libraries
2.18 Management of locks in multithreaded applications
A thread-safe function protects shared resources from concurrent access using locks. There are
functions in the C library that you can re-implement, that enable you to manage the locking
mechanisms and so prevent the corruption of shared data such as the heap. These functions are
mutex functions, where the lifecycle of a mutex is one of initialization, iterative acquisition and
releasing of the mutex as required, and then optionally freeing the mutex when it is never going
to be required again. The mutex functions wrap onto your own Real-Time Operating System
(RTOS) calls, and their function prototypes are:

_mutex_initialize()
int _mutex_initialize(mutex *m);

This function accepts a pointer to a 32-bit word and initializes it as a valid mutex.
By default, _mutex_initialize() returns zero for a nonthreaded application.
Therefore, in a multithreaded application, _mutex_initialize() must return a
nonzero value on success so that at runtime, the library knows that it is being used
in a multithreaded environment.
Ensure that _mutex_initialize() initializes the mutex to an unlocked state.
This function must be supplied if you are using mutexes.

_mutex_acquire()
void _mutex_acquire(mutex *m);

This function causes the calling thread to obtain a lock on the supplied mutex.
_mutex_acquire() returns immediately if the mutex has no owner. If the mutex is
owned by another thread, _mutex_acquire() must block it until it becomes
available.
_mutex_acquire() is not called by the thread that already owns the mutex.
This function must be supplied if you are using mutexes.

_mutex_release()
void _mutex_release(mutex *m);

This function causes the calling thread to release the lock on a mutex acquired by
_mutex_acquire().
The mutex remains in existence, and can be re-locked by a subsequent call to
mutex_acquire().
_mutex_release() assumes that the mutex is owned by the calling thread.
This function must be supplied if you are using mutexes.

_mutex_free()
void _mutex_free(mutex *m);

This function causes the calling thread to free the supplied mutex. Any operating
system resources associated with the mutex are freed. The mutex is destroyed and
cannot be reused.
_mutex_free() assumes that the mutex is owned by the calling thread.
This function is optional. If you do not supply this function, the C library does not
attempt to call it.

The mutex data structure type that is used as the parameter to the _mutex_*() functions is not
defined in any of the ARM compiler toolchain header files, but must be defined elsewhere.
Typically, it is defined as part of RTOS code.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-24
ID061811 Non-Confidential

The ARM C and C++ libraries
Functions that call _mutex_*() functions create 4 bytes of memory for holding the mutex data
structure. __Heap_Initialize() is one such function.

For the C library, a mutex is specified as a single 32-bit word of memory that can be placed
anywhere. However, if your mutex implementation requires more space than this, or demands
that the mutex be in a special memory area, then you must treat the default mutex as a pointer
to a real mutex.

A typical example of a re-implementation framework for _mutex_initialize(),
_mutex_acquire(), and _mutex_release() is as follows, where SEMAPHORE_ID, CreateLock(),
AcquireLock(), and ReleaseLock() are defined in the RTOS, and (...) implies additional
parameters:

int _mutex_initialize(SEMAPHORE_ID sid)
{

/* Create a mutex semaphore */
sid = CreateLock(...);
return 1;

}

void _mutex_acquire(SEMAPHORE_ID sid)
{

/* Task sleep until get semaphore */
AcquireLock(sid, ...);

}

void _mutex_release(SEMAPHORE_ID sid)
{

/* Release the semaphore. */
ReleaseLock(sid);

}

void _mutex_free(SEMAPHORE_ID sid)
{

/* Free the semaphore. */
FreeLock(sid, ...);

}

Note
 • _mutex_release() releases the lock on the mutex that was acquired by _mutex_acquire(),

but the mutex still exists, and can be re-locked by a subsequent call to _mutex_acquire().

• It is only when the optional wrapper function _mutex_free() is called that the mutex is
destroyed. After the mutex is destroyed, it cannot be used without first calling
_mutex_initialize() to set it up again.

2.18.1 See also

Tasks
• How to ensure re-implemented mutex functions are called on page 2-26
• Using the ARM C library in a multithreaded environment on page 2-27.

Concepts
• Thread safety in the ARM C library on page 2-29
• Thread safety in the ARM C++ library on page 2-30.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-25
ID061811 Non-Confidential

The ARM C and C++ libraries
2.19 How to ensure re-implemented mutex functions are called
If your re-implemented_mutex_*() functions are within an object that is contained within a
library file, the linker does not automatically include the object. This can result in the _mutex_*()
functions being excluded from the image you have built. To avoid this problem, that is, to ensure
that your _mutex_*() functions are called, you can either:

• Place your mutex functions in a non-library object file. This helps to ensure that they are
resolved at link time.

• Place your mutex functions in a library object file, and arrange a non-weak reference to
something in the object.

• Place your mutex functions in a library object file, and have the linker explicitly extract
the specific object from the library on the command line by writing
libraryname.a(objectfilename.o) when you invoke the linker.

2.19.1 See also

Tasks
• Using the ARM C library in a multithreaded environment on page 2-27.

Concepts
• Management of locks in multithreaded applications on page 2-24
• Thread safety in the ARM C library on page 2-29
• Thread safety in the ARM C++ library on page 2-30.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-26
ID061811 Non-Confidential

The ARM C and C++ libraries
2.20 Using the ARM C library in a multithreaded environment
To use the ARM C library in a multithreaded environment, you must provide:

• An implementation of __user_perthread_libspace() that returns a different block of
memory for each thread. This can be achieved by either:
— returning a different address depending on the thread it is called from
— having a single __user_perthread_libspace block at a fixed address and swapping

its contents when switching threads.
You can use either approach to suit your environment.
You do not have to re-implement __user_perproc_libspace() unless there is a specific
reason to do so. In the majority of cases, there is no requirement to re-implement this
function.

• A way to manage multiple stacks.
A simple way to do this is to use the ARM two-region memory model. Using this means
that you keep the stack that belongs to the primary thread entirely separate from the heap.
Then you must allocate more memory for additional stacks from the heap itself.

• Thread management functions, for example, to create or destroy threads, to handle thread
synchronization, and to retrieve exit codes.

Note
 The ARM C libraries supply no thread management functions of their own so you must

supply any that are required.

• A thread-switching mechanism.

Note
 The ARM C libraries supply no thread-switching mechanisms of their own. This is

because there are many different ways to do this and the libraries are designed to work
with all of them.

You only have to provide implementations of the mutex functions if you require them to be
called.

In some applications, the mutex functions might not be useful. For example, a co-operatively
threaded program does not have to take steps to ensure data integrity, provided it avoids calling
its yield function during a critical section. However, in other types of application, for example
where you are implementing preemptive scheduling, or in a Symmetric Multi-Processor (SMP)
model, these functions play an important part in handling locks.

If all of these requirements are met, you can use the ARM C library in your multithreaded
environment. The following behavior applies:

• some functions work independently in each thread

• some functions automatically use the mutex functions to mediate multiple accesses to a
shared resource

• some functions are still nonreentrant so a reentrant equivalent is supplied

• a few functions remain nonreentrant and no alternative is available.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-27
ID061811 Non-Confidential

The ARM C and C++ libraries
2.20.1 See also

Concepts
• ARM C libraries and multithreading on page 2-16
• Management of locks in multithreaded applications on page 2-24
• Thread safety in the ARM C library on page 2-29
• Thread safety in the ARM C++ library on page 2-30.

Reference

ARM® C and C++ Libraries and Floating-Point Support Reference:
• Thread-safe C library functions on page 2-63
• C library functions that are not thread-safe on page 2-66.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-28
ID061811 Non-Confidential

The ARM C and C++ libraries
2.21 Thread safety in the ARM C library
In the ARM C library:

• some functions are never thread-safe, for example setlocale()

• some functions are inherently thread-safe, for example memcpy()

• some functions, such as malloc(), can be made thread-safe by implementing the _mutex_*
functions

• other functions are only thread-safe if you pass the appropriate arguments, for example
tmpnam().

Threading problems might occur when your application makes use of the ARM C library in a
way that is hidden, for example, if the compiler implicitly calls functions that you have not
explicitly called in your source code. Familiarity with the thread-safe C library functions and C
library functions that are not thread-safe can help you to avoid this type of threading problem,
although in general, it is unlikely to arise.

2.21.1 See also

Tasks
• Using the ARM C library in a multithreaded environment on page 2-27.

Concepts
• Management of locks in multithreaded applications on page 2-24
• Thread safety in the ARM C++ library on page 2-30.

Reference
ARM® C and C++ Libraries and Floating-Point Support Reference:
• Thread-safe C library functions on page 2-63
• C library functions that are not thread-safe on page 2-66.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-29
ID061811 Non-Confidential

The ARM C and C++ libraries
2.22 Thread safety in the ARM C++ library
The following summarizes thread safety in the C++ library:

• The function std::set_new_handler() is not thread-safe. This means that some forms of
::operator new and ::operator delete are not thread-safe with respect to
std::set_new_handler():
— The default C++ runtime library implementations of the following use malloc() and

free() and are thread-safe with respect to each other. They are not thread-safe with
respect to std::set_new_handler(). You are permitted to replace them:
::operator new(std::size_t)

::operator new[](std::size_t)

::operator new(std::size_t, const std::nothrow_t&)

::operator new[](std::size_t, const std::nothrow_t)

::operator delete(void*)

::operator delete[](void*)

::operator delete(void*, const std::nothrow_t&)

::operator delete[](void*, const std::nothrow_t&)

— The following placement forms are also thread-safe. You are not permitted to
replace them:
::operator new(std::size_t, void*)

::operator new[](std::size_t, void*)

::operator delete(void*, void*)

::operator delete[](void*, void*)

• Construction and destruction of global objects is not thread-safe.

• Construction of local static objects can be made thread-safe if you re-implement the
functions __cxa_guard_acquire(), __cxa_guard_release(), __cxa_guard_abort(),
__cxa_atexit() and __aeabi_atexit() appropriately. For example, with appropriate
re-implementation, the following construction of lsobj can be made thread-safe:
struct T { T(); };
void f() { static T lsobj; }

• Throwing an exception is thread-safe if any user constructors and destructors that get
called are also thread-safe.

• The ARM C++ library uses the ARM C library. To use the ARM C++ library in a
multithreaded environment, you must provide the same functions that you would be
required to provide when using the ARM C library in a multithreaded environment.

2.22.1 See also

Tasks
• Using the ARM C library in a multithreaded environment on page 2-27.

Concepts
• Management of locks in multithreaded applications on page 2-24
• Thread safety in the ARM C library on page 2-29.

Other information
• __cxa_*, __aeabi_* functions, C++ ABI for the ARM® Architecture,

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0041-/index.html
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-30
ID061811 Non-Confidential

The ARM C and C++ libraries
• Exception Handling ABI for the ARM® Architecture,
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0038-/index.html
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-31
ID061811 Non-Confidential

The ARM C and C++ libraries
2.23 The floating-point status word in a multithreaded environment
Applicable to variants of the software floating-point libraries that require a status word
(--fpmode=ieee_fixed or --fpmode=ieee_full), the floating-point status word is safe to use in a
multithreaded environment, even with software floating-point. A status word for each thread is
stored in its own __user_perthread_libspace block.

Note
 In a hardware floating-point environment, the floating-point status word is stored in a Vector
Floating-Point (VFP) register. In this case, your thread-switching mechanism must keep a
separate copy of this register for each thread.

2.23.1 See also

Concepts
• Thread safety in the ARM C library on page 2-29.

Reference
• --fpmode=model on page 3-42.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-32
ID061811 Non-Confidential

The ARM C and C++ libraries
2.24 Using the C library with an application
You can use the C and C ++ libraries with an application in the following ways:

• Build a semihosting application that can be debugged in a semihosted environment such
as with RVI.

• Build a non-hosted application that, for example, can be embedded into ROM.

• Build an application that does not use main() and does not initialize the library. This
application has restricted library functionality, unless you re-implement some functions.

2.24.1 See also

Tasks
• Using the C and C++ libraries with an application in a semihosting environment on

page 2-34
• Using the libraries in a nonsemihosting environment on page 2-36
• Building an application without the C library on page 2-41.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-33
ID061811 Non-Confidential

The ARM C and C++ libraries
2.25 Using the C and C++ libraries with an application in a semihosting environment
If you are developing an application to run in a semihosted environment for debugging, you
must have an execution environment that supports ARM or Thumb semihosting, and has
sufficient memory.

The execution environment can be provided by either:

• using the standard semihosting functionality that is present by default in, for example,
RVI

• implementing your own handler for the semihosting calls.

It is not necessary to write any new functions or include files if you are using the default
semihosting functionality of the C and C++ libraries.

The ARM debug agents support semihosting, but the memory map assumed by the C library
might require tailoring to match the hardware being debugged.

2.25.1 See also

Concepts
• Using $Sub$$ to mix semihosted and nonsemihosted I/O functionality on page 2-35.

Reference
• Direct semihosting C library function dependencies on page 2-38.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-34
ID061811 Non-Confidential

The ARM C and C++ libraries
2.26 Using $Sub$$ to mix semihosted and nonsemihosted I/O functionality
You can use $Sub$$ to provide a mixture of semihosted and nonsemihosted functionality. For
example, given an implementation of fputc() that writes directly to a UART, and a semihosted
implementation of fputc(), you can provide both of these depending on the nature of the FILE *
pointer passed into the function.

Example 2-1 Using $Sub$$ to mix semihosting and nonsemihosting I/O functionality

int $Super$$fputc(int c, FILE *fp);
int $Sub$$fputc(int c, FILE *fp)
{

if (fp == (FILE *)MAGIC_NUM) // where MAGIC_NUM is a special value that
{ // is different to all normal FILE * pointer

// values.
write_to_UART(c);
return c;

}
else
{

return $Super$$fputc(c, fp);
}

}

2.26.1 See also

Tasks
• Using the libraries in a nonsemihosting environment on page 2-36.

Concepts
• Using the C and C++ libraries with an application in a semihosting environment on

page 2-34
• Using the libraries in a nonsemihosting environment on page 2-36
Using the Linker:
• Using $Super$$ and $Sub$$ to patch symbol definitions on page 7-28.

Other information
• ELF for the ARM® Architecture,

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0044c/IHI0044C_aaelf.pdf
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-35
ID061811 Non-Confidential

The ARM C and C++ libraries
2.27 Using the libraries in a nonsemihosting environment
Some C library functions use semihosting. If you do not want to use semihosting, either:

• Remove all calls to semihosting functions.

• Re-implement the lower-level functions, for example, fputc(). You are not required to
re-implement all semihosting functions. You must, however, re-implement the functions
you are using in your application.
(You must re-implement functions that the C library uses to isolate itself from target
dependencies. For example, if you use printf() you must re-implement fputc(). If you do
not use the higher-level input/output functions like printf(), you do not have to
re-implement the lower-level functions like fputc().)

• Implement a handler for all of the semihosting calls to be handled in your own specific
way. One such example is for the handler to intercept the calls, redirecting them to your
own nonsemihosted, that is, target-specific, functions.

To guarantee that no functions using semihosting are included in your application, use either:
• IMPORT __use_no_semihosting from assembly language
• #pragma import(__use_no_semihosting) from C.

Note
 IMPORT __use_no_semihosting is only required to be added to a single assembly source file.
Similarly, #pragma import(__use_no_semihosting) is only required to be added to a single C
source file. It is unnecessary to add these inserts to every single source file.

If you include a library function that uses semihosting and also reference __use_no_semihosting,
the library detects the conflicting symbols and the linker reports an error. To determine which
objects are using semihosting:
1. link with --verbose --list=out.txt
2. search the output for the symbol
3. determine what object referenced it.

There are no target-dependent functions in the C++ library, although some C++ functions use
underlying C library functions that are target-dependent.

2.27.1 See also

Concepts
• Mandatory linkage with the C library on page 2-5.

Reference
• Direct semihosting C library function dependencies on page 2-38.
Linker Reference:
• --list=file on page 2-77
• --verbose on page 2-142.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-36
ID061811 Non-Confidential

The ARM C and C++ libraries
2.28 C++ exceptions in a non-semihosting environment
The default C++ std::terminate() handler is required by the C++ Standard to call abort(). The
default C library implementation of abort() uses functions that require semihosting support.
Therefore, if you use exceptions in a non-semihosting environment, you must provide an
alternative implementation of abort().

2.28.1 See also

Tasks
• Using the libraries in a nonsemihosting environment on page 2-36.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-37
ID061811 Non-Confidential

The ARM C and C++ libraries
2.29 Direct semihosting C library function dependencies
Table 2-2 shows the functions that depend directly on semihosting.

2.29.1 See also

Tasks
• Using the libraries in a nonsemihosting environment on page 2-36.

Concepts
• Modification of C library functions for error signaling, error handling, and program exit

on page 2-80
• Tailoring input/output functions in the C and C++ libraries on page 2-92
• Initialization of the execution environment and execution of the application on page 2-55.

Reference
• Indirect semihosting C library function dependencies on page 2-39
• Tailoring non-input/output C library functions on page 2-104.
ARM® C and C++ Libraries and Floating-Point Support Reference:
• __user_setup_stackheap() on page 2-60.

Table 2-2 Direct semihosting dependencies

Function Description

__user_setup_stackheap() Sets up and returns the locations of the stack and the heap.
You might have to re-implement this function if you are
using a scatter file at the link stage.

_sys_exit()

_ttywrch()

Error signaling, error handling, and program exit.

_sys_command_string()

_sys_close()

_sys_iserror()

_sys_istty()

_sys_flen()

_sys_open()

_sys_read()

_sys_seek()

_sys_write()

_sys_tmpnam()

Tailoring input/output functions in the C and C++
libraries.

clock()

_clock_init()

remove()

rename()

system()

time()

Tailoring other C library functions.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-38
ID061811 Non-Confidential

The ARM C and C++ libraries
2.30 Indirect semihosting C library function dependencies
Table 2-3 shows functions that depend indirectly on one or more of the functions listed in
Table 2-2 on page 2-38. You can use Table 2-3 as an initial guide, but it is recommended that
you use either of the following to identify any other functions with indirect or direct
dependencies on semihosting at link time:
• #pragma import(__use_no_semihosting) in C source code
• IMPORT __use_no_semihosting in assembly language source code.

2.30.1 See also

Tasks
• Using the libraries in a nonsemihosting environment on page 2-36
• Avoiding the heap and heap-using library functions supplied by ARM on page 2-82.

Concepts
• Modification of C library functions for error signaling, error handling, and program exit

on page 2-80
• Tailoring input/output functions in the C and C++ libraries on page 2-92.

Reference
• Tailoring non-input/output C library functions on page 2-104.

Table 2-3 Indirect semihosting dependencies

Function Usage

__raise() Catching, handling, or diagnosing C library exceptions,
without C signal support. (Tailoring error signaling, error
handling, and program exit.)

__default_signal_handler() Catching, handling, or diagnosing C library exceptions,
with C signal support. (Tailoring error signaling, error
handling, and program exit.)

__Heap_Initialize() Choosing or redefining memory allocation. Avoiding the
heap and heap-using C library functions supplied by ARM.

ferror(), fputc(), __stdout Re-implementing the printf family. (Tailoring input/output
functions in the C and C++ libraries.).

__backspace(), fgetc(), __stdin Re-implementing the scanf family. (Tailoring input/output
functions in the C and C++ libraries.).

fwrite(), fputs(),

puts(),fread(), fgets(),

gets(), ferror()

Re-implementing the stream output family. (Tailoring
input/output functions in the C and C++ libraries.).
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-39
ID061811 Non-Confidential

The ARM C and C++ libraries
2.31 C library API definitions for targeting a different environment
In addition to the semihosting functions listed in Table 2-2 on page 2-38 and Table 2-3 on
page 2-39, Table 2-4 shows functions and files that might be useful when building for a different
environment.

If you are re-implementing a function that exists in the standard ARM library, the linker uses an
object or library from your project rather than the standard ARM library.

Caution
 Do not replace or delete libraries supplied by ARM. You must not overwrite the supplied library
files. Place your re-implemented functions in separate object files or libraries instead.

2.31.1 See also

Tasks
• Using the libraries in a nonsemihosting environment on page 2-36.

Concepts
• Assembler macros that tailor locale functions in the C library on page 2-63.

Reference
Linker Reference:
• --list=file on page 2-77
• --verbose on page 2-142.

Table 2-4 Published API definitions

File or function Description

__main()

__rt_entry()
Initializes the runtime environment and executes the user
application.

__rt_lib_init(),

__rt_exit(),

__rt_lib_shutdown()

Initializes or finalizes the runtime library.

LC_CTYPE locale Defines the character properties for the local alphabet.

rt_sys.h A C header file describing all the functions whose default
(semihosted) implementations use semihosting calls.

rt_heap.h A C header file describing the storage management abstract
data type.

rt_locale.h A C header file describing the five locale category filing
systems, and defining some macros that are useful for
describing the contents of locale categories.

rt_misc.h A C header file describing miscellaneous unrelated public
interfaces to the C library.

rt_memory.s An empty, but commented, prototype implementation of the
memory model.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-40
ID061811 Non-Confidential

The ARM C and C++ libraries
2.32 Building an application without the C library
Creating an application that has a main() function causes the C library initialization functions to
be included as part of __rt_lib_init.

If your application does not have a main() function, the C library is not initialized and the
following functions are not available in your application:
• low-level stdio functions that have the prefix _sys_
• signal-handling functions, signal() and raise() in signal.h
• other functions, such as atexit().

Table 2-5 shows header files, and the functions they contain, that are available with an
uninitialized library. Some otherwise unavailable functions can be used if the library functions
they depend on are re-implemented.

Table 2-5 Standalone C library functions

Function Description

alloca.h Functions in this file work without any library initialization or function
re-implementation. You must know how to build an application with the C
library to use this header file.

assert.h Functions listed in this file require high-level stdio, __rt_raise(), and
_sys_exit(). You must be familiar with tailoring error signaling, error
handling, and program exit to use this header file.

ctype.h Functions listed in this file require the locale functions.

errno.h Functions in this file work without the requirement for any library
initialization or function re-implementation.

fenv.h Functions in this file work without the requirement for any library
initialization and only require the re-implementation of __rt_raise().

float.h This file does not contain any code. The definitions in the file do not require
library initialization or function re-implementation.

inttypes.h Functions listed in this file require the locale functions.

limits.h Functions in this file work without the requirement for any library
initialization or function re-implementation.

locale.h Call setlocale() before calling any function that uses locale functions. For
example:
setlocale(LC_ALL, "C")

See the contents of locale.h for more information on the following functions
and data structures:
• setlocale() selects the appropriate locale as specified by the category

and locale arguments.
• lconv is the structure used by locale functions for formatting numeric

quantities according to the rules of the current locale.
• localeconv() creates an lconv structure and returns a pointer to it.
• _get_lconv() fills the lconv structure pointed to by the parameter. This

ISO extension removes the requirement for static data within the
library.

locale.h also contains constant declarations used with locale functions.

math.h For functions in this file to work, you must first call _fp_init() and
re-implement __rt_raise().
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-41
ID061811 Non-Confidential

The ARM C and C++ libraries
setjmp.h Functions in this file work without any library initialization or function
re-implementation.

signal.h Functions listed in this file are not available without library initialization.
You must know how to build an application with the C library to use this
header file.
__rt_raise() can be re-implemented for error and exit handling. You must
be familiar with tailoring error signaling, error handling, and program exit.

stdarg.h Functions listed in this file work without any library initialization or function
re-implementation.

stddef.h This file does not contain any code. The definitions in the file do not require
library initialization or function re-implementation.

stdint.h This file does not contain any code. The definitions in the file do not require
library initialization or function re-implementation.

stdio.h The following dependencies or limitations apply to these functions:
• The high-level functions such as printf(), scanf(), puts(), fgets(),

fread(), fwrite(), and perror() depend on lower-level stdio functions
fgetc(), fputc(), and __backspace(). You must re-implement these
lower-level functions when using the standalone C library.
However, you cannot re-implement the _sys_ prefixed functions (for
example, _sys_read()) when using the standalone C library because
they require library initialization.
You must be familiar with tailoring the input/output functions in the
C and C++ libraries.

• The printf() and scanf() family of functions require locale.
• The remove() and rename() functions are system-specific and

probably not usable in your application.

stdlib.h Most functions in this file work without any library initialization or function
re-implementation. The following functions depend on other functions being
instantiated correctly:
• ato*() requires locale
• strto*() requires locale
• malloc(), calloc(), realloc(), and free() require heap functions
• atexit() is not available when building an application without the C

library.

string.h Functions in this file work without any library initialization, with the
exception of strcoll() and strxfrm(), that require locale.

Table 2-5 Standalone C library functions (continued)

Function Description
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-42
ID061811 Non-Confidential

The ARM C and C++ libraries
2.32.1 See also

Tasks
• Creating an application as bare machine C without the C library on page 2-44
• Assembler macros that tailor locale functions in the C library on page 2-63
• Tailoring input/output functions in the C and C++ libraries on page 2-92.

Concepts
• Modification of C library functions for error signaling, error handling, and program exit

on page 2-80.

time.h mktime() and localtime() can be used immediately
time() and clock() are system-specific and are probably not usable unless
re-implemented
asctime(), ctime(), and strftime() require locale.

wchar.h Wide character library functions added to ISO C by Normative Addendum 1
in 1994.
• Support for wide-character output and format strings, swprintf(),

vswprintf(), swscanf(), and vswscanf()
• All the conversion functions (for example, btowc, wctob, mbrtowc, and

wcrtomb) require locale
• wcscoll() and wcsxfrm() require locale.

wctype.h Wide character library functions added to ISO C by Normative Addendum 1
in 1994. This requires locale.

Table 2-5 Standalone C library functions (continued)

Function Description
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-43
ID061811 Non-Confidential

The ARM C and C++ libraries
2.33 Creating an application as bare machine C without the C library
The following topics refer to creating applications as bare machine C without the library. These
applications do not automatically use the full C runtime environment provided by the C library.
Even though you are creating an application without the library, some functions from the library
that are called implicitly by the compiler must be included. There are also many library
functions that can be made available with only minor re-implementations.
• Integer and floating-point compiler functions and building an application without the C

library on page 2-45
• Bare machine integer C on page 2-46
• Bare machine C with floating-point processing on page 2-47
• Customized C library startup code and access to C library functions on page 2-48
• Program design when exploiting the C library on page 2-49
• Using low-level functions when exploiting the C library on page 2-50
• Using high-level functions when exploiting the C library on page 2-51
• Using malloc() when exploiting the C library on page 2-52.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-44
ID061811 Non-Confidential

The ARM C and C++ libraries
2.34 Integer and floating-point compiler functions and building an application
without the C library

There are several compiler helper functions that the compiler uses to handle operations that do
not have a short machine code equivalent. For example, integer divide uses a function that is
implicitly called by the compiler if there is no divide instruction available in the target
instruction set. (ARMv7-R and ARMv7-M architectures use the instructions SDIV and UDIV in
Thumb state. Other versions of the ARM architecture also use compiler functions that are
implicitly invoked.)

Integer divide, and all the floating-point functions if you use a floating-point mode that involves
throwing exceptions, require __rt_raise() to handle math errors. Re-implementing
__rt_raise() enables all the math functions, and it avoids having to link in all the
signal-handling library code.

2.34.1 See also

Tasks
• Building an application without the C library on page 2-41.

Concepts
Compiler generated and library-resident helper functions on page 2-119.

Other information
• Application Binary Interface (ABI) for the ARM Architecture,

http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.abi
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-45
ID061811 Non-Confidential

The ARM C and C++ libraries
2.35 Bare machine integer C
If you are writing a program in C that does not use the library and is to run without any
environment initialization, you must:

• Re-implement __rt_raise() if you are using the heap.

• Not define main(), to avoid linking in the library initialization code.

• Write an assembly language veneer that establishes the register state required to run C.
This veneer must branch to the entry function in your application.

• Provide your own RW/ZI initialization code.

• Ensure that your initialization veneer is executed by, for example, placing it in your reset
handler.

• Build your application using --fpu=none.

When you have met these requirements, link your application normally. The linker uses the
appropriate C library variant to find any required compiler functions that are implicitly called.

Many library facilities require __user_libspace for static data. Even without the initialization
code activated by having a main() function, __user_libspace is created automatically and uses
96 bytes in the ZI segment.

2.35.1 See also

Tasks
• Building an application without the C library on page 2-41.

Concepts
• Bare machine C with floating-point processing on page 2-47
• Use of the __user_libspace static data area by the C libraries on page 2-21.

Reference
• --fpu=name on page 3-44.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-46
ID061811 Non-Confidential

The ARM C and C++ libraries
2.36 Bare machine C with floating-point processing
If you want to use floating-point processing in an application without the C library you must:

• Re-implement __rt_raise() if you are using the heap.

• Not define main(), to avoid linking in the library initialization code.

• Write an assembly language veneer that establishes the register state required to run C.
This veneer must branch to the entry function in your application. The register state
required to run C primarily comprises the stack pointer. It also consists of sb, the stack
base, if Read/Write Position-Independent (RWPI) code applies.

• Provide your own RW/ZI initialization code.

• Ensure that your initialization veneer is executed by, for example, placing it in your reset
handler.

• Use the appropriate FPU option when you build your application.

• Call _fp_init() to initialize the floating-point status register before performing any
floating-point operations.

Do not build your application with the --fpu=none option.

If you are using software floating-point support and a floating-point mode that requires a
floating-point status word (--fpmode=ieee_fixed or --fpmode=ieee_full), you can also define the
function __rt_fp_status_addr() to return the address of a writable data word to be used instead
of the floating-point status register. If you rely on the default library definition of
__rt_fp_status_addr(), this word resides in the program data section, unless you define
__user_perthread_libspace() (or in the case of legacy code that does not yet use
__user_perthread_libspace(), __user_libspace()).

2.36.1 See also

Tasks
• Building an application without the C library on page 2-41.

Concepts
• Bare machine integer C on page 2-46
• Use of static data in the C libraries on page 2-19
• Use of the __user_libspace static data area by the C libraries on page 2-21.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-47
ID061811 Non-Confidential

The ARM C and C++ libraries
2.37 Customized C library startup code and access to C library functions
When building an application without the C library, if you create an application that includes a
main() function, the linker automatically includes the initialization code necessary for the
execution environment. There are situations where this is not desirable or possible. For example,
a system running a Real-Time Operating System (RTOS) might have its execution environment
configured by the RTOS startup code.

You can create an application that consists of customized startup code and still use many of the
library functions. You must either:
• avoid functions that require initialization
• provide the initialization and low-level support functions.

2.37.1 See also

Tasks
• Building an application without the C library on page 2-41
• Using the C library with an application on page 2-33.

Concepts
• Building an application without the C library on page 2-41
• Use of the __user_libspace static data area by the C libraries on page 2-21
• Bare machine integer C on page 2-46
• Tailoring input/output functions in the C and C++ libraries on page 2-92.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-48
ID061811 Non-Confidential

The ARM C and C++ libraries
2.38 Program design when exploiting the C library
The functions you must re-implement depend on how much of the library functionality you
require:

• If you want only the compiler support functions for division, structure copy, and
floating-point arithmetic, you must provide __rt_raise(). This also enables very simple
library functions such as those in errno.h, setjmp.h, and most of string.h to work.

• If you call setlocale() explicitly, locale-dependent functions are activated. This enables
you to use the atoi family, sprintf(), sscanf(), and the functions in ctype.h.

• Programs that use floating-point must call _fp_init(). If you select software
floating-point in --fpmode=ieee_fixed or --fpmode=ieee_full mode, the program must
also provide __rt_fp_status_addr().

• Implementing high-level input/output support is necessary for functions that use
fprintf() or fputs(). The high-level output functions depend on fputc() and ferror().
The high-level input functions depend on fgetc() and __backspace().

Implementing these functions and the heap enables you to use almost the entire library.

2.38.1 See also

Tasks
• Customized C library startup code and access to C library functions on page 2-48.

Concepts
• Use of the __user_libspace static data area by the C libraries on page 2-21.

Reference
ARM C and C++ Libraries and Floating-Point Support Reference:
• __rt_fp_status_addr() on page 2-31
• __rt_raise() on page 2-35.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-49
ID061811 Non-Confidential

The ARM C and C++ libraries
2.39 Using low-level functions when exploiting the C library
If you are using the libraries in an application that does not have a main() function, you must
re-implement some functions in the library.

Caution
 __rt_raise() is essential if you are using the heap.

Note
 If rand() is called, srand() must be called first. This is done automatically during library
initialization but not when you avoid the library initialization.

2.39.1 See also

Tasks
• Customized C library startup code and access to C library functions on page 2-48.

Reference
• Building an application without the C library on page 2-41.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-50
ID061811 Non-Confidential

The ARM C and C++ libraries
2.40 Using high-level functions when exploiting the C library
High-level I/O functions can be used if the low-level functions are re-implemented. High-level
I/O functions are those such as fprintf(), printf(), scanf(), puts(), fgets(), fread(), fwrite(),
and perror(). Low-level functions are those such as fputc(), fgetc(), and __backspace(). Most
of the formatted output functions also require a call to setlocale().

Anything that uses locale must not be called before first calling setlocale().setlocale() selects
the appropriate locale. For example, setlocale(LC_ALL, "C"), where LC_ALL means that the call
to setlocale() affects all locale categories, and "C" specifies the minimal environment for C
translation. Locale-using functions include the functions in ctype.h and locale.h, the printf()
family, the scanf() family, ato*, strto*, strcoll/strxfrm, and most of time.h.

2.40.1 See also

Tasks
• Tailoring input/output functions in the C and C++ libraries on page 2-92.

Concepts
• Customized C library startup code and access to C library functions on page 2-48
• Building an application without the C library on page 2-41.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-51
ID061811 Non-Confidential

The ARM C and C++ libraries
2.41 Using malloc() when exploiting the C library
If heap support is required for bare machine C, _init_alloc() must be called first to supply
initial heap bounds, and __rt_heap_extend() must be provided even if it only returns failure.
Without __rt_heap_extend(), certain library functionality is included that causes problems when
you are writing bare machine C.

Prototypes for both _init_alloc() and __rt_heap_extend() are in rt_heap.h.

2.41.1 See also

Reference
• Customized C library startup code and access to C library functions on page 2-48.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-52
ID061811 Non-Confidential

The ARM C and C++ libraries
2.42 Tailoring the C library to a new execution environment
Tailoring the C library to a new execution environment involves re-implementing functions to
produce an application for a new execution environment, for example, embedded in ROM or
used with an RTOS.

Symbols that start with a single or double underscore name functions that are used as part of the
low-level implementation. You can re-implement some of these functions. Additional
information on these library functions is available in the rt_heap.h, rt_locale.h, rt_misc.h, and
rt_sys.h include files and the rt_memory.s assembler file.

2.42.1 See also

Concepts
• How C and C++ programs use the library functions on page 2-54
• Initialization of the execution environment and execution of the application on page 2-55
• C++ initialization, construction and destruction on page 2-56
• Legacy support for C$$pi_ctorvec instead of .init_array on page 2-58
• Exceptions system initialization on page 2-59
• Emergency buffer memory for exceptions on page 2-60
• Library functions called from main() on page 2-61
• Program exit and the assert macro on page 2-62.

Reference
C and C++ Libraries and Floating-Point Support Reference:
• __rt_entry on page 2-28
• __rt_exit() on page 2-30
• __rt_lib_init() on page 2-33
• __rt_lib_shutdown() on page 2-34.

Other information
The following specifications include descriptions of functions that have the prefix __cxa or
__aeabi:
• C Library ABI for the ARM Architecture
• Exception Handling ABI for the ARM Architecture
• C++ ABI for the ARM Architecture.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-53
ID061811 Non-Confidential

The ARM C and C++ libraries
2.43 How C and C++ programs use the library functions
The following topics describe specific functions used to initialize the execution environment
and application, library exit functions, and target-dependent library functions that the
application might call during its execution:
• Initialization of the execution environment and execution of the application on page 2-55
• C++ initialization, construction and destruction on page 2-56
• Legacy support for C$$pi_ctorvec instead of .init_array on page 2-58
• Exceptions system initialization on page 2-59
• Emergency buffer memory for exceptions on page 2-60
• Library functions called from main() on page 2-61
• Program exit and the assert macro on page 2-62
• Program exit and the assert macro on page 2-62.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-54
ID061811 Non-Confidential

The ARM C and C++ libraries
2.44 Initialization of the execution environment and execution of the application
The entry point of a program is at __main in the C library where library code:

1. Copies non-root (RO and RW) execution regions from their load addresses to their
execution addresses. Also, if any data sections are compressed, they are decompressed
from the load address to the execution address.

2. Zeroes ZI regions.

3. Branches to __rt_entry.

If you do not want the library to perform these actions, you can define your own __main that
branches to __rt_entry. For example:

IMPORT __rt_entry
EXPORT __main
ENTRY

__main
B __rt_entry
END

The library function __rt_entry() runs the program as follows:

1. Sets up the stack and the heap by one of a number of means that include calling
__user_setup_stackheap(), calling __rt_stackheap_init(), or loading the absolute
addresses of scatter-loaded regions.

2. Calls __rt_lib_init() to initialize referenced library functions, initialize the locale and, if
necessary, set up argc and argv for main().
For C++, calls the constructors for any top-level objects by way of
__cpp_initialize__aeabi_.

3. Calls main(), the user-level root of the application.
From main(), your program might call, among other things, library functions.

4. Calls exit() with the value returned by main().

2.44.1 See also

Concepts
• C++ initialization, construction and destruction on page 2-56
• Library functions called from main() on page 2-61
• How C and C++ programs use the library functions on page 2-54
• Tailoring the C library to a new execution environment on page 2-53.

Reference
ARM® C and C++ Libraries and Support Reference:
• __rt_entry on page 2-28
• __rt_lib_init() on page 2-33.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-55
ID061811 Non-Confidential

The ARM C and C++ libraries
2.45 C++ initialization, construction and destruction
The C++ Standard places certain requirements on the construction and destruction of objects
with static storage duration.

The ARM C++ compiler uses the .init_array area to achieve this. This is a const data array of
self-relative pointers to functions. For example, you might have the following C++ translation
unit, contained in the file test.cpp:

struct T
{

T();
~T();

} t;
int f()
{

return 4;
}
int i = f();

This translates into the following pseudocode:

 AREA ||.text||, CODE, READONLY
 int f()

{
return 4;

}
 static void __sti___8_test_cpp

{
 // construct 't' and register its destruction
 __aeabi_atexit(T::T(&t), &T::~T, &__dso_handle);
 i = f();
 }
 AREA ||.init_array||, DATA, READONLY
 DCD __sti___8_test_cpp - {PC}
 AREA ||.data||, DATA
 t % 4
 i % 4

This pseudocode is for illustration only. To see the code that is generated, compile the C++
source code with armcc -c --cpp -S.

The linker collects each .init_array from the various translation units together. It is important
that the .init_array is accumulated in the same order.

The library routine __cpp_initialize__aeabi_ is called from the C library startup code,
__rt_lib_init, before main. __cpp_initialize__aeabi_ walks through the .init_array calling
each function in turn. On exit, __rt_lib_shutdown calls __cxa_finalize.

Usually, there is at most one function for T::T(), mangled name _ZN1TC1Ev, one function for
T::~T(), mangled name _ZN1TD1Ev, one __sti__ function, and four bytes of .init_array for each
translation unit. The mangled name for the function f() is _Z1fv. There is no way to determine
the initialization order between translation units.

Function-local static objects with destructors are also handled using __aeabi_atexit.

.init_array sections must be placed contiguously within the same region for their base and limit
symbols to be accessible. If they are not, the linker generates an error.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-56
ID061811 Non-Confidential

The ARM C and C++ libraries
2.45.1 See also

Concepts
• Legacy support for C$$pi_ctorvec instead of .init_array on page 2-58
• How C and C++ programs use the library functions on page 2-54
• Tailoring the C library to a new execution environment on page 2-53.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-57
ID061811 Non-Confidential

The ARM C and C++ libraries
2.46 Legacy support for C$$pi_ctorvec instead of .init_array
In RVCT v2.0 and earlier, C$$pi_ctorvec is used instead of .init_array. Objects with
C$$pi_ctorvec are still supported. Therefore, if you have legacy objects, your scatter file is
expected to contain something similar to:

LOAD_ROM 0x0000000
{
 EXEC_ROM 0x0000000
 {
 your_object.o(+RO)
 * (.init_array)
 * (C$$pi_ctorvec) ; backwards compatibility
 ...
 }
 RAM 0x0100000
 {
 * (+RW,+ZI)
 }
}

2.46.1 See also

Concepts
• C++ initialization, construction and destruction on page 2-56
• How C and C++ programs use the library functions on page 2-54
• Tailoring the C library to a new execution environment on page 2-53.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-58
ID061811 Non-Confidential

The ARM C and C++ libraries
2.47 Exceptions system initialization
The exceptions system can be initialized either on demand (that is, when first used), or before
main is entered. Initialization on demand has the advantage of not allocating heap memory
unless the exceptions system is used, but has the disadvantage that it becomes impossible to
throw any exception (such as std::bad_alloc) if the heap is exhausted at the time of first use.

The default behavior is to initialize on demand. To initialize the exceptions system before main
is entered, include the following function in the link:

extern "C" void __cxa_get_globals(void);
extern "C" void __ARM_exceptions_init(void)
{
 __cxa_get_globals();
}

Although you can place the call to __cxa_get_globals directly in your code, placing it in
__ARM_exceptions_init ensures that it is called as early as possible. That is, before any global
variables are initialized and before main is entered.

__ARM_exceptions_init is weakly referenced by the library initialization mechanism, and is
called if it is present as part of __rt_lib_init.

Note
 The exception system is initialized by calls to various library functions, for example,
std::set_terminate(). Therefore, you might not have to initialize before the entry to main.

2.47.1 See also

Concepts
• How C and C++ programs use the library functions on page 2-54
• Tailoring the C library to a new execution environment on page 2-53.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-59
ID061811 Non-Confidential

The ARM C and C++ libraries
2.48 Emergency buffer memory for exceptions
You can choose whether or not to allocate emergency memory that is to be used for throwing a
std::bad_alloc exception when the heap is exhausted.

To allocate emergency memory, you must include the symbol
__ARM_exceptions_buffer_required in the link. A call is then made to
__ARM_exceptions_buffer_init() as part of the exceptions system initialization. The symbol is
not included by default.

The following routines manage the exceptions emergency buffer:

extern "C" void *__ARM_exceptions_buffer_init()
Called once during runtime to allocate the emergency buffer memory. It returns a
pointer to the emergency buffer memory, or NULL if no memory is allocated.

extern "C" void *__ARM_exceptions_buffer_allocate(void *buffer, size_t size)
Called when an exception is about to be thrown, but there is not enough heap
memory available to allocate the exceptions object. buffer is the value previously
returned by __ARM_exceptions_buffer_init(), or NULL if that routine was not
called. __ARM_exceptions_buffer_allocate() returns a pointer to size bytes of
memory that is aligned on an eight-byte boundary, or NULL if the allocation is not
possible.

extern "C" void *__ARM_exceptions_buffer_free(void *buffer, void *addr)
Called to free memory possibly allocated by
__ARM_exceptions_buffer_allocate(). buffer is the value previously returned by
__ARM_exceptions_buffer_init(), or NULL if that routine was not called. The
routine determines whether the passed address has been allocated from the
emergency memory buffer, and if so, frees it appropriately, then returns a
non-NULL value. If the memory at addr was not allocated by
__ARM_exceptions_buffer_allocate(), the routine must return NULL.

Default definitions of these routines are present in the image, but you can supply your own
versions to override the defaults supplied by the library. The default routines reserve enough
space for a single std::bad_alloc exceptions object. If you do not require an emergency buffer,
it is safe to redefine all these routines to return only NULL.

2.48.1 See also

Concepts
• How C and C++ programs use the library functions on page 2-54
• Tailoring the C library to a new execution environment on page 2-53.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-60
ID061811 Non-Confidential

The ARM C and C++ libraries
2.49 Library functions called from main()
The function main() is the user-level root of the application. It requires the execution
environment to be initialized and input/output functions to be capable of being called. While in
main() the program might perform one of the following actions that calls user-customizable
functions in the C library:

• Extend the stack or heap.

• Call library functions that require a callout to a user-defined function, for example
__rt_fp_status_addr() or clock().

• Call library functions that use locale or CTYPE.

• Perform floating-point calculations that require the floating-point unit or floating-point
library.

• Input or output directly through low-level functions, for example putc(), or indirectly
through high-level input/output functions and input/output support functions, for
example, fprintf() or sys_open().

• Raise an error or other signal, for example ferror.

2.49.1 See also

Tasks
• Tailoring the C library to a new execution environment on page 2-53
• Tailoring input/output functions in the C and C++ libraries on page 2-92
• Tailoring non-input/output C library functions on page 2-104.

Concepts
• Assembler macros that tailor locale functions in the C library on page 2-63
• Modification of C library functions for error signaling, error handling, and program exit

on page 2-80.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-61
ID061811 Non-Confidential

The ARM C and C++ libraries
2.50 Program exit and the assert macro
A program can exit normally at the end of main() or it can exit prematurely because of an error.

The behavior of the assert macro depends on the conditions in operation at the most recent
occurrence of #include <assert.h>:

1. If the NDEBUG macro is defined (on the command line or as part of a source file), the assert
macro has no effect.

2. If the NDEBUG macro is not defined, the assert expression (the expression given to the
assert macro) is evaluated. If the result is TRUE, that is != 0, the assert macro has no more
effect.

3. If the assert expression evaluates to FALSE, the assert macro calls the __aeabi_assert()
function if any of the following are true:
• you are compiling with --strict
• you are using -O0 or -O1
• __ASSERT_MSG is defined
• _AEABI_PORTABILITY_LEVEL is defined and not 0.

4. If the assert expression evaluates to FALSE and the conditions specified in point 3 do not
apply, the assert macro calls abort(). Then:
a. abort() calls __rt_raise().
b. If __rt_raise() returns, abort() tries to finalize the library.

If you are creating an application that does not use the library, __aeabi_assert() works if you
re-implement abort() and the stdio functions.

Another solution for retargeting is to re-implement the __aeabi_assert() function itself. The
function prototype is:

void __aeabi_assert(const char *expr, const char *file, int line);

where:
• expr points to the string representation of the expression that was not TRUE
• file and line identify the source location of the assertion.

The behavior for __aeabi_assert() supplied in the ARM C library is to print a message on
stderr and call abort().

You can restore the default behavior for __aeabi_assert() at higher optimization levels by
defining __ASSERT_MSG.

2.50.1 See also

Concepts
• Tailoring the C library to a new execution environment on page 2-53.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-62
ID061811 Non-Confidential

The ARM C and C++ libraries
2.51 Assembler macros that tailor locale functions in the C library
Applications use locales when they display or process data that depends on the local language
or region, for example, character set, monetary symbols, decimal point, time, and date.
Locale-related functions are declared in the include file, rt_locale.

The following topics describe assembler macros that tailor locale functions:

Concepts
• Link time selection of the locale subsystem in the C library on page 2-64
• Runtime selection of the locale subsystem in the C library on page 2-67
• Definition of locale data blocks in the C library on page 2-68
• LC_CTYPE data block on page 2-71
• LC_COLLATE data block on page 2-74
• LC_MONETARY data block on page 2-76
• LC_NUMERIC data block on page 2-77
• LC_TIME data block on page 2-78.

Reference
ARM® C and C++ Libraries and Floating-Point Support Reference:
• lconv structure on page 2-17
• _get_lconv() on page 2-12
• localeconv() on page 2-19
• setlocale() on page 2-37
• _findlocale() on page 2-10.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-63
ID061811 Non-Confidential

The ARM C and C++ libraries
2.52 Link time selection of the locale subsystem in the C library
The locale subsystem of the C library can be selected at link time or can be extended to be
selectable at runtime. The following list describes the use of locale categories by the library:

• The default implementation of each locale category is for the C locale. The library also
provides an alternative, ISO8859-1 (Latin-1 alphabet) implementation of each locale
category that you can select at link time.

• Both the C and ISO8859-1 default implementations usually provide one locale for each
category to select at runtime.

• You can replace each locale category individually.

• You can include as many locales in each category as you choose and you can name your
locales as you choose.

• Each locale category uses one word in the private static data of the library.

• The locale category data is read-only and position independent.

• scanf() forces the inclusion of the LC_CTYPE locale category, but in either of the default
locales this adds only 260 bytes of read-only data to several kilobytes of code.

2.52.1 See also

Concepts
• Assembler macros that tailor locale functions in the C library on page 2-63
• ISO8859-1 implementation on page 2-65
• Shift-JIS and UTF-8 implementation on page 2-66.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-64
ID061811 Non-Confidential

The ARM C and C++ libraries
2.53 ISO8859-1 implementation
Table 2-6 shows the ISO8859-1 (Latin-1 alphabet) locale categories.

There is no ISO8859-1 version of the LC_TIME category.

2.53.1 See also

Concepts
• Link time selection of the locale subsystem in the C library on page 2-64.

Table 2-6 Default ISO8859-1 locales

Symbol Description

__use_iso8859_ctype Selects the ISO8859-1 (Latin-1) classification of characters.
This is essentially 7-bit ASCII, except that the character codes
160-255 represent a selection of useful European punctuation
characters, letters, and accented letters.

__use_iso8859_collate Selects the strcoll/strxfrm collation table appropriate to the
Latin-1 alphabet. The default C locale does not require a
collation table.

__use_iso8859_monetary Selects the Sterling monetary category using Latin-1 coding.

__use_iso8859_numeric Selects separation of thousands with commas in the printing of
numeric values.

__use_iso8859_locale Selects all the ISO8859-1 selections described in this table.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-65
ID061811 Non-Confidential

The ARM C and C++ libraries
2.54 Shift-JIS and UTF-8 implementation
Table 2-7 shows the Shift-JIS (Japanese characters) or UTF-8 (Unicode characters) locale
categories.

The following list describes the effects of Shift-JIS and UTF-8 encoding:

• The ordinary ctype functions behave correctly on any byte value that is a self-contained
character in Shift-JIS. For example, half-width katakana characters that Shift-JIS encodes
as single bytes between 0xA6 and 0xDF are treated as alphabetic by isalpha().
UTF-8 encoding uses the same set of self-contained characters as the ASCII character set.

• The multibyte conversion functions such as mbrtowc(), mbsrtowcs(), and wcrtomb(), all
convert between wide strings in Unicode and multibyte character strings in Shift-JIS or
UTF-8.

• printf("%ls") converts a Unicode wide string into Shift-JIS or UTF-8 output, and
scanf("%ls") converts Shift-JIS or UTF-8 input into a Unicode wide string.

You can arbitrarily switch between multibyte locales and single-byte locales at runtime if you
include more than one in your application. By default, only one locale at a time is included.

2.54.1 See also

Concepts
• Link time selection of the locale subsystem in the C library on page 2-64.

Table 2-7 Default Shift-JIS and UTF-8 locales

Function Description

__use_sjis_ctype Sets the character set to the Shift-JIS multibyte encoding of
Japanese characters

__use_utf8_ctype Sets the character set to the UTF-8 multibyte encoding of all
Unicode characters
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-66
ID061811 Non-Confidential

The ARM C and C++ libraries
2.55 Runtime selection of the locale subsystem in the C library
The C library function setlocale() selects a locale at runtime for the locale category, or
categories, specified in its arguments. It does this by selecting the requested locale separately in
each locale category. In effect, each locale category is a small filing system containing an entry
for each locale.

C header files describing what must be implemented, and providing some useful support
macros, are given in rt_locale.h and rt_locale.s.

2.55.1 See also

Concepts
• Assembler macros that tailor locale functions in the C library on page 2-63.

Reference
Compiler Reference:
• setlocale() on page 2-37
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-67
ID061811 Non-Confidential

The ARM C and C++ libraries
2.56 Definition of locale data blocks in the C library
The locale data blocks are defined using a set of assembly language macros provided in
rt_locale.s. Therefore, the recommended way to define locale blocks is by writing an assembly
language source file. The ARM Compiler toolchain provides a set of macros for each type of
locale data block, for example LC_CTYPE, LC_COLLATE, LC_MONETARY, LC_NUMERIC, and LC_TIME. You
define each locale block in the same way with a _begin macro, some data macros, and an _end
macro.

2.56.1 Beginning the definition of a locale block

To begin defining your locale block, call the _begin macro. This macro takes two arguments, a
prefix and the textual name, as follows:

LC_TYPE_begin prefix, name

where:
TYPE is one of the following:

• CTYPE

• COLLATE

• MONETARY

• NUMERIC

• TIME.
prefix is the prefix for the assembler symbols defined within the locale data
name is the textual name for the locale data.

2.56.2 Specifying the data for a locale block

To specify the data for your locale block, call the macros for that locale type in the order
specified for that particular locale type. The syntax is as follows:

LC_TYPE_function

Where:
TYPE is one of the following:

• CTYPE

• COLLATE

• MONETARY

• NUMERIC

• TIME.
function is a specific function, table(), full_wctype(), or multibyte(), related to your

locale data.

When specifying locale data, you must call the macro repeatedly for each respective function.

2.56.3 Ending the definition of a locale block

To complete the definition of your locale data block, you call the _end macro. This macro takes
no arguments, as follows:

LC_TYPE_end

where:
TYPE is one of the following:

• CTYPE
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-68
ID061811 Non-Confidential

The ARM C and C++ libraries
• COLLATE

• MONETARY

• NUMERIC

• TIME.

2.56.4 Example of a fixed locale block

To write a fixed function that always returns the same locale, you can use the _start symbol
name defined by the macros. The following shows how this is implemented for the CTYPE locale:

Example 2-2 Fixed locale

 GET rt_locale.s
AREA my_locales, DATA, READONLY
LC_CTYPE_begin my_ctype_locale, "MyLocale"
... ; include other LC_CTYPE_xxx macros here
LC_CTYPE_end
AREA my_locale_func, CODE, READONLY

_get_lc_ctype FUNCTION
LDR r0, =my_ctype_locale_start
BX lr
ENDFUNC

2.56.5 Example of multiple contiguous locale blocks

Contiguous locale blocks suitable for passing to the _findlocale() function must be declared in
sequence. You must call the macro LC_index_end to end the sequence of locale blocks. The
following shows how this is implemented for the CTYPE locale:

Example 2-3 Multiple locales

 GET rt_locale.s
AREA my_locales, DATA, READONLY

my_ctype_locales
LC_CTYPE_begin my_first_ctype_locale, "MyLocale1"
... ; include other LC_CTYPE_xxx macros here
LC_CTYPE_end
LC_CTYPE_begin my_second_ctype_locale, "MyLocale2"
... ; include other LC_CTYPE_xxx macros here
LC_CTYPE_end
LC_index_end
AREA my_locale_func, CODE, READONLY
IMPORT _findlocale

_get_lc_ctype FUNCTION
LDR r0, =my_ctype_locales
B _findlocale
ENDFUNC

2.56.6 See also

Concepts
• Definition of locale data blocks in the C library on page 2-68
• Assembler macros that tailor locale functions in the C library on page 2-63
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-69
ID061811 Non-Confidential

The ARM C and C++ libraries
• LC_CTYPE data block on page 2-71
• LC_COLLATE data block on page 2-74
• LC_MONETARY data block on page 2-76
• LC_NUMERIC data block on page 2-77
• LC_TIME data block on page 2-78.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-70
ID061811 Non-Confidential

The ARM C and C++ libraries
2.57 LC_CTYPE data block
When defining a locale data block in the C library, the macros that define an LC_CTYPE data block
are as follows:

1. Call LC_CTYPE_begin with a symbol name and a locale name.

2. Call LC_CTYPE_table repeatedly to specify 256 table entries. LC_CTYPE_table takes a single
argument in quotes. This must be a comma-separated list of table entries. Each table entry
describes one of the 256 possible characters, and can be either an illegal character (IL) or
the bitwise OR of one or more of the following flags:
__S whitespace characters
__P punctuation characters
__B printable space characters
__L lowercase letters
__U uppercase letters
__N decimal digits
__C control characters
__X hexadecimal digit letters A-F and a-f
__A alphabetic but neither uppercase nor lowercase, such as Japanese katakana.

Note
 A printable space character is defined as any character where the result of both isprint()

and isspace() is true.
__A must not be specified for the same character as either __N or __X.

3. If required, call one or both of the following optional macros:
• LC_CTYPE_full_wctype. Calling this macro without arguments causes the C99

wide-character ctype functions (iswalpha(), iswupper(), ...) to return useful values
across the full range of Unicode when this LC_CTYPE locale is active. If this macro is
not specified, the wide ctype functions treat the first 256 wchar_t values as the same
as the 256 char values, and the rest of the wchar_t range as containing illegal
characters.

• LC_CTYPE_multibyte defines this locale to be a multibyte character set. Call this
macro with three arguments. The first two arguments are the names of functions that
perform conversion between the multibyte character set and Unicode wide
characters. The last argument is the value that must be taken by the C macro
MB_CUR_MAX for the respective character set. The two function arguments have the
following prototypes:
size_t internal_mbrtowc(wchar_t *pwc, char c, mbstate_t *pstate);
size_t internal_wcrtomb(char *s, wchar_t w, mbstate_t *pstate);

internal_mbrtowc()

takes one byte, c, as input, and updates the mbstate_t pointed to by pstate
as a result of reading that byte. If the byte completes the encoding of a
multibyte character, it writes the corresponding wide character into the
location pointed to by pwc, and returns 1 to indicate that it has done so. If
not, it returns -2 to indicate the state change of mbstate_t and that no
character is output. Otherwise, it returns -1 to indicate that the encoded
input is invalid.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-71
ID061811 Non-Confidential

The ARM C and C++ libraries
internal_wcrtomb()

takes one wide character, w, as input, and writes some number of bytes
into the memory pointed to by s. It returns the number of bytes output, or
-1 to indicate that the input character has no valid representation in the
multibyte character set.

4. Call LC_CTYPE_end, without arguments, to finish the locale block definition.

The following example shows an LC_CTYPE data block.

Example 2-4 Defining the CTYPE locale

LC_CTYPE_begin utf8_ctype, "UTF-8"
;
; Single-byte characters in the low half of UTF-8 are exactly
; the same as in the normal "C" locale.
LC_CTYPE_table "__C, __C, __C, __C, __C, __C, __C, __C, __C" ; 0x00-0x08
LC_CTYPE_table "__C|__S, __C|__S, __C|__S, __C|__S, __C|__S"

; 0x09-0x0D(BS,LF,VT,FF,CR)
LC_CTYPE_table "__C, __C, __C, __C, __C, __C, __C, __C, __C" ; 0x0E-0x16
LC_CTYPE_table "__C, __C, __C, __C, __C, __C, __C, __C, __C" ; 0x17-0x1F
LC_CTYPE_table "__B|__S" ; space
LC_CTYPE_table "__P, __P, __P, __P, __P, __P, __P, __P" ; !"#$%&'(
LC_CTYPE_table "__P, __P, __P, __P, __P, __P, __P" ;)*+,-./
LC_CTYPE_table "__N, __N, __N, __N, __N, __N, __N, __N, __N, __N" ; 0-9
LC_CTYPE_table "__P, __P, __P, __P, __P, __P, __P" ; :;<=>?@
LC_CTYPE_table "__U|__X, __U|__X, __U|__X, __U|__X, __U|__X, __U|__X" ; A-F
LC_CTYPE_table "__U, __U, __U, __U, __U, __U, __U, __U, __U, __U" ; G-P
LC_CTYPE_table "__U, __U, __U, __U, __U, __U, __U, __U, __U, __U" ; Q-Z
LC_CTYPE_table "__P, __P, __P, __P, __P, __P" ; [\]^_`
LC_CTYPE_table "__L|__X, __L|__X, __L|__X, __L|__X, __L|__X, __L|__X" ; a-f
LC_CTYPE_table "__L, __L, __L, __L, __L, __L, __L, __L, __L, __L" ; g-p
LC_CTYPE_table "__L, __L, __L, __L, __L, __L, __L, __L, __L, __L" ; q-z
LC_CTYPE_table "__P, __P, __P, __P" ; {|}~
LC_CTYPE_table "__C" ; 0x7F
;
; Nothing in the top half of UTF-8 is valid on its own as a
; single-byte character, so they are all illegal characters (IL).
LC_CTYPE_table "IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL"
LC_CTYPE_table "IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL"
LC_CTYPE_table "IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL"
LC_CTYPE_table "IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL"
LC_CTYPE_table "IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL"
LC_CTYPE_table "IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL"
LC_CTYPE_table "IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL"
LC_CTYPE_table "IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL"
;
; The UTF-8 ctype locale wants the full version of wctype.
LC_CTYPE_full_wctype
;
; UTF-8 is a multibyte locale, so we must specify some
; conversion functions. MB_CUR_MAX is 6 for UTF-8 (the lead
; bytes 0xFC and 0xFD are each followed by five continuation
; bytes).
;
; The implementations of the conversion functions are not
; provided in this example.
;
IMPORT utf8_mbrtowc
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-72
ID061811 Non-Confidential

The ARM C and C++ libraries
IMPORT utf8_wcrtomb
LC_CTYPE_multibyte utf8_mbrtowc, utf8_wcrtomb, 6
LC_CTYPE_end

2.57.1 See also

Concepts
• Definition of locale data blocks in the C library on page 2-68
• Assembler macros that tailor locale functions in the C library on page 2-63.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-73
ID061811 Non-Confidential

The ARM C and C++ libraries
2.58 LC_COLLATE data block
When defining a locale data block in the C library, the macros that define an LC_COLLATE data
block are as follows:

1. Call LC_COLLATE_begin with a symbol name and a locale name.

2. Call one of the following alternative macros:
• Call LC_COLLATE_table repeatedly to specify 256 table entries. LC_COLLATE_table

takes a single argument in quotes. This must be a comma-separated list of table
entries. Each table entry describes one of the 256 possible characters, and can be a
number indicating its position in the sorting order. For example, if character A is
intended to sort before B, then entry 65 (corresponding to A) in the table, must be
smaller than entry 66 (corresponding to B).

• Call LC_COLLATE_no_table without arguments. This indicates that the collation order
is the same as the string comparison order. Therefore, strcoll() and strcmp() are
identical.

3. Call LC_COLLATE_end, without arguments, to finish the locale block definition.

The following example shows an LC_COLLATE data block.

Example 2-5 Defining the COLLATE locale

LC_COLLATE_begin iso88591_collate, "ISO8859-1"
LC_COLLATE_table "0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07"
LC_COLLATE_table "0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f"
LC_COLLATE_table "0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17"
LC_COLLATE_table "0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f"
LC_COLLATE_table "0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27"
LC_COLLATE_table "0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f"
LC_COLLATE_table "0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37"
LC_COLLATE_table "0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f"
LC_COLLATE_table "0x40, 0x41, 0x49, 0x4a, 0x4c, 0x4d, 0x52, 0x53"
LC_COLLATE_table "0x54, 0x55, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x60"
LC_COLLATE_table "0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x71, 0x72"
LC_COLLATE_table "0x73, 0x74, 0x76, 0x79, 0x7a, 0x7b, 0x7c, 0x7d"
LC_COLLATE_table "0x7e, 0x7f, 0x87, 0x88, 0x8a, 0x8b, 0x90, 0x91"
LC_COLLATE_table "0x92, 0x93, 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9e"
LC_COLLATE_table "0xa5, 0xa6, 0xa7, 0xa8, 0xaa, 0xab, 0xb0, 0xb1"
LC_COLLATE_table "0xb2, 0xb3, 0xb6, 0xb9, 0xba, 0xbb, 0xbc, 0xbd"
LC_COLLATE_table "0xbe, 0xbf, 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5"
LC_COLLATE_table "0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd"
LC_COLLATE_table "0xce, 0xcf, 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5"
LC_COLLATE_table "0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd"
LC_COLLATE_table "0xde, 0xdf, 0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5"
LC_COLLATE_table "0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed"
LC_COLLATE_table "0xee, 0xef, 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5"
LC_COLLATE_table "0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd"
LC_COLLATE_table "0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x4b"
LC_COLLATE_table "0x4e, 0x4f, 0x50, 0x51, 0x56, 0x57, 0x58, 0x59"
LC_COLLATE_table "0x77, 0x5f, 0x61, 0x62, 0x63, 0x64, 0x65, 0xfe"
LC_COLLATE_table "0x66, 0x6d, 0x6e, 0x6f, 0x70, 0x75, 0x78, 0xa9"
LC_COLLATE_table "0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x89"
LC_COLLATE_table "0x8c, 0x8d, 0x8e, 0x8f, 0x94, 0x95, 0x96, 0x97"
LC_COLLATE_table "0xb7, 0x9d, 0x9f, 0xa0, 0xa1, 0xa2, 0xa3, 0xff"
LC_COLLATE_table "0xa4, 0xac, 0xad, 0xae, 0xaf, 0xb4, 0xb8, 0xb5"
LC_COLLATE_end
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-74
ID061811 Non-Confidential

The ARM C and C++ libraries
2.58.1 See also

Concepts
• ISO8859-1 implementation on page 2-65
• Definition of locale data blocks in the C library on page 2-68
• Assembler macros that tailor locale functions in the C library on page 2-63.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-75
ID061811 Non-Confidential

The ARM C and C++ libraries
2.59 LC_MONETARY data block
When defining a locale data block in the C library, the macros that define an LC_MONETARY data
block are as follows:

1. Call LC_MONETARY_begin with a symbol name and a locale name.

2. Call the LC_MONETARY data macros as follows:
a. Call LC_MONETARY_fracdigits with two arguments: frac_digits and int_frac_digits

from the lconv structure.
b. Call LC_MONETARY_positive with four arguments: p_cs_precedes, p_sep_by_space,

p_sign_posn and positive_sign.
c. Call LC_MONETARY_negative with four arguments: n_cs_precedes, n_sep_by_space,

n_sign_posn and negative_sign.
d. Call LC_MONETARY_currsymbol with two arguments: currency_symbol and

int_curr_symbol.
e. Call LC_MONETARY_point with one argument: mon_decimal_point.
f. Call LC_MONETARY_thousands with one argument: mon_thousands_sep.
g. Call LC_MONETARY_grouping with one argument: mon_grouping.

3. Call LC_MONETARY_end, without arguments, to finish the locale block definition.

The following example shows an LC_MONETARY data block.

Example 2-6 Defining the MONETARY locale

LC_MONETARY_begin c_monetary, "C"
LC_MONETARY_fracdigits 255, 255
LC_MONETARY_positive 255, 255, 255, ""
LC_MONETARY_negative 255, 255, 255, ""
LC_MONETARY_currsymbol "", ""
LC_MONETARY_point ""
LC_MONETARY_thousands ""
LC_MONETARY_grouping ""
LC_MONETARY_end

2.59.1 See also

Concepts
• Definition of locale data blocks in the C library on page 2-68
• Assembler macros that tailor locale functions in the C library on page 2-63.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-76
ID061811 Non-Confidential

The ARM C and C++ libraries
2.60 LC_NUMERIC data block
When defining a locale data block in the C library, the macros that define an LC_NUMERIC data
block are as follows:

1. Call LC_NUMERIC_begin with a symbol name and a locale name.

2. Call the LC_NUMERIC data macros as follows:
a. Call LC_NUMERIC_point with one argument: decimal_point from lconv structure.
b. Call LC_NUMERIC_thousands with one argument: thousands_sep.
c. Call LC_NUMERIC_grouping with one argument: grouping.

3. Call LC_NUMERIC_end, without arguments, to finish the locale block definition.

The following example shows an LC_NUMERIC data block.

Example 2-7 Defining the NUMERIC locale

LC_NUMERIC_begin c_numeric, "C"
LC_NUMERIC_point "."
LC_NUMERIC_thousands ""
LC_NUMERIC_grouping ""
LC_NUMERIC_end

2.60.1 See also

Concepts
• Definition of locale data blocks in the C library on page 2-68
• Assembler macros that tailor locale functions in the C library on page 2-63.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-77
ID061811 Non-Confidential

The ARM C and C++ libraries
2.61 LC_TIME data block
When defining a locale data block in the C library, the macros that define an LC_TIME data block
are as follows:

1. Call LC_TIME_begin with a symbol name and a locale name.

2. Call the LC_TIME data macros as follows:
a. Call LC_TIME_week_short seven times to provide the short names for the days of the

week. Sunday being the first day. Then call LC_TIME_week_long and repeat the
process for long names.

b. Call LC_TIME_month_short twelve times to provide the short names for the days of
the month. Then call LC_TIME_month_long and repeat the process for long names.

c. Call LC_TIME_am_pm with two arguments that are respectively the strings representing
morning and afternoon.

d. Call LC_TIME_formats with three arguments that are respectively the standard
date/time format used in strftime("%c"), the standard date format strftime("%x"),
and the standard time format strftime("%X"). These strings must define the standard
formats in terms of other simpler strftime primitives. Example 2-8 shows that the
standard date/time format is permitted to reference the other two formats.

e. Call LC_TIME_c99format with a single string that is the standard 12-hour time format
used in strftime("%r") as defined in C99.

3. Call LC_TIME_end, without arguments, to finish the locale block definition.

The following example shows an LC_TIME data block.

Example 2-8 Defining the TIME locale

LC_TIME_begin c_time, "C"
LC_TIME_week_short "Sun"
LC_TIME_week_short "Mon"
LC_TIME_week_short "Tue"
LC_TIME_week_short "Wed"
LC_TIME_week_short "Thu"
LC_TIME_week_short "Fri"
LC_TIME_week_short "Sat"
LC_TIME_week_long "Sunday"
LC_TIME_week_long "Monday"
LC_TIME_week_long "Tuesday"
LC_TIME_week_long "Wednesday"
LC_TIME_week_long "Thursday"
LC_TIME_week_long "Friday"
LC_TIME_week_long "Saturday"
LC_TIME_month_short "Jan"
LC_TIME_month_short "Feb"
LC_TIME_month_short "Mar"
LC_TIME_month_short "Apr"
LC_TIME_month_short "May"
LC_TIME_month_short "Jun"
LC_TIME_month_short "Jul"
LC_TIME_month_short "Aug"
LC_TIME_month_short "Sep"
LC_TIME_month_short "Oct"
LC_TIME_month_short "Nov"
LC_TIME_month_short "Dec"
LC_TIME_month_long "January"
LC_TIME_month_long "February"
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-78
ID061811 Non-Confidential

The ARM C and C++ libraries
LC_TIME_month_long "March"
LC_TIME_month_long "April"
LC_TIME_month_long "May"
LC_TIME_month_long "June"
LC_TIME_month_long "July"
LC_TIME_month_long "August"
LC_TIME_month_long "September"
LC_TIME_month_long "October"
LC_TIME_month_long "November"
LC_TIME_month_long "December"
LC_TIME_am_pm "AM", "PM"
LC_TIME_formats "%x %X", "%d %b %Y", "%H:%M:%S"
LC_TIME_c99format "%I:%M:%S %p"
LC_TIME_week_short "Sat"
LC_TIME_end

2.61.1 See also

Concepts
• Definition of locale data blocks in the C library on page 2-68
• Assembler macros that tailor locale functions in the C library on page 2-63.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-79
ID061811 Non-Confidential

The ARM C and C++ libraries
2.62 Modification of C library functions for error signaling, error handling, and
program exit

All trap or error signals raised by the C library go through the __raise() function. You can
re-implement this function or the lower-level functions that it uses.

Caution
 The IEEE 754 standard for floating-point processing states that the default response to an
exception is to proceed without a trap. You can modify floating-point error handling by tailoring
the functions and definitions in fenv.h.

The rt_misc.h header file contains more information on error-related functions.

The trap and error-handling functions are shown in Table 2-8.

2.62.1 See also

Reference
• Chapter 4 Floating-point support
• Tailoring the C library to a new execution environment on page 2-53.
ARM® C and C++ Libraries and Floating-Point Support Reference:
• _sys_exit() on page 2-47
• errno on page 2-9
• __rt_errno_addr() on page 2-29
• __raise() on page 2-23
• __rt_raise() on page 2-35
• __default_signal_handler() on page 2-8
• _ttywrch() on page 2-57
• __rt_fp_status_addr() on page 2-31.

Table 2-8 Trap and error handling

Function Description

_sys_exit() Called, eventually, by all exits from the library.

errno Is a static variable used with error handling.

__rt_errno_addr() Is called to obtain the address of the variable errno.

__raise() Raises a signal to indicate a runtime anomaly.

__rt_raise() Raises a signal to indicate a runtime anomaly.

__default_signal_handler() Displays an error indication to the user.

_ttywrch() Writes a character to the console. The default
implementation of _ttywrch() is semihosted and,
therefore, uses semihosting calls.

__rt_fp_status_addr() This function is called to obtain the address of the
floating-point status word.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-80
ID061811 Non-Confidential

The ARM C and C++ libraries
2.63 Modification of memory management functions in the C library
The following topics describe the functions in rt_heap.h that you can define if you are tailoring
memory management:
• Avoiding the heap and heap-using library functions supplied by ARM on page 2-82
• C library support for memory allocation functions on page 2-83
• Heap1, standard heap implementation on page 2-84
• Heap2, alternative heap implementation on page 2-85
• Using a heap implementation from bare machine C on page 2-86.

ARM® C and C++ Libraries and Floating-Point Support Reference:
• alloca() on page 2-5.

The rt_heap.h and rt_memory.s include files contain more information on memory-related
functions.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-81
ID061811 Non-Confidential

The ARM C and C++ libraries
2.64 Avoiding the heap and heap-using library functions supplied by ARM
If you are developing embedded systems that have limited RAM or that provide their own heap
management (for example, an operating system), you might require a system that does not
define a heap area. To avoid using the heap you can either:
• re-implement the functions in your own application
• write the application so that it does not call any heap-using function.

You can reference the __use_no_heap or __use_no_heap_region symbols in your code to guarantee
that no heap-using functions are linked in from the ARM library. You are only required to import
these symbols once in your application, for example, using either:
• IMPORT __use_no_heap from assembly language
• #pragma import(__use_no_heap) from C.

If you include a heap-using function and also reference __use_no_heap or __use_no_heap_region,
the linker reports an error. For example, the following sample code results in the linker error
shown:

#include <stdio.h>
#include <stdlib.h>
#pragma import(__use_no_heap)

void main()
{

char *p = malloc(256);
...

}

Error: L6915E: Library reports error: __use_no_heap was requested, but malloc was
referenced

To find out which objects are using the heap, link with --verbose --list=out.txt, search the
output for the relevant symbol (in this case malloc), and find out what object referenced it.

__use_no_heap guards against the use of malloc(), realloc(), free(), and any function that uses
those functions. For example, calloc() and other stdio functions.

__use_no_heap_region has the same properties as __use_no_heap, but in addition, guards against
other things that use the heap memory region. For example, if you declare main() as a function
taking arguments, the heap region is used for collecting argc and argv.

2.64.1 See also

Concepts
• Modification of memory management functions in the C library on page 2-81.

Reference
Linker Reference:
• --list=file on page 2-77
• --verbose on page 2-142.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-82
ID061811 Non-Confidential

The ARM C and C++ libraries
2.65 C library support for memory allocation functions
malloc(), realloc(), calloc(), and free() are built on a heap abstract data type. You can choose
between Heap1 or Heap2, the two provided heap implementations.

The default implementations of malloc(), realloc(), and calloc() maintain an eight-byte
aligned heap.

Concepts
• Heap1, standard heap implementation on page 2-84
• Heap2, alternative heap implementation on page 2-85.

Tasks
• Using a heap implementation from bare machine C on page 2-86.

Reference

ARM® C and C++ Libraries and Floating-Point Support:
• alloca() on page 2-5.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-83
ID061811 Non-Confidential

The ARM C and C++ libraries
2.66 Heap1, standard heap implementation
Heap1, the default implementation, implements the smallest and simplest heap manager. The
heap is managed as a single-linked list of free blocks held in increasing address order. The
allocation policy is first-fit by address.

This implementation has low overheads, but the performance cost of malloc() or free() grows
linearly with the number of free blocks. The smallest block that can be allocated is four bytes
and there is an additional overhead of four bytes. If you expect more than 100 unallocated blocks
it is recommended that you use Heap2.

2.66.1 See also

Concepts
• C library support for memory allocation functions on page 2-83.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-84
ID061811 Non-Confidential

The ARM C and C++ libraries
2.67 Heap2, alternative heap implementation
Heap2 provides a compact implementation with the performance cost of malloc() or free()
growing logarithmically with the number of free blocks. The allocation policy is first-fit by
address. The smallest block that can be allocated is 12 bytes and there is an additional overhead
of four bytes.

Heap2 is recommended when you require near constant-time performance in the presence of
hundreds of free blocks. To select the alternative standard implementation, use either of the
following:
• IMPORT __use_realtime_heap from assembly language
• #pragma import(__use_realtime_heap) from C.

The Heap2 real-time heap implementation must know the maximum address space that the heap
spans. The smaller the address range, the more efficient the algorithm is.

By default, the heap extent is taken to be 16MB starting at the beginning of the heap (defined
as the start of the first chunk of memory given to the heap manager by __rt_initial_stackheap()
or __rt_heap_extend()).

The heap bounds are given by:

struct __heap_extent {
unsigned base, range;

};

__value_in_regs struct __heap_extent __user_heap_extent(
 unsigned defaultbase, unsigned defaultsize);

The function prototype for __user_heap_extent() is in rt_misc.h.

(The Heap1 algorithm does not require the bounds on the heap extent. Therefore, it never calls
this function.)

You must redefine __user_heap_extent() if:

• you require a heap to span more than 16MB of address space

• your memory model can supply a block of memory at a lower address than the first one
supplied.

If you know in advance that the address space bounds of your heap are small, you do not have
to redefine __user_heap_extent(), but it does speed up the heap algorithms if you do.

The input parameters are the default values that are used if this routine is not defined. You can,
for example, leave the default base value unchanged and only adjust the size.

Note
 The size field returned must be a power of two. The library does not check this and fails in
unexpected ways if this requirement is not met. If you return a size of zero, the extent of the heap
is set to 4GB.

2.67.1 See also

Concepts
• C library support for memory allocation functions on page 2-83.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-85
ID061811 Non-Confidential

The ARM C and C++ libraries
2.68 Using a heap implementation from bare machine C
To use a heap implementation in an application that does not define main() and does not
initialize the C library:

1. Call _init_alloc(base, top) to define the base and top of the memory you want to manage
as a heap.

2. Define the function unsigned __rt_heap_extend(unsigned size, void **block) to handle
calls to extend the heap when it becomes full.

2.68.1 See also

Concepts
• C library support for memory allocation functions on page 2-83.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-86
ID061811 Non-Confidential

The ARM C and C++ libraries
2.69 Stack pointer initialization and heap bounds
The C library requires you to specify where the stack pointer begins. If you intend to use ARM
library functions that use the heap, for example, malloc(), calloc(), or if you define argc and
argv command-line arguments for main(), the C library also requires you to specify which
region of memory the heap is intially expected to use.

The region of memory used by the heap can be extended at a later stage of program execution,
if required.

You can specify where the stack pointer begins, and which region of memory the heap is intially
expected to use, with any of the following methods:

• Define the symbol __intial_sp to point to the top of the stack. If using the heap, also
define symbols __heap_base and __heap_limit.

• In a scatter file, either:
— define ARM_LIB_STACK and ARM_LIB_HEAP regions
— if you do not intend to use the heap, only define an ARM_LIB_STACK region
— define an ARM_LIB_STACKHEAP region.
If you define an ARM_LIB_STACKHEAP region, the stack starts at the top of that region. The
heap starts at the bottom.

Note
 The above two methods are the only methods that microlib supports, of defining where

the stack pointer starts and of defining the heap bounds.

• Implement __user_setup_stackheap() to set up the stack pointer and return the bounds of
the intial heap region.

• If you are using legacy code that uses __user_initial_stackheap(), and you do not want
to replace __user_initial_stackheap() with __user_setup_stackheap(), continue to use
__user_initial_stackheap().

Note
 ARM recommends that you switch to using __user_setup_stackheap() if you are still

using __user_initial_stackheap(), unless your implementation of
__user_initial_stackheap() is:
— specialized in some way such that it is complex enough to require its own temporary

stack to run on before it has created the proper stack
— has some user-specific special requirement that means it has to be implemented in

C rather than in assembly language.

The initial stack pointer must be aligned to a multiple of eight bytes.

By default, if memory allocated for the heap is destined to overlap with memory that lies in close
proximity with the stack, the potential collision of heap and stack is automatically detected and
the requested heap allocation fails. If you do not require this automatic collision detection, you
can save a small amount of code size by disabling it with
#pragma import __use_two_region_memory.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-87
ID061811 Non-Confidential

The ARM C and C++ libraries
Note
 The memory allocation functions (malloc(), realloc(), calloc(), posix_memalign()) attempt to
detect allocations that collide with the current stack pointer. Such detection cannot be
guaranteed to always be successful.

Although it is possible to automatically detect expansion of the heap into the stack, it is not
possible to automatically detect expansion of the stack into heap memory.

For legacy purposes, it is possible for you to bypass all of these methods and behavior. You can
do this by defining the following functions to perform your own stack and heap memory
management:
• __rt_stackheap_init()

• __rt_heap_extend().

2.69.1 See also

Tasks
• Defining __initial_sp, __heap_base and __heap_limit on page 2-89
• Creating an initial stack pointer for use with microlib on page 3-8
• Creating the heap for use with microlib on page 3-9
• Extending heap size at runtime on page 2-90.

ARM® C and C++ Libraries and Floating-Point Support Reference:
• __rt_heap_extend() on page 2-32
• __rt_stackheap_init() on page 2-36.
Using the Linker:
• Specifying stack and heap using the scatter file on page 8-11.

Concepts
• Legacy support for __user_initial_stackheap() on page 2-91.

Reference
ARM® C and C++ Libraries and Floating-Point Support Reference:
• __user_heap_extend() on page 2-58
• __user_heap_extent() on page 2-59
• Legacy function __user_initial_stackheap() on page 2-69
• __rt_heap_extend() on page 2-32
• __rt_stackheap_init() on page 2-36
• __user_setup_stackheap() on page 2-60
• __vectab_stack_and_reset on page 2-61.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-88
ID061811 Non-Confidential

The ARM C and C++ libraries
2.70 Defining __initial_sp, __heap_base and __heap_limit
One of several methods you can use to specify the initial stack pointer and heap bounds is to
define the following symbols:
• __initial_sp

• __heap_base

• __heap_limit.

You can define these symbols in an assembly language file, or by using the embedded assembler
in C.

For example:

__asm void dummy_function(void)
{

EXPORT __initial_sp
EXPORT __heap_base
EXPORT __heap_limit

__initial_sp EQU STACK_BASE
__heap_base EQU HEAP_BASE
__heap_limit EQU (HEAP_BASE + HEAP_SIZE)
}

The constants STACK_BASE, HEAP_BASE and HEAP_SIZE can be defined in a header file, for example
stack.h, as follows:

/* stack.h */
#define HEAP_BASE 0x20100000 /* Example memory addresses */
#define STACK_BASE 0x20200000
#define HEAP_SIZE ((STACK_BASE-HEAP_BASE)/2)
#define STACK_SIZE ((STACK_BASE-HEAP_BASE)/2)

Note
 This method of specifying the initial stack pointer and heap bounds is supported by both the
standard C library (standardlib) and the micro C library (microlib).

2.70.1 See also

Concepts
• Stack pointer initialization and heap bounds on page 2-87.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-89
ID061811 Non-Confidential

The ARM C and C++ libraries
2.71 Extending heap size at runtime
To enable the heap to extend into areas of memory other than the region of memory that is
specified when the program starts, you can redefine the function __user_heap_extend().

__user_heap_extend() returns blocks of memory for heap usage in extending the size of the
heap.

2.71.1 See also

Concepts
• Stack pointer initialization and heap bounds on page 2-87.

Reference
Using the ARM® C and C++ Libraries and Floating-Point Support:
• __rt_heap_extend() on page 2-32.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-90
ID061811 Non-Confidential

The ARM C and C++ libraries
2.72 Legacy support for __user_initial_stackheap()
Defined in rt_misc.h, __user_initial_stackheap() is supported for backwards compatibility
with earlier versions of the ARM C and C++ libraries.

Note
 ARM recommends that you use __user_setup_stackheap() in preference to
__user_initial_stackheap().

The differences between __user_initial_stackheap() and __user_setup_stackheap() are:

• __user_initial_stackheap() receives the stack pointer (containing the same value it had
on entry to __main()) in r1, and is expected to return the new stack base in r1.
__user_setup_stackheap() receives the stack pointer in sp, and returns the stack base in sp.

• __user_initial_stackheap() is provided with a small temporary stack to run on. This
temporary stack enables __user_initial_stackheap() to be implemented in C, providing
that it uses no more than 88 bytes of stack space.
__user_setup_stackheap() has no temporary stack and cannot usually be implemented in
C.

Using __user_setup_stackheap() instead of __user_initial_steakheap() reduces code size,
because __user_setup_stackheap() has no requirement for a temporary stack.

In the following circumstances you cannot use the provided __user_setup_stackheap() function,
but you can use the __user_initial_stackheap() function:

• your implementation is sufficiently complex that it warrants the use of a temporary stack
when setting up the initial heap and stack

• you have a requirement to implement the heap and stack creation code in C rather than in
assembly language.

2.72.1 See also

Reference

ARM® C and C++ Libraries and Floating-Point Support Reference:
• Legacy function __user_initial_stackheap() on page 2-69
• __user_setup_stackheap() on page 2-60.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-91
ID061811 Non-Confidential

The ARM C and C++ libraries
2.73 Tailoring input/output functions in the C and C++ libraries
High-level input/output, such as the functions fscanf() and fprintf(), and the C++ object
std::cout, are not target-dependent. However, the higher-level functions perform input/output
by calling lower-level functions that are target-dependent. To retarget input/output, you can
either avoid these higher-level functions or redefine the lower-level functions.

For more information on I/O functions, see the rt_sys.h file.

2.73.1 See also

Tasks
• Re-implementing __backspace() in the C library on page 2-101
• Re-implementing __backspacewc() in the C library on page 2-102
• Redefining low-level library functions to enable direct use of high-level library functions

on page 2-97.

Concepts
• Target dependencies on low-level functions in the C and C++ libraries on page 2-93
• The C library printf family of functions on page 2-95
• The C library scanf family of functions on page 2-96
• The C library functions fread(), fgets() and gets() on page 2-100
• Target-dependent I/O support functions in the C library on page 2-103
• ARM C libraries and multithreading on page 2-16.

Reference
ARM® C and C++ Libraries and Floating-Point Support Reference:
• _sys_open() on page 2-50
• _sys_close() on page 2-44
• _sys_read() on page 2-51
• _sys_write() on page 2-54
• _sys_ensure() on page 2-46
• _sys_flen() on page 2-48
• _sys_seek() on page 2-52
• _sys_istty() on page 2-49
• _sys_tmpnam() on page 2-53
• _sys_command_string() on page 2-45
• #pragma import(_main_redirection) on page 2-22.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-92
ID061811 Non-Confidential

The ARM C and C++ libraries
2.74 Target dependencies on low-level functions in the C and C++ libraries
Table 2-9 shows the dependencies of the higher-level functions on lower-level functions. If you
define your own versions of the lower-level functions, you can use the library versions of the
higher-level functions directly.

fgetc() uses __FILE, but fputc() uses __FILE and ferror().

Note
 You must provide definitions of __stdin and __stdout if you use any of their associated
high-level functions. This applies even if your re-implementations of other functions, such as
fgetc() and fputc(), do not reference any data stored in __stdin and __stdout.

Table key:
1. __FILE, the file structure.
2. __stdin, the standard input object of type __FILE.
3. __stdout, the standard output object of type __FILE.
4. fputc(), outputs a character to a file.
5. ferror(), returns the error status accumulated during file I/O.
6. fgetc(), gets a character from a file.
7. fgetwc()

8. fputwc()

9. __backspace(), moves the file pointer to the previous character.
10. __backspacewc().

Table 2-9 Input/output dependencies

High-level
function Low-level object

1 2 3 4 5 6 7 8 9 10

fgets x - - - x x - - - -

fgetws x - - - - - x - - -

fprintf x - - x x - - - - -

fputs x - - x - - - - - -

fputws x - - - - - - x - -

fread x - - - - x - - - -

fscanf x - - - - x - - x -

fwprintf x - - - x - - x - -

fwrite x - - x - - - - - -

fwscanf x - - - - - x - - x

getchar x x - - - x - - - -

gets x x - - x x - - - -

getwchar x x - - - - x - - -

perror x - x x - - - - - -
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-93
ID061811 Non-Confidential

The ARM C and C++ libraries
Note
 If you choose to re-implement fgetc(), fputc(), and __backspace(), be aware that fopen() and
related functions use the ARM layout for the __FILE structure. You might also have to
re-implement fopen() and related functions if you define your own version of __FILE.

2.74.1 See also

Tasks
• Re-implementing __backspace() in the C library on page 2-101
• Redefining low-level library functions to enable direct use of high-level library functions

on page 2-97
• Tailoring input/output functions in the C and C++ libraries on page 2-92.

Concepts
• The C library printf family of functions on page 2-95
• The C library scanf family of functions on page 2-96.

Other information
• ISO C Reference, http://www.open-std.org/

printf x - x x x - - - - -

putchar x - x x - - - - - -

puts x - x x - - - - - -

putwchar x - x - - - - x - -

scanf x x - - - x - - x -

vfprintf x - - x x - - - - -

vfscanf x - - - - x - - x -

vfwprintf x - - - x - - x - -

vfwscanf x - - - - - x - - x

vprintf x - x x x - - - - -

vscanf x x - - - x - - x -

vwprintf x - x - x - - x - -

vwscanf x x - - - - x - - x

wprintf x - x - x - - x - -

wscanf x x - - - - x - - x

Table 2-9 Input/output dependencies (continued)

High-level
function Low-level object
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-94
ID061811 Non-Confidential

The ARM C and C++ libraries
2.75 The C library printf family of functions
The printf family consists of _printf(), printf(), _fprintf(), fprintf(), vprintf(), and
vfprintf(). All these functions use __FILE opaquely and depend only on the functions fputc()
and ferror(). The functions _printf() and _fprintf() are identical to printf() and fprintf()
except that they cannot format floating-point values.

The standard output functions of the form _printf(...) are equivalent to:

fprintf(& __stdout, ...)

where __stdout has type __FILE.

2.75.1 See also

Tasks
• Tailoring input/output functions in the C and C++ libraries on page 2-92.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-95
ID061811 Non-Confidential

The ARM C and C++ libraries
2.76 The C library scanf family of functions
The scanf() family consists of scanf() and fscanf(). These functions depend only on the
functions fgetc(), __FILE, and __backspace().

The standard input function of the form scanf(...) is equivalent to:

fscanf(& __stdin, ...)

where __stdin is of type __FILE.

2.76.1 See also

Tasks
• Re-implementing __backspace() in the C library on page 2-101
• Tailoring input/output functions in the C and C++ libraries on page 2-92.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-96
ID061811 Non-Confidential

The ARM C and C++ libraries
2.77 Redefining low-level library functions to enable direct use of high-level library
functions

If you define your own version of __FILE, your own fputc() and ferror() functions, and the
__stdout object, you can use all of the printf() family, fwrite(), fputs(), puts() and the C++
object std::cout unchanged from the library. Example 2-9 and Example 2-10 on page 2-98
show you how to do this. Consider modifying the system routines if you require real file
handling.

You are not required to re-implement every function shown in these examples. Only
re-implement the functions that are used in your application.

Example 2-9 Retargeting printf()

#include <stdio.h>

struct __FILE
{
int handle;

/* Whatever you require here. If the only file you are using is */
/* standard output using printf() for debugging, no file handling */
/* is required. */

};

/* FILE is typedef’d in stdio.h. */

FILE __stdout;

int fputc(int ch, FILE *f)
{
/* Your implementation of fputc(). */
return ch;

}
int ferror(FILE *f)
{
/* Your implementation of ferror(). */
return 0;

}
void test(void)
{
printf("Hello world\n");

}

Note
 Be aware of endianness with fputc(). fputc() takes an int parameter, but contains only a
character. Whether the character is in the first or the last byte of the integer variable depends on
the endianness. The following code sample avoids problems with endianness:

extern void sendchar(char *ch);

int fputc(int ch, FILE *f)
{
/* example: write a character to an LCD */
char tempch = ch; // temp char avoids endianness issue
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-97
ID061811 Non-Confidential

The ARM C and C++ libraries
sendchar(&tempch);
return ch;

}

Example 2-10 Retargeting cout

File 1: Re-implement any functions that require re-implementation.

#include <stdio.h>

namespace std {

struct __FILE
{
int handle;

/* Whatever you require here. If the only file you are using is */
/* standard output using printf() for debugging, no file handling */
/* is required. */

};

FILE __stdout;
FILE __stdin;
FILE __stderr;

int fgetc(FILE *f)
{
/* Your implementation of fgetc(). */
return 0;

};
int fputc(int c, FILE *stream)
{
/* Your implementation of fputc(). */

}
int ferror(FILE *stream)
{
/* Your implementation of ferror(). */

}
long int ftell(FILE *stream)
{
/* Your implementation of ftell(). */

}
int fclose(FILE *f)
{
/* Your implementation of fclose(). */
return 0;

}
int fseek(FILE *f, long nPos, int nMode)
{
/* Your implementation of fseek(). */
return 0;

}
int fflush(FILE *f)
{
/* Your implementation of fflush(). */
return 0;

}
}

File 2: Print "Hello world" using your re-implemented functions.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-98
ID061811 Non-Confidential

The ARM C and C++ libraries
#include <stdio.h>
#include <iostream>
using namespace std;

int main()
{
cout << "Hello world\n";
return 0;

}

By default, fread() and fwrite() call fast block input/output functions that are part of the ARM
stream implementation. If you define your own __FILE structure instead of using the ARM
stream implementation, fread() and fwrite() call fgetc() instead of calling the block
input/output functions.

2.77.1 See also

Tasks
• Tailoring input/output functions in the C and C++ libraries on page 2-92.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-99
ID061811 Non-Confidential

The ARM C and C++ libraries
2.78 The C library functions fread(), fgets() and gets()
The functions fread(), fgets(), and gets() are implemented as fast block input/output functions
where possible. These fast implementations are part of the ARM stream implementation and
they bypass fgetc(). Where the fast implementation is not possible, they are implemented as a
loop over fgetc() and ferror(). Each uses the FILE argument opaquely.

If you provide your own implementation of __FILE, __stdin (for gets()), fgetc(), and ferror(),
you can use these functions, and the C++ object std::cin directly from the library.

2.78.1 See also

Tasks
• Tailoring input/output functions in the C and C++ libraries on page 2-92.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-100
ID061811 Non-Confidential

The ARM C and C++ libraries
2.79 Re-implementing __backspace() in the C library
The function __backspace() is used by the scanf family of functions, and must be
re-implemented if you retarget the stdio arrangements at the fgetc() level.

Note
 Normally, you are not required to call __backspace() directly, unless you are implementing your
own scanf-like function.

The semantics are:

int __backspace(FILE *stream);

__backspace(stream) must only be called after reading a character from the stream. You must
not call it after a write, a seek, or immediately after opening the file, for example. It returns to
the stream the last character that was read from the stream, so that the same character can be
read from the stream again by the next read operation. This means that a character that was read
from the stream by scanf but that is not required (that is, it terminates the scanf operation) is
read correctly by the next function that reads from the stream.

__backspace is separate from ungetc(). This is to guarantee that a single character can be pushed
back after the scanf family of functions has finished.

The value returned by __backspace() is either 0 (success) or EOF (failure). It returns EOF only if
used incorrectly, for example, if no characters have been read from the stream. When used
correctly, __backspace() must always return 0, because the scanf family of functions do not
check the error return.

The interaction between __backspace() and ungetc() is:

• If you apply __backspace() to a stream and then ungetc() a character into the same stream,
subsequent calls to fgetc() must return first the character returned by ungetc(), and then
the character returned by __backspace().

• If you ungetc() a character back to a stream, then read it with fgetc(), and then backspace
it, the next character read by fgetc() must be the same character that was returned to the
stream. That is the __backspace() operation must cancel the effect of the fgetc()
operation. However, another call to ungetc() after the call to __backspace() is not required
to succeed.

• The situation where you ungetc() a character into a stream and then __backspace() another
one immediately, with no intervening read, never arises. __backspace() must only be
called after fgetc(), so this sequence of calls is illegal. If you are writing __backspace()
implementations, you can assume that the unget() of a character into a stream followed
immediately by a __backspace() with no intervening read, never occurs.

2.79.1 See also

Tasks
• Re-implementing __backspacewc() in the C library on page 2-102
• Tailoring input/output functions in the C and C++ libraries on page 2-92.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-101
ID061811 Non-Confidential

The ARM C and C++ libraries
2.80 Re-implementing __backspacewc() in the C library
__backspacewc() is the wide-character equivalent of __backspace(). __backspacewc() behaves in
the same way as __backspace() except that it pushes back the last wide character instead of a
narrow character.

2.80.1 See also

Tasks
• Tailoring input/output functions in the C and C++ libraries on page 2-92.

Reference
• Re-implementing __backspace() in the C library on page 2-101.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-102
ID061811 Non-Confidential

The ARM C and C++ libraries
2.81 Target-dependent I/O support functions in the C library
rt_sys.h defines the type FILEHANDLE. The value of FILEHANDLE is returned by _sys_open() and
identifies an open file on the host system.

Target-dependent I/O functions use semihosting. If any function is redefined, all stream-support
functions must be redefined.

If the _sys_* functions are redefined, both normal character I/O and wide character I/O works.
That is, you are not required to do anything extra with these functions for wide character I/O to
work.

2.81.1 See also

Tasks
• Tailoring input/output functions in the C and C++ libraries on page 2-92.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-103
ID061811 Non-Confidential

The ARM C and C++ libraries
2.82 Tailoring non-input/output C library functions
In addition to tailoring input/output C library functions, many C library functions that are not
input/output functions can also be tailored. Implementation of these ISO standard functions
depends entirely on the target operating system.

The default implementation of these functions is semihosted. That is, each function uses
semihosting.

2.82.1 See also

Reference

ARM® C and C++ Libraries and Floating-Point Support Reference:
• clock() on page 2-6
• _clock_init() on page 2-7
• time() on page 2-56
• remove() on page 2-26
• rename() on page 2-27
• system() on page 2-55
• getenv() on page 2-13
• _getenv_init() on page 2-14.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-104
ID061811 Non-Confidential

The ARM C and C++ libraries
2.83 Real-time integer division in the ARM libraries
The division routine supplied with the ARM libraries provides good overall performance.
However, the amount of time required to perform a division depends on the input values. For
example, a division that generates a four-bit quotient might require only 12 cycles while a 32-bit
quotient might require 96 cycles. Depending on your target, some applications require a faster
worst-case cycle count at the expense of lower average performance. For this reason, the ARM
library provides two divide routines.

The real-time routine:
• always executes in fewer than 45 cycles
• is faster than the standard division routine for larger quotients
• is slower than the standard division routine for typical quotients
• returns the same results
• does not require any change in the surrounding code.

Note
 • Real-time division is not available in the libraries for Cortex-M1 or Cortex-M0.

• The Cortex-R4 and Cortex-M3 processors support hardware floating-point divide, so they
do not require the library divide routines.

2.83.1 See also

Tasks
• Selecting real-time division in the ARM libraries on page 2-106.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-105
ID061811 Non-Confidential

The ARM C and C++ libraries
2.84 Selecting real-time division in the ARM libraries
Select the real-time divide routine, instead of the generally more efficient routine, by using
either of the following methods:
• IMPORT __use_realtime_division from assembly language
• #pragma import(__use_realtime_division) from C.

2.84.1 See also

Concepts
• Real-time integer division in the ARM libraries on page 2-105.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-106
ID061811 Non-Confidential

The ARM C and C++ libraries
2.85 How the ARM C library fulfills ISO C specification requirements
The ISO specification leaves some features to implementors, but requires that implementation
choices be documented. The implementation of the generic ARM C library in this respect is as
follows:

• The macro NULL expands to the integer constant 0.

• If a program redefines a reserved external identifier, an error might occur when the
program is linked with the standard libraries. If it is not linked with standard libraries, no
error is diagnosed.

• The __aeabi_assert() function prints information on the failing diagnostic on stderr and
then calls the abort() function:
*** assertion failed: expression, file name, line number

Note
 The behavior of the assert macro depends on the conditions in operation at the most

recent occurrence of #include <assert.h>.

• The following functions test for character values in the range EOF (-1) to 255 inclusive:
— isalnum()

— isalpha()

— iscntrl()

— islower()

— isprint()

— isupper()

— ispunct().

• The fully POSIX-compliant functions remquo(), remquof() and remquol() return the
remainder of the division of x by y and store the quotient of the division in the pointer
*quo. An implementation-defined integer value defines the number of bits of the quotient
that are stored. In the ARM C library, this value is set to 4.

• C99 behavior, with respect to mathlib error handling, is enabled by default.

Note
 In RVCT 4.0, this behavior is not enabled by default, but is enabled through the use of

IMPORT __use_c99_matherr in assembly language, or #pragma import __use_c99_matherr in
C.

2.85.1 See also

Concepts
• mathlib error handling on page 2-108
• ISO-compliant implementation of signals supported by the signal() function in the C

library and additional type arguments on page 2-110
• ISO-compliant C library input/output characteristics on page 2-112
• Standard C++ library implementation definition on page 2-114
• Program exit and the assert macro on page 2-62
• C and C++ library naming conventions on page 2-120.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-107
ID061811 Non-Confidential

The ARM C and C++ libraries
2.86 mathlib error handling
In ARM Compiler 4.1 and later, the error handling of mathematical functions is consistent with
Annex F of the ISO/IEC C99 standard. In RVCT 4.0 and earlier, it is not.

2.86.1 mathlib error handling in RVCT 4.0 and earlier

To invoke RVCT 4.0 and earlier behavior, you can define __use_rvct_matherr. Table 2-10 shows
how the math functions respond when supplied with out-of-range arguments.

Table 2-10 Mathematical functions in RVCT 4.0 and earlier

Function Condition Returned value Error number

acos(x) abs(x) > 1 QNaN EDOM

asin(x) abs(x) > 1 QNaN EDOM

atan2(x,y) x =0, y = 0 QNaN EDOM

atan2(x,y) x = Inf, y = Inf QNaN EDOM

cos(x) x=Inf QNaN EDOM

cosh(x) Overflow +Inf ERANGE

exp(x) Overflow +Inf ERANGE

exp(x) Underflow +0 ERANGE

fmod(x,y) x=Inf QNaN EDOM

fmod(x,y) y = 0 QNaN EDOM

log(x) x < 0 QNaN EDOM

log(x) x = 0 -Inf EDOM

log10(x) x < 0 QNaN EDOM

log10(x) x = 0 -Inf EDOM

pow(x,y) Overflow +Inf ERANGE

pow(x,y) Underflow 0 ERANGE

pow(x,y) x=0 or x=Inf, y=0 +1 EDOM

pow(x,y) x=+0, y<0 -Inf EDOM

pow(x,y) x=-0, y<0 and y integer -Inf EDOM

pow(x,y) x= -0, y<0 and y non-integer QNaN EDOM

pow(x,y) x<0, y non-integer QNaN EDOM

pow(x,y) x=1, y=Inf QNaN EDOM

sqrt(x) x < 0 QNaN EDOM

sin(x) x=Inf QNaN EDOM

sinh(x) Overflow +Inf ERANGE

tan(x) x=Inf QNaN EDOM

atan(x) SNaN SNaN None
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-108
ID061811 Non-Confidential

The ARM C and C++ libraries
HUGE_VAL is an alias for Inf. Consult the errno variable for the error number. Other than the cases
shown in Table 2-10 on page 2-108, all functions return QNaN when passed QNaN and throw an
invalid operation exception when passed SNaN.

The string passed to C99 nan() is ignored, and the same Not a Number (NaN) is always returned,
namely the one with all fraction bits clear except the topmost one. The sign bit is also clear.
Passing strings of the form NAN(xxxx) to strtod has the same effect.

2.86.2 See also

Concepts
• How the ARM C library fulfills ISO C specification requirements on page 2-107
• ISO-compliant implementation of signals supported by the signal() function in the C

library and additional type arguments on page 2-110
• ISO-compliant C library input/output characteristics on page 2-112
• Standard C++ library implementation definition on page 2-114.

Other info
• WG14/N1256 Committee Draft, ISO/IEC 9899:TC3, September 7, 2007.

ceil(x) SNaN SNaN None

floor(x) SNaN SNaN None

frexp(x) SNaN SNaN None

ldexp(x) SNaN SNaN None

modf(x) SNaN SNaN None

tanh(x) SNaN SNaN None

Table 2-10 Mathematical functions in RVCT 4.0 and earlier (continued)

Function Condition Returned value Error number
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-109
ID061811 Non-Confidential

The ARM C and C++ libraries
2.87 ISO-compliant implementation of signals supported by the signal() function in
the C library and additional type arguments

Table 2-11 shows the signals supported by the signal() function. It also shows which signals
use an additional argument to give more information about the circumstance in which the signal
was raised. The additional argument is given in the type parameter of __raise(). For example,
division by zero results in a SIGFPE (signal == 2) signal with a corresponding additional
argument of FE_EX_DIVBYZERO (type == 2).

Table 2-11 Signals supported by the signal() function

Signal Number Description Additional argument

SIGABRT 1 Returned when any untrapped exception is thrown, such as:
• a negative array size is allocated through the new

operator
• an invalid dynamic cast.
This signal is only used if abort() or assert() are called by
your C++ application, and --exceptions is specified.

None

SIGFPE 2 Used to signal any arithmetic exception, for example,
division by zero. Used by hard and soft floating-point and by
integer division.

A set of bits from
{FE_EX_INEXACT,
FE_EX_UNDERFLOW,
FE_EX_OVERFLOW,
FE_EX_DIVBYZERO,
FE_EX_INVALID,
DIVBYZERO}

SIGILL a 3 Illegal instruction. None

SIGINT a 4 Attention request from user. None

SIGSEGV a 5 Bad memory access. None

SIGTERM a 6 Termination request. None

SIGSTAK 7 Obsolete. None

SIGRTRED 8 Redirection failed on a runtime library input/output stream. Name of file or device
being re-opened to redirect
a standard stream

SIGRTMEM 9 Out of heap space during initialization or after corruption. Size of failed request

SIGUSR1 10 User-defined. User-defined

SIGUSR2 11 User-defined. User-defined

SIGPVFN 12 A pure virtual function was called from C++. -

SIGCPPL 13 Not normally used. -

SIGOUTOFHEAP b 14 Returned by the C++ function ::operator new when out of
heap space.

Size of failed request

reserved 15-31 Reserved. Reserved

other > 31 User-defined. User-defined

a. This signal is never generated by the library. It is available for you to raise manually, if required.
b. Not used in RVCT 2.1, and later.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-110
ID061811 Non-Confidential

The ARM C and C++ libraries
Although SIGSTAK exists in signal.h, this signal is not generated by the C library and is
considered obsolete.

A signal number greater than SIGUSR2 can be passed through __raise() and caught by the
default signal handler, but it cannot be caught by a handler registered using signal().

signal() returns an error code if you try to register a handler for a signal number greater than
SIGUSR2.

The default handling of all recognized signals is to print a diagnostic message and call exit().
This default behavior applies at program startup and until you change it.

Caution
 The IEEE 754 standard for floating-point processing states that the default action to an
exception is to proceed without a trap. A raised exception in floating-point calculations does not,
by default, generate SIGFPE. You can modify floating-point error handling by tailoring the
functions and definitions in fenv.h. However, you must compile these functions with a
non-default FP model, such as --fpmode=ieee_fixed and upwards.

For all the signals in Table 2-11 on page 2-110, when a signal occurs, if the handler points to a
function, the equivalent of signal(sig, SIG_DFL) is executed before the call to the handler.

If the SIGILL signal is received by a handler specified to by the signal() function, the default
handling is reset.

2.87.1 See also

Concepts
• How the ARM C library fulfills ISO C specification requirements on page 2-107
• mathlib error handling on page 2-108
• ISO-compliant C library input/output characteristics on page 2-112
• Standard C++ library implementation definition on page 2-114
• Modification of C library functions for error signaling, error handling, and program exit

on page 2-80
• Exception types recognized by the ARM floating-point environment on page 4-45.

Reference
ARM® C and C++ Libraries and Floating-Point Support Reference:
• __raise() on page 2-23
• __rt_raise() on page 2-35.
Compiler Reference:
• --exceptions, --no_exceptions on page 3-37
• --fpmode=model on page 3-42.

Other information
• IEEE Standard for Floating-Point Arithmetic (IEEE 754), 1985 version,

http://ieeexplore.ieee.org
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-111
ID061811 Non-Confidential

The ARM C and C++ libraries
2.88 ISO-compliant C library input/output characteristics
The generic ARM C library has the following input/output characteristics:

• The last line of a text stream does not require a terminating newline character.

• Space characters written out to a text stream immediately before a newline character do
appear when read back in.

• No NUL characters are appended to a binary output stream.

• The file position indicator of an append mode stream is initially placed at the end of the
file.

• A write to a text stream causes the associated file to be truncated beyond the point where
the write occurred if this is the behavior of the device category of the file.

• If semihosting is used, the maximum number of open files is limited by the available
target memory.

• A zero-length file exists, that is, where no characters have been written by an output
stream.

• A file can be opened many times for reading, but only once for writing or updating. A file
cannot simultaneously be open for reading on one stream, and open for writing or
updating on another.

• Local time zones and Daylight Saving Time are not implemented. The values returned
indicate that the information is not available. For example, the gmtime() function always
returns NULL.

• The status returned by exit() is the same value that was passed to it. For definitions of
EXIT_SUCCESS and EXIT_FAILURE, see the header file stdlib.h. Semihosting, however, does
not pass the status back to the execution environment.

• The error messages returned by the strerror() function are identical to those given by the
perror() function.

• If the size of area requested is zero, calloc() and realloc() return NULL.

• If the size of area requested is zero, malloc() returns a pointer to a zero-size block.

• abort() closes all open files and deletes all temporary files.

• fprintf() prints %p arguments in lowercase hexadecimal format as if a precision of 8 had
been specified. If the variant form (%#p) is used, the number is preceded by the character @.

• fscanf() treats %p arguments exactly the same as %x arguments.

• fscanf() always treats the character "-" in a %...[...] argument as a literal character.

• ftell(), fsetpos() and fgetpos() set errno to the value of EDOM on failure.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-112
ID061811 Non-Confidential

The ARM C and C++ libraries
• perror() generates the messages shown in Table 2-12.

The following characteristics are unspecified in the ARM C library. They must be specified in
an ISO-compliant implementation:
• the validity of a filename
• whether remove() can remove an open file
• the effect of calling the rename() function when the new name already exists
• the effect of calling getenv() (the default is to return NULL, no value available)
• the effect of calling system()
• the value returned by clock().

2.88.1 See also

Concepts
• How the ARM C library fulfills ISO C specification requirements on page 2-107
• ISO-compliant implementation of signals supported by the signal() function in the C

library and additional type arguments on page 2-110
• mathlib error handling on page 2-108
• Standard C++ library implementation definition on page 2-114.

Table 2-12 perror() messages

Error Message

0 No error (errno = 0)

EDOM EDOM - function argument out of range

ERANGE ERANGE - function result not representable

ESIGNUM ESIGNUM - illegal signal number

Others Unknown error
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-113
ID061811 Non-Confidential

The ARM C and C++ libraries
2.89 Standard C++ library implementation definition
The ARM C++ library provides all of the library defined in the ISO/IEC 14822 :1998(E) C++
Standard, aside from some limitations described in Table 2-13.

The Standard C++ library is distributed in binary form only.

Table 2-13 describes the most important features missing from the current release.

Table 2-13 Standard C++ library differences

Standard Implementation differences

locale The locale message facet is not supported. It fails to open
catalogs at runtime because the ARM C library does not
support catopen and catclose through nl_types.h. One of
two locale definitions can be selected at link time. Other
locales can be created by user-redefinable functions.

Timezone Not supported by the ARM C library.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-114
ID061811 Non-Confidential

The ARM C and C++ libraries
2.90 C library functions and extensions
The ARM C library is fully compliant with the ISO C99 library standard. See Table 2-14 for
POSIX, BSD-derived, and ARM compiler-specific extensions.

2.90.1 See also

Reference

ARM® C and C++ Libraries and Floating-Point Support Reference:
• wcstombs() on page 2-62
• alloca() on page 2-5
• strlcpy() on page 2-43
• strlcat() on page 2-42
• strcasecmp() on page 2-40
• strncasecmp() on page 2-41
• _fisatty() on page 2-11
• __heapstats() on page 2-15
• __heapvalid() on page 2-16.

Table 2-14 C library extensions

Function Header file
definition Extension

wcstombs() stdlib.h POSIX extended functionality

posix_memalign() stdlib.h POSIX extended functionality

alloca() alloca.h Common non standard extension to many C libraries

strlcpy() string.h Common BSD-derived extension to many C libraries

strlcat() string.h Common BSD-derived extension to many C libraries

strcasecmp() string.h Standardized by POSIX.

strncasecmp() string.h Standardized by POSIX.

_fisatty() stdio.h Specific to the ARM compiler

__heapstats() stdlib.h Specific to the ARM compiler

__heapvalid() stdlib.h Specific to the ARM compiler
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-115
ID061811 Non-Confidential

The ARM C and C++ libraries
2.91 Persistence of C and C++ library names across releases of the ARM compilation
tools

The library naming convention described in this documentation applies to the current release of
the ARM compilation tools.

Note
 Do not rely on C and C++ library names. They might change in future releases.

2.91.1 See also

Tasks
• Managing projects that have explicit C or C++ library names in makefiles on page 2-118.

Concepts
• Link time selection of C and C++ libraries on page 2-117
• Compiler generated and library-resident helper functions on page 2-119
• C and C++ library naming conventions on page 2-120.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-116
ID061811 Non-Confidential

The ARM C and C++ libraries
2.92 Link time selection of C and C++ libraries
Normally, you do not have to list any of the C and C++ libraries explicitly on the linker
command line. The ARM linker automatically selects the correct C or C++ libraries to use, and
it might use several, based on the accumulation of the object attributes.

2.92.1 See also

Tasks
• Managing projects that have explicit C or C++ library names in makefiles on page 2-118.

Concepts
• Persistence of C and C++ library names across releases of the ARM compilation tools on

page 2-116
• Compiler generated and library-resident helper functions on page 2-119
• C and C++ library naming conventions on page 2-120.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-117
ID061811 Non-Confidential

The ARM C and C++ libraries
2.93 Managing projects that have explicit C or C++ library names in makefiles
If library names are explicitly named in a makefile, you must rebuild your project as follows:

1. Remove the explicit references to the old library names from the linker command-line.

2. Add --info libraries to the linker command-line and rebuild the project. This produces
a list of all the libraries in use.

3. Add the new list of libraries to the linker command-line.

A specific library can be included in a scatter-loading file.

2.93.1 See also

Tasks
Using the Linker:
• About placing ARM C and C++ library code on page 8-45.

Concepts
• Persistence of C and C++ library names across releases of the ARM compilation tools on

page 2-116
• Link time selection of C and C++ libraries on page 2-117
• Compiler generated and library-resident helper functions on page 2-119
• C and C++ library naming conventions on page 2-120.

Reference
Linker Reference:
• --info=topic[,topic,...] on page 2-59.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-118
ID061811 Non-Confidential

The ARM C and C++ libraries
2.94 Compiler generated and library-resident helper functions
Compiler support or helper functions specific to the compilation tools are typically used when
the compiler cannot easily produce a suitable code sequence itself.

In RVCT v4.0 and later, the helper functions are generated by the compiler in the resulting
object files.

In RVCT v3.1 and earlier, the helper functions reside in libraries. Because these libraries are
specific to the ARM C compiler, they are intended to be redistributed as necessary with your
own code. For example, if you are distributing a library to a third party, they might also require
the appropriate helper library to link their final application successfully. Be aware of
redistribution rights of the libraries, as specified in your End User License Agreement.

2.94.1 See also

Tasks
• Managing projects that have explicit C or C++ library names in makefiles on page 2-118.

Concepts
• Persistence of C and C++ library names across releases of the ARM compilation tools on

page 2-116
• Link time selection of C and C++ libraries on page 2-117
• C and C++ library naming conventions on page 2-120.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-119
ID061811 Non-Confidential

The ARM C and C++ libraries
2.95 C and C++ library naming conventions
The library filename identifies how the variant was built. The values for the fields of the
filename, and the relevant build options are:

*root/prefix_arch[fpu][entrant].endian

root armlib An ARM C library.
cpplib An ARM C++ library.

prefix c ISO C and C++ basic runtime support.
cpp Rogue Wave C++ library.
cpprt The ARM C++ runtime libraries.
f --fpmode=ieee_fixed.

IEEE-compliant library with a fixed rounding mode (round to nearest)
and no inexact exceptions.

fj --fpmode=ieee_no_fenv.
IEEE-compliant library with a fixed rounding mode (round to nearest)
and no exceptions.

fz --fpmode=fast or --fpmode=std.
Behaves like the fj library, but additionally flushes denormals and
infinities to zero.
This library behaves like the ARM VFP in Fast mode. This is the
default.

g --fpmode=ieee_full.
IEEE-compliant library with configurable rounding mode and all
IEEE exceptions.

h Compiler support (helper) library.
m Transcendental math functions.
mc Non ISO C-compliant ISO C micro-library basic runtime support.
mf Non IEEE 754 floating-point compliant micro-library support.
n Compatible with the compiler option, --enum_is_int.
u Compatible with the compiler option, --wchar32.

arch 4 An ARM only library for use with ARMv4.
t An ARM/Thumb interworking library for use with ARMv4T.
5 An ARM/Thumb interworking library for use with ARMv5T and later.
w A Thumb-2 only library for use with Cortex-M3.
p A Thumb-1 only library for use with Cortex-M1 and Cortex-M0.
2 A combined ARM and Thumb-2 library for use with Cortex-R series

processor cores.

fpu v Uses VFP instruction set.
s Soft VFP.

Note
 If neither v nor s is present in a library name, the library provides no

floating-point support.

entrant e Position-independent access to static data.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-120
ID061811 Non-Confidential

The ARM C and C++ libraries
f FPIC addressing is enabled.

Note
 If neither e nor f is present in a library name, the library uses

position-dependent access to static data.

endian l Little-endian.
b Big-endian.

For example:

*armlib/c_4.b
*cpplib/cpprt_5f.l

Note
 Not all variant/name combinations are valid. See the armlib and cpplib directories for the
libraries that are supplied with the ARM compilation tools.

The linker command-line option --info libraries provides information on every library that is
automatically selected for the link stage.

2.95.1 See also

Concepts
Introducing the ARM Compiler toolchain:
• ARM architectures supported by the toolchain on page 2-14.

Reference
• Compiler generated and library-resident helper functions on page 2-119.
Linker Reference:
• --info=topic[,topic,...] on page 2-59.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-121
ID061811 Non-Confidential

The ARM C and C++ libraries
2.96 Using macro__ARM_WCHAR_NO_IO to disable FILE declaration and wide I/O function
prototypes

In strict C/C++ mode, the header files wchar.h and cwchar do not declare the FILE type. You can
also define the macro __ARM_WCHAR_NO_IO to cause these header files not to declare FILE or the
wide I/O function prototypes.

(Declaring the FILE type can lead to better consistency in debug information.)
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 2-122
ID061811 Non-Confidential

Chapter 3
The ARM C micro-library

The following topics describe the C micro-library (microlib):
• About microlib on page 3-2
• Differences between microlib and the default C library on page 3-3
• Library heap usage requirements of the ARM C micro-library on page 3-4
• ISO C features missing from microlib on page 3-5
• Building an application with microlib on page 3-7
• Creating an initial stack pointer for use with microlib on page 3-8
• Creating the heap for use with microlib on page 3-9
• Entering and exiting programs linked with microlib on page 3-10
• Tailoring the microlib input/output functions on page 3-11.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 3-1
ID061811 Non-Confidential

The ARM C micro-library
3.1 About microlib
Microlib is an alternative library to the default C library. It is intended for use with deeply
embedded applications that must fit into extremely small memory footprints. These applications
do not run under an operating system.

Note
 Microlib does not attempt to be an ISO C-compliant library.

Microlib is highly optimized for small code size. It has less functionality than the default C
library and some ISO C features are completely missing. Some library functions are also slower.

Functions in microlib are responsible for:

• Creating an environment that a C program can execute in. This includes:
— creating a stack
— creating a heap, if required
— initializing the parts of the library the program uses.

• Starting execution by calling main().

3.1.1 See also

Concepts
• Differences between microlib and the default C library on page 3-3
• ISO C features missing from microlib on page 3-5.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 3-2
ID061811 Non-Confidential

The ARM C micro-library
3.2 Differences between microlib and the default C library
The main differences between microlib and the default C library are:

• Microlib is not compliant with the ISO C library standard. Some ISO features are not
supported and others have less functionality.

• Microlib is not compliant with the IEEE 754 standard for binary floating-point arithmetic.

• Microlib is highly optimized for small code size.

• Locales are not configurable. The default C locale is the only one available.

• main() must not be declared to take arguments and must not return.

• Microlib provides limited support for C99 functions.

• Microlib does not support C++.

• Microlib does not support operating system functions.

• Microlib does not support position-independent code.

• Microlib does not provide mutex locks to guard against code that is not thread safe.

• Microlib does not support wide characters or multibyte strings.

• Microlib does not support selectable one or two region memory models as the standard
library (stdlib) does. Microlib provides only the two region memory model with separate
stack and heap regions.

• Microlib does not support the bit-aligned memory functions _membitcpy[b|h|w][b|l]()
and membitmove[b|h|w][b|l]().

• Microlib can be used with either --fpmode=std or --fpmode=fast.

• The level of ANSI C stdio support that is provided can be controlled with #pragma
import(__use_full_stdio).

• setvbuf() and setbuf() always fail because all streams are unbuffered.

• feof() and ferror() always return 0 because the error and EOF indicators are not supported.

3.2.1 See also

Concepts
• ISO C features missing from microlib on page 3-5.

Reference
Compiler Reference:
• --fpmode=model on page 3-42
• #pragma import(__use_full_stdio) on page 5-53.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 3-3
ID061811 Non-Confidential

The ARM C micro-library
3.3 Library heap usage requirements of the ARM C micro-library
Library heap usage requirements for microlib differ to those of standardlib as follows:

• The size of heap memory allocated for fopen() is 20 bytes for the FILE structure.

• No buffer is ever allocated.

You must not declare main() to take arguments if you are using microlib.

Note
 The size of heap memory allocated for fopen() might change in future releases.

3.3.1 See also

• Library heap usage requirements of the ARM C and C++ libraries on page 2-8.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 3-4
ID061811 Non-Confidential

The ARM C micro-library
3.4 ISO C features missing from microlib
Major ISO C90 features not supported by microlib are:

Wide character and multibyte support
All functions dealing with wide characters or multibyte strings are not supported
by microlib. A link error is generated if these are used. For example, mbtowc(),
wctomb(), mbstowcs() and wcstombs(). All functions defined in Normative
Addendum 1 are not supported by microlib.

Operating system interaction
All functions that interact with an operating system are not supported by microlib.
For example, abort(), exit(), atexit(), clock(), assert(), time(), system() and
getenv().

File I/O By default, all the stdio functions that interact with a file pointer return an error
if called. The only exceptions to this are the three standard streams stdin, stdout
and stderr.
You can change this behavior using #pragma import(__use_full_stdio). Use of
this pragma provides a microlib version of stdio that supports ANSI C, with only
the following exceptions:
• the error and EOF indicators are not supported, so feof() and ferror() return

0

• all streams are unbuffered, so setvbuf() and setbuf() fail.

Configurable locale
The default C locale is the only one available.

Signals The functions signal() and raise() are provided but microlib does not generate
signals. The only exception to this is if the program explicitly calls raise().

Floating-point support
Floating-point support diverges from IEEE 754 in the following ways, but uses
the same data formats and matches IEEE 754 in operations involving only
normalized numbers:
• Operations involving NaNs, infinities or input denormals produce

unpredictable results. Operations that produce a result that is nonzero but
very small in value, return zero.

• IEEE exceptions cannot be flagged by microlib, and there is no fp_status()
register in microlib.

• The sign of zero is not treated as significant by microlib, and zeroes that are
output from microlib floating-point arithmetic have an unpredictable sign
bit.

• Only the default rounding mode is supported.

Position independent and thread safe code
Microlib has no reentrant variant. Microlib does not provide mutex locks to guard
against code that is not thread safe. Use of microlib is not compatible with FPIC
or RWPI compilation modes, and although ROPI code can be linked with
microlib, the resulting binary is not ROPI-compliant overall.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 3-5
ID061811 Non-Confidential

The ARM C micro-library
3.4.1 See also

Concepts
• Differences between microlib and the default C library on page 3-3
• C library API definitions for targeting a different environment on page 2-40
• Building an application without the C library on page 2-41.

Reference
Compiler Reference:
• #pragma import(__use_full_stdio) on page 5-53.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 3-6
ID061811 Non-Confidential

The ARM C micro-library
3.5 Building an application with microlib
To build a program using microlib, you must use the command-line option
--library_type=microlib. This option can be used by the compiler, assembler or linker. Use it
with the linker to override all other options.

Example 3-1 shows --library_type=microlib being used by the compiler. Specifying
--library_type=microlib when compiling main.c results in an object file containing an attribute
that asks the linker to use microlib. Compiling extra.c with --library_type=microlib is
unnecessary, because the request to link against microlib exists in the object file generated by
compiling main.c.

Example 3-1 Compiler option

armcc --library_type=microlib -c main.c armcc -c extra.c armlink -o image.axf main.o
extra.o

Example 3-2 shows this option being used by the assembler. The request to the linker to use
microlib is made as a result of assembling more.s with --library_type=microlib.

Example 3-2 Assembler option

armcc -c main.c armcc -c extra.c armasm --library_type=microlib more.s armlink -o
image.axf main.o extra.o more.o

Example 3-3 shows this option being used by the linker. Neither object file contains the attribute
requesting that the linker link against microlib, so the linker selects microlib as a result of being
explicitly asked to do so on the command line.

Example 3-3 Linker option

armcc -c main.c armcc -c extra.c armlink --library_type=microlib -o image.axf main.o
extra.o

3.5.1 See also

Tasks
• Creating an initial stack pointer for use with microlib on page 3-8
• Creating the heap for use with microlib on page 3-9
• Entering and exiting programs linked with microlib on page 3-10.

Reference
Compiler Reference:
• --library_type=lib on page 3-58.
Linker Reference:
• input-file-list on page 2-66.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 3-7
ID061811 Non-Confidential

The ARM C micro-library
3.6 Creating an initial stack pointer for use with microlib
To use microlib, you must specify an initial pointer for the stack. You can use either of the
following methods to do this:
• use a scatter file
• define a symbol, __initial_sp, to be equal to the top of the stack.

The scatter file method uses ARM_LIB_STACK and ARM_LIB_STACKHEAP.

Otherwise, specify the initial stack pointer by defining a symbol, __initial_sp, to be equal to
the top of the stack. The initial stack pointer must be aligned to a multiple of eight bytes.

Example 3-4 shows how to set up the initial stack pointer using assembly language.

Example 3-4 Assembly language

EXPORT __initial_sp
__initial_sp EQU 0x100000 ; equal to the top of the stack

Example 3-5 shows how to set up the initial stack pointer using embedded assembler in C.

Example 3-5 Embedded Assembler in C

__asm void dummy_function(void)
{

EXPORT __initial_sp
__initial_sp EQU 0x100000 ; equal to the top of the stack
}

3.6.1 See also

Tasks
• Defining __initial_sp, __heap_base and __heap_limit on page 2-89
• Creating the heap for use with microlib on page 3-9
• Entering and exiting programs linked with microlib on page 3-10.
Using the Linker:
• Chapter 8 Using scatter files.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 3-8
ID061811 Non-Confidential

The ARM C micro-library
3.7 Creating the heap for use with microlib
To use the heap functions, for example, malloc(), calloc(), realloc() and free(), you must
specify the location and size of the heap region.

To specify the start and end of the heap you can use either of the following methods:
• use a scatter file
• define symbols __heap_base and __heap_limit.

The scatter file method uses ARM_LIB_HEAP and ARM_LIB_STACKHEAP.

Otherwise, specify the start and end of the heap by defining symbols __heap_base and
__heap_limit respectively. On completion, you can use the heap functions in the normal way.

Note
 The __heap_limit must point to the byte beyond the last byte in the heap region.

Example 3-6 shows how to set up the heap pointers using assembly language.

Example 3-6 Assembly language

EXPORT __heap_base
__heap_base EQU 0x400000 ; equal to the start of the heap

EXPORT __heap_limit
__heap_limit EQU 0x800000 ; equal to the end of the heap

Example 3-7 shows how to set up the heap pointer using embedded assembler in C.

Example 3-7 Embedded Assembler in C

__asm void dummy_function(void)
{

EXPORT __heap_base
__heap_base EQU 0x400000 ; equal to the start of the heap

EXPORT __heap_limit
__heap_limit EQU 0x800000 ; equal to the end of the heap
}

3.7.1 See also

Tasks
• Creating an initial stack pointer for use with microlib on page 3-8
• Entering and exiting programs linked with microlib on page 3-10
• Defining __initial_sp, __heap_base and __heap_limit on page 2-89.
Using the Linker:
• Chapter 8 Using scatter files.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 3-9
ID061811 Non-Confidential

The ARM C micro-library
3.8 Entering and exiting programs linked with microlib
Use main() to begin your program. Do not declare main() to take arguments.

Your program must not return from main(). This is because Microlib does not contain any code
to handle exit from main(). You can ensure that your main() function does not return, by
inserting an endless loop at the end of the function. For example:

void main()
{
...
while (1); // endless loop to prevent return from main()

}

Microlib does not support:
• command-line arguments from an operating system
• programs that call exit().
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 3-10
ID061811 Non-Confidential

The ARM C micro-library
3.9 Tailoring the microlib input/output functions
Microlib provides a limited stdio subsystem that supports unbuffered stdin, stdout and stderr
only. This enables you to use printf() for displaying diagnostic messages from your
application.

To use high-level I/O functions you must provide your own implementation of the following
base functions so that they work with your own I/O device.

fputc() Implement this base function for all output functions. For example, fprintf(),
printf(), fwrite(), fputs(), puts(), putc() and putchar().

fgetc() Implement this base function for all input functions. For example, fscanf(),
scanf(), fread(), read(), fgets(), gets(), getc() and getchar().

__backspace()
Implement this base function if your input functions use scanf() or fscanf().

Note
 Conversions that are not supported in microlib are %lc, %ls and %a.

3.9.1 See also

Reference
• Tailoring input/output functions in the C and C++ libraries on page 2-92.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 3-11
ID061811 Non-Confidential

Chapter 4
Floating-point support

The following topics describe the ARM support for floating-point computations:
• About floating-point support on page 4-3
• The software floating-point library, fplib on page 4-4
• Calling fplib routines on page 4-5
• fplib arithmetic on numbers in a particular format on page 4-6
• fplib conversions between floats, doubles, and ints on page 4-8
• fplib conversion between long longs, floats, and doubles on page 4-9
• fplib comparisons between floats and doubles on page 4-10
• fplib C99 functions on page 4-12
• Controlling the ARM floating-point environment on page 4-13
• Floating-point functions for compatibility with Microsoft products on page 4-14
• C99-compatible functions for controlling the ARM floating-point environment on

page 4-15
• C99 rounding mode and floating-point exception macros on page 4-16
• Exception flag handling on page 4-17
• Functions for handling rounding modes on page 4-18
• Functions for saving and restoring the whole floating-point environment on page 4-19
• Functions for temporarily disabling exceptions on page 4-20
• ARM floating-point compiler extensions to the C99 interface on page 4-21
• Writing a custom exception trap handler on page 4-22
• Example of a custom exception handler on page 4-26
• Exception trap handling by signals on page 4-28
• Using C99 signalling NaNs provided by mathlib (_WANT_SNAN) on page 4-29
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 4-1
ID061811 Non-Confidential

Floating-point support
• mathlib double and single-precision floating-point functions on page 4-30
• Nonstandard functions in mathlib on page 4-31
• IEEE 754 arithmetic on page 4-32
• Basic data types for IEEE 754 arithmetic on page 4-33
• Single precision data type for IEEE 754 arithmetic on page 4-34
• Double precision data type for IEEE 754 arithmetic on page 4-36
• Sample single precision floating-point values for IEEE 754 arithmetic on page 4-37
• Sample double precision floating-point values for IEEE 754 arithmetic on page 4-39
• IEEE 754 arithmetic and rounding on page 4-41
• Exceptions arising from IEEE 754 floating-point arithmetic on page 4-42
• Ignoring exceptions from IEEE 754 floating-point arithmetic operations on page 4-43
• Trapping exceptions from IEEE 754 floating-point arithmetic operations on page 4-44
• Exception types recognized by the ARM floating-point environment on page 4-45
• Using the Vector Floating-Point (VFP) support libraries on page 4-47.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 4-2
ID061811 Non-Confidential

Floating-point support
4.1 About floating-point support
The ARM floating-point environment is an implementation of the IEEE 754-1985 standard for
binary floating-point arithmetic.

An ARM system might have:
• a VFP coprocessor
• no floating-point hardware.

If you compile for a system with a hardware VFP coprocessor, the ARM compiler makes use of
it. If you compile for a system without a coprocessor, the compiler implements the computations
in software. For example, the compiler option --fpu=vfp selects a hardware VFP coprocessor
and the option --fpu=softvfp specifies that arithmetic operations are to be performed in
software, without the use of any coprocessor instructions.

4.1.1 See also

Concepts
• IEEE 754 arithmetic on page 4-32
• The software floating-point library, fplib on page 4-4.

Reference
Compiler Reference:
• --fpu=name on page 3-44.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 4-3
ID061811 Non-Confidential

Floating-point support
4.2 The software floating-point library, fplib
When programs are compiled to use a floating-point coprocessor, they perform basic
floating-point arithmetic by means of floating-point machine instructions for the target
coprocessor. When programs are compiled to use software floating-point, there is no
floating-point instruction set available, so the ARM libraries provide a set of procedure calls to
do floating-point arithmetic. These procedures are in the software floating-point library, fplib.

4.2.1 See also

Tasks
• Calling fplib routines on page 4-5.

Concepts
• fplib arithmetic on numbers in a particular format on page 4-6
• fplib conversions between floats, doubles, and ints on page 4-8
• fplib conversion between long longs, floats, and doubles on page 4-9
• fplib comparisons between floats and doubles on page 4-10
• fplib C99 functions on page 4-12.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 4-4
ID061811 Non-Confidential

Floating-point support
4.3 Calling fplib routines
Floating-point routines have names like __aeabi_dadd (add two doubles) and __aeabi_fdiv
(divide two floats). User programs can call these routines directly. Even in environments with
a coprocessor, the routines are provided. They are typically only a few instructions long because
all they do is execute the appropriate coprocessor instruction.

All the fplib routines are called using a software floating-point variant of the calling standard.
This means that floating-point arguments are passed and returned in integer registers. By
contrast, if the program is compiled for a coprocessor, floating-point data is passed in its
floating-point registers.

So, for example, __aeabi_dadd takes a double in registers r0 and r1, and another double in
registers r2 and r3, and returns the sum in r0 and r1.

Note
 For a double in registers r0 and r1, the register that holds the high 32 bits of the double depends
on whether your program is little-endian or big-endian.

Except for the software floating-point library routines that implement C99 functionality, the
fplib routines are declared in the header file rt_fp.h. You can include this file if you want to call
an fplib routine directly. Software floating-point library routines that implement C99
functionality are declared in the standard header file math.h.

To call a function from assembler, the software floating-point function is named __softfp_fn.
For example, to call the cos() function, implement the following code:

IMPORT __softfp_cos
BL __softfp_cos

4.3.1 See also

Concepts
• fplib C99 functions on page 4-12
• The software floating-point library, fplib on page 4-4.
Using the Compiler:
• Compiler support for floating-point computations and linkage on page 5-63.

Other information
• Application Binary Interface (ABI) for the ARM Architecture,

http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.abi
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 4-5
ID061811 Non-Confidential

Floating-point support
4.4 fplib arithmetic on numbers in a particular format
Table 4-1 describes routines to perform arithmetic on numbers in a particular format.
Arguments and return types are always in the same format.

4.4.1 Notes on arithmetic routines

a Functions that perform the IEEE 754 remainder operation. This is defined to take
two numbers, x and y, and return a number z so that z = x – n * y, where n is an
integer. To return an exactly correct result, n is chosen so that z is no bigger than
half of x (so that z might be negative even if both x and y are positive). The IEEE
754 remainder function is not the same as the operation performed by the C
library function fmod, where z always has the same sign as x. Where the IEEE 754
specification gives two acceptable choices of n, the even one is chosen. This
behavior occurs independently of the current rounding mode.

Table 4-1 Arithmetic routines

Function Argument
types

Return
type Operation

__aeabi_fadd 2 float float Return x plus y

__aeabi_fsub 2 float float Return x minus y

__aeabi_frsub 2 float float Return y minus x

__aeabi_fmul 2 float float Return x times y

__aeabi_fdiv 2 float float Return x divided by y

_frdiv 2 float float Return y divided by x

_frem 2 float float Return remainder of x by y (see a in Notes
on arithmetic routines)

_frnd float float Return x rounded to an integer (see b in
Notes on arithmetic routines)

_fsqrt float float Return square root of x

__aeabi_dadd 2 double double Return x plus y

__aeabi_dsub 2 double double Return x minus y

__aeabi_drsub 2 double double Return y minus x

__aeabi_dmul 2 double double Return x times y

__aeabi_ddiv 2 double double Return x divided by y

_drdiv 2 double double Return y divided by x

_drem 2 double double Return remainder of x by y (see a and c in
Notes on arithmetic routines)

_drnd double double Return x rounded to an integer (see b in
Notes on arithmetic routines)

_dsqrt double double Return square root of x
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 4-6
ID061811 Non-Confidential

Floating-point support
b Functions that perform the IEEE 754 round-to-integer operation. This takes a
number and rounds it to an integer (in accordance with the current rounding
mode), but returns that integer in the floating-point number format rather than as
a C int variable. To convert a number to an int variable, you must use the _ffix
routines described in Table 4-2 on page 4-8.

c The IEEE 754 remainder() function is a synonym for _drem. remainder() is
defined in math.h.

4.4.2 See also

Concepts
• fplib conversions between floats, doubles, and ints on page 4-8
• fplib conversion between long longs, floats, and doubles on page 4-9
• fplib comparisons between floats and doubles on page 4-10
• fplib C99 functions on page 4-12
• The software floating-point library, fplib on page 4-4.

Other information
• Application Binary Interface (ABI) for the ARM Architecture,

http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.abi
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 4-7
ID061811 Non-Confidential

Floating-point support
4.5 fplib conversions between floats, doubles, and ints
Table 4-2 describes routines to perform conversions between number formats, excluding long
long types.

4.5.1 Notes on rounding

Rounded toward zero, independently of the current rounding mode. This is because the C
standard requires implicit conversions to integers to round this way, so it is convenient not to
have to change the rounding mode to do so. Each function has a corresponding function with _r
on the end of its name, that performs the same operation but rounds according to the current
mode.

4.5.2 See also

Concepts
• fplib conversions between floats, doubles, and ints
• fplib conversion between long longs, floats, and doubles on page 4-9
• fplib comparisons between floats and doubles on page 4-10
• fplib C99 functions on page 4-12
• The software floating-point library, fplib on page 4-4.

Other information
• Application Binary Interface (ABI) for the ARM Architecture,

http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.abi

Table 4-2 Number format conversion routines

Function Argument types Return type

__aeabi_f2d float double

__aeabi_d2f double float

_fflt int float

_ffltu unsigned int float

_dflt int double

_dfltu unsigned int double

_ffix float int (see Notes on rounding)

_ffix_r float int

_ffixu float unsigned int (see Notes on rounding)

_ffixu_r float unsigned int

_dfix double int (see Notes on rounding)

_dfix_r double int

_dfixu double unsigned int (see Notes on rounding)

_dfixu_r double unsigned int
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 4-8
ID061811 Non-Confidential

Floating-point support
4.6 fplib conversion between long longs, floats, and doubles
Table 4-3 describes routines to perform conversions between long longs, floats, and doubles.

4.6.1 Notes on rounding

Rounded toward zero, independently of the current rounding mode. This is because the C
standard requires implicit conversions to integers to round this way, so it is convenient not to
have to change the rounding mode to do so. This function has a corresponding function with _r
on the end of its name. This function performs the same operation but rounds according to the
current mode.

4.6.2 See also

Concepts
• fplib arithmetic on numbers in a particular format on page 4-6
• fplib conversions between floats, doubles, and ints on page 4-8
• fplib comparisons between floats and doubles on page 4-10
• fplib C99 functions on page 4-12
• The software floating-point library, fplib on page 4-4.

Table 4-3 Conversion routines between long longs, floats, and doubles

Function Argument types Return type

_ll_sto_f long long float

_ll_uto_f unsigned long long float

_ll_sto_d long long double

_ll_uto_d unsigned long long double

_ll_sfrom_f float long long (see Notes on rounding)

_ll_sfrom_f_r float long long

_ll_ufrom_f float unsigned long long (see Notes on rounding)

_ll_ufrom_f_r float unsigned long long

_ll_sfrom_d double long long (see Notes on rounding)

_ll_sfrom_d_r double long long

_ll_ufrom_d double unsigned long long (see Notes on rounding)

_ll_ufrom_d_r double unsigned long long
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 4-9
ID061811 Non-Confidential

Floating-point support
4.7 fplib comparisons between floats and doubles
Table 4-4 describes routines to perform comparisons between floating-point numbers. See
Notes on floating-point comparison routines on page 4-11 for more information as indicated in
the Notes column.

Table 4-4 Floating-point comparison routines

Function Argument types Return type Condition tested Notes

_fcmpeq 2 float Flags, EQ/NE x equal to y a

_fcmpge 2 float Flags, HS/LO x greater than or equal to y a, b

_fcmple 2 float Flags, HI/LS x less than or equal to y a, b

_feq 2 float Boolean x equal to y -

_fneq 2 float Boolean x not equal to y -

_fgeq 2 float Boolean x greater than or equal to y b

_fgr 2 float Boolean x greater than y b

_fleq 2 float Boolean x less than or equal to y b

_fls 2 float Boolean x less than y b

_dcmpeq 2 double Flags, EQ/NE x equal to y a

_dcmpge 2 double Flags, HS/LO x greater than or equal to y a, b

_dcmple 2 double Flags, HI/LS x less than or equal to y a, b

_deq 2 double Boolean x equal to y -

_dneq 2 double Boolean x not equal to y -

_dgeq 2 double Boolean x greater than or equal to y b

_dgr 2 double Boolean x greater than y b

_dleq 2 double Boolean x less than or equal to y b

_dls 2 double Boolean x less than y b

_fcmp4 2 float Flags, VFP x less than or equal to y c

_fcmp4e 2 float Flags, VFP x less than or equal to y b, c

_fdcmp4 float, double Flags, VFP x less than or equal to y c

_fdcmp4e float, double Flags, VFP x less than or equal to y b, c

_dcmp4 2 double Flags, VFP x less than or equal to y c

_dcmp4e 2 double Flags, VFP x less than or equal to y b, c

_dfcmp4 double, float Flags, VFP x less than or equal to y c

_dfcmp4e double, float Flags, VFP x less than or equal to y b, c
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 4-10
ID061811 Non-Confidential

Floating-point support
4.7.1 Notes on floating-point comparison routines

a Returns results in the ARM condition flags. This is efficient in assembly
language, because you can directly follow a call to the function with a conditional
instruction, but it means there is no way to use this function from C. This function
is not declared in rt_fp.h.

b Causes an Invalid Operation exception if either argument is a NaN, even a quiet
NaN. Other functions only cause Invalid Operation if an argument is an SNaN.
QNaNs return not equal when compared to anything, including other QNaNs (so
comparing a QNaN to the same QNaN still returns not equal).

c Returns VFP-type status flags in the CPSR. Also returns VFP-type status flags in
the top four bits of r0, meaning that it is possible to use this function from C. This
function is declared in rt_fp.h.

4.7.2 See also

Concepts
• fplib arithmetic on numbers in a particular format on page 4-6
• fplib conversions between floats, doubles, and ints on page 4-8
• fplib conversion between long longs, floats, and doubles on page 4-9
• fplib comparisons between floats and doubles on page 4-10
• fplib C99 functions on page 4-12
• The software floating-point library, fplib on page 4-4.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 4-11
ID061811 Non-Confidential

Floating-point support
4.8 fplib C99 functions
Table 4-5 describes fplib functions that implement C99 functionality.

4.8.1 See also

Concepts
• fplib arithmetic on numbers in a particular format on page 4-6
• fplib conversions between floats, doubles, and ints on page 4-8
• fplib conversion between long longs, floats, and doubles on page 4-9
• fplib comparisons between floats and doubles on page 4-10
• fplib C99 functions
• The software floating-point library, fplib on page 4-4.

Table 4-5 fplib C99 functions

Function Argument types Return type Returns section Standard

ilogb double int Exponent of argument x 7.12.6.5

ilogbf float int Exponent of argument x 7.12.6.5

ilogbl long double int Exponent of argument x 7.12.6.5

logb double double Exponent of argument x 7.12.6.11

logbf float float Exponent of argument x 7.12.6.11

logbl long double long double Exponent of argument x 7.12.6.11

scalbn double, int double x * (FLT_RADIX ** n) 7.12.6.13

scalbnf float, int float x * (FLT_RADIX ** n) 7.12.6.13

scalbnl long double, int long double x * (FLT_RADIX ** n) 7.12.6.13

scalbln double, long int double x * (FLT_RADIX ** n) 7.12.6.13

scalblnf float, long int float x * (FLT_RADIX ** n) 7.12.6.13

scalblnl long double, long int long double x * (FLT_RADIX ** n) 7.12.6.13

nextafter 2 double double Next representable value after x towards y 7.12.11.3

nextafterf 2 float float Next representable value after x towards y 7.12.11.3

nextafterl 2 long double long double Next representable value after x towards y 7.12.11.3

nexttoward double, long double double Next representable value after x towards y 7.12.11.4

nexttowardf float, long double float Next representable value after x towards y 7.12.11.4

nexttowardl 2 long double long double Next representable value after x towards y 7.12.11.4
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 4-12
ID061811 Non-Confidential

Floating-point support
4.9 Controlling the ARM floating-point environment
The ARM compilation tools supply several different interfaces to the floating-point
environment, for compatibility and porting ease. These interfaces enable you to change the
rounding mode, enable and disable trapping of exceptions, and install your own custom
exception trap handlers.

4.9.1 See also

Concepts
• Floating-point functions for compatibility with Microsoft products on page 4-14
• C99-compatible functions for controlling the ARM floating-point environment on

page 4-15
• ARM floating-point compiler extensions to the C99 interface on page 4-21.

Reference

ARM® C and C++ Libraries and Floating-Point Support Reference:
• __ieee_status() on page 3-8
• __fp_status() on page 3-5.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 4-13
ID061811 Non-Confidential

Floating-point support
4.10 Floating-point functions for compatibility with Microsoft products
Some functions give compatibility with Microsoft products to ease porting of floating-point
code to the ARM architecture. They are defined in float.h. These functions require you to select
a floating-point model that supports exceptions. For example, --fpmode=ieee_full or
--fpmode=ieee_fixed.

4.10.1 See also

Tasks
• Controlling the ARM floating-point environment on page 4-13.

Reference
• _controlfp() on page 3-3
• _clearfp() on page 3-2
• _statusfp() on page 3-13.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 4-14
ID061811 Non-Confidential

Floating-point support
4.11 C99-compatible functions for controlling the ARM floating-point environment

Note
 The following functionality requires you to select a floating-point model that supports
exceptions, such as --fpmode=ieee_full or --fpmode=ieee_fixed.

The compiler supports all functions defined in the C99 standard, and functions that are not
C99-standard. The C99-compatible functions are the only interface that enables you to install
custom exception trap handlers with the ability to define your own return value. All the function
prototypes, data types, and macros for this functionality are defined in fenv.h.

C99 defines two data types, fenv_t and fexcept_t. The C99 standard does not give information
about these types, so for portable code you must treat them as opaque. The compiler defines
them to be structure types.

The type fenv_t is defined to hold all the information about the current floating-point
environment. This comprises:
• the rounding mode
• the exception sticky flags
• whether each exception is masked
• what handlers are installed, if any.

The type fexcept_t is defined to hold all the information relevant to a given set of exceptions.

4.11.1 See also

Tasks
• Controlling the ARM floating-point environment on page 4-13.

Concepts
• ARM floating-point compiler extensions to the C99 interface on page 4-21
• C99 rounding mode and floating-point exception macros on page 4-16
• Exception flag handling on page 4-17
• Functions for handling rounding modes on page 4-18
• Functions for saving and restoring the whole floating-point environment on page 4-19
• Functions for temporarily disabling exceptions on page 4-20.

Reference
Compiler Reference:
• --fpmode=model on page 3-42.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 4-15
ID061811 Non-Confidential

Floating-point support
4.12 C99 rounding mode and floating-point exception macros

Note
 The following functionality requires you to select a floating-point model that supports
exceptions, such as --fpmode=ieee_full or --fpmode=ieee_fixed.

C99 defines a macro for each rounding mode and each exception. The macros are:
• FE_DIVBYZERO

• FE_INEXACT

• FE_INVALID

• FE_OVERFLOW

• FE_UNDERFLOW

• FE_ALL_EXCEPT

• FE_DOWNWARD

• FE_TONEAREST

• FE_TOWARDZERO

• FE_UPWARD.

The exception macros are bit fields. The macro FE_ALL_EXCEPT is the bitwise OR of all of them.

4.12.1 See also

Concepts
• C99-compatible functions for controlling the ARM floating-point environment on

page 4-15.

Reference
Compiler Reference:
• --fpmode=model on page 3-42.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 4-16
ID061811 Non-Confidential

Floating-point support
4.13 Exception flag handling

Note
 The following functionality requires you to select a floating-point model that supports
exceptions, such as --fpmode=ieee_full or --fpmode=ieee_fixed.

C99 provides the following functions to clear, test and raise exceptions:

void feclearexcept(int excepts); int fetestexcept(int excepts); void feraiseexcept(int
excepts);

The feclearexcept() function clears the sticky flags for the given exceptions. The
fetestexcept() function returns the bitwise OR of the sticky flags for the given exceptions, so
that if the Overflow flag was set but the Underflow flag was not, then calling
fetestexcept(FE_OVERFLOW|FE_UNDERFLOW) would return FE_OVERFLOW.

The feraiseexcept() function raises the given exceptions, in unspecified order. If an exception
trap is enabled for an exception raised this way, it is called.

C99 also provides functions to save and restore everything about a given exception. This
includes the sticky flag, whether the exception is trapped, and the address of the trap handler, if
any. These functions are:

void fegetexceptflag(fexcept_t *flagp, int excepts); void fesetexceptflag(const
fexcept_t *flagp, int excepts);

The fegetexceptflag() function copies all the information relating to the given exceptions into
the fexcept_t variable provided. The fesetexceptflag() function copies all the information
relating to the given exceptions from the fexcept_t variable into the current floating-point
environment.

Note
 fesetexceptflag() can be used to set the sticky flag of a trapped exception to 1 without calling
the trap handler, whereas feraiseexcept() calls the trap handler for any trapped exception.

4.13.1 See also

Concepts
• C99-compatible functions for controlling the ARM floating-point environment on

page 4-15.

Reference
Compiler Reference:
• --fpmode=model on page 3-42.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 4-17
ID061811 Non-Confidential

Floating-point support
4.14 Functions for handling rounding modes

Note
 The following functionality requires you to select a floating-point model that supports
exceptions., such as --fpmode=ieee_full or --fpmode=ieee_fixed.

C99 provides the following functions for handling rounding modes:

int fegetround(void); int fesetround(int round);

The fegetround() function returns the current rounding mode. The current rounding mode has
a value equal to one of the C99 rounding mode macros or exceptions.

The fesetround() function sets the current rounding mode to the value provided. fesetround()
returns zero for success, or nonzero if its argument is not a valid rounding mode.

4.14.1 See also

Concepts
• C99 rounding mode and floating-point exception macros on page 4-16
• C99-compatible functions for controlling the ARM floating-point environment on

page 4-15.

Reference
Compiler Reference:
• --fpmode=model on page 3-42.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 4-18
ID061811 Non-Confidential

Floating-point support
4.15 Functions for saving and restoring the whole floating-point environment

Note
 The following functionality requires you to select a floating-point model that supports
exceptions, such as --fpmode=ieee_full or --fpmode=ieee_fixed.

C99 provides the following functions to save and restore the entire floating-point environment:

void fegetenv(fenv_t *envp); void fesetenv(const fenv_t *envp);

The fegetenv() function stores the current state of the floating-point environment into the fenv_t
variable provided. The fesetenv() function restores the environment from the variable
provided.

Like fesetexceptflag(), fesetenv() does not call trap handlers when it sets the sticky flags for
trapped exceptions.

4.15.1 See also

Concepts
• C99-compatible functions for controlling the ARM floating-point environment on

page 4-15.

Reference
Compiler Reference:
• --fpmode=model on page 3-42.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 4-19
ID061811 Non-Confidential

Floating-point support
4.16 Functions for temporarily disabling exceptions

Note
 The following functionality requires you to select a floating-point model that supports
exceptions, such as --fpmode=ieee_full or --fpmode=ieee_fixed.

C99 provides two functions that enable you to avoid risking exception traps when executing
code that might cause exceptions. This is useful when, for example, trapped exceptions are
using the ARM default behavior. The default is to cause SIGFPE and terminate the application.

int feholdexcept(fenv_t *envp); void feupdateenv(const fenv_t *envp);

The feholdexcept() function saves the current floating-point environment in the fenv_t variable
provided, sets all exceptions to be untrapped, and clears all the exception sticky flags. You can
then execute code that might cause unwanted exceptions, and make sure the sticky flags for
those exceptions are cleared. Then you can call feupdateenv(). This restores any exception traps
and calls them if necessary. For example, suppose you have a function, frob(), that might cause
the Underflow or Invalid Operation exceptions (assuming both exceptions are trapped). You are
not interested in Underflow, but you want to know if an invalid operation is attempted. You can
implement the following code to do this:

fenv_t env;
feholdexcept(&env);
frob();
feclearexcept(FE_UNDERFLOW);
feupdateenv(&env);

Then, if the frob() function raises Underflow, it is cleared again by feclearexcept(), so no trap
occurs when feupdateenv() is called. However, if frob() raises Invalid Operation, the sticky flag
is set when feupdateenv() is called, so the trap handler is invoked.

This mechanism is provided by C99 because C99 specifies no way to change exception trapping
for individual exceptions. A better method is to use __ieee_status() to disable the Underflow
trap while leaving the Invalid Operation trap enabled. This has the advantage that the Invalid
Operation trap handler is provided with all the information about the invalid operation (that is,
what operation was being performed, and on what data), and can invent a result for the
operation. Using the C99 method, the Invalid Operation trap handler is called after the fact,
receives no information about the cause of the exception, and is called too late to provide a
substitute result.

4.16.1 See also

Concepts
• C99-compatible functions for controlling the ARM floating-point environment on

page 4-15.

Reference
ARM® C and C++ Libraries and Floating-Point Support Reference:
• __ieee_status() on page 3-8.
Compiler Reference:
• --fpmode=model on page 3-42.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 4-20
ID061811 Non-Confidential

Floating-point support
4.17 ARM floating-point compiler extensions to the C99 interface

Note
 The following functionality requires you to select a floating-point model that supports
exceptions, such as --fpmode=ieee_full or --fpmode=ieee_fixed.

The ARM C library provides some extensions to the C99 interface to enable it to do everything
that the ARM floating-point environment is capable of. This includes trapping and untrapping
individual exception types, and installing custom trap handlers.

The types fenv_t and fexcept_t are not defined by C99 to be anything in particular. The ARM
compiler defines them both to be the same structure type:

typedef struct{
 unsigned statusword;
 __ieee_handler_t __invalid_handler;
 __ieee_handler_t __divbyzero_handler;
 __ieee_handler_t __overflow_handler;
 __ieee_handler_t __underflow_handler;
 __ieee_handler_t __inexact_handler;
} fenv_t, fexcept_t;

The members of this structure are:

• statusword, the same status variable that the function __ieee_status() sees, laid out in the
same format.

• Five function pointers giving the address of the trap handler for each exception. By
default, each is NULL. This means that if the exception is trapped, the default exception trap
action happens. The default is to cause a SIGFPE signal.

4.17.1 See also

Tasks
• Writing a custom exception trap handler on page 4-22
• Controlling the ARM floating-point environment on page 4-13.

Concepts
• C99-compatible functions for controlling the ARM floating-point environment on

page 4-15
• Example of a custom exception handler on page 4-26.

Reference

ARM® C and C++ Libraries and Floating-Point Support Reference:
• __ieee_status() on page 3-8.
Compiler Reference:
• --fpmode=model on page 3-42.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 4-21
ID061811 Non-Confidential

Floating-point support
4.18 Writing a custom exception trap handler

Note
 The following functionality requires you to select a floating-point model that supports
exceptions, such as --fpmode=ieee_full or --fpmode=ieee_fixed.

If you want to install a custom exception trap handler, declare it as a function like this:

__softfp__ieee_value_t myhandler(__ieee_value_t op1,
 __ieee_value_t op2,
 __ieee_edata_t edata);

The parameters to this function are:

op1, op2 These are used to give the operands, or the intermediate result, for the operation
that caused the exception:
• For the Invalid Operation and Divide by Zero exceptions, the original

operands are supplied.
• For the Inexact Result exception, all that is supplied is the ordinary result

that would have been returned anyway. This is provided in op1.
• For the Overflow exception, an intermediate result is provided. This result

is calculated by working out what the operation would have returned if the
exponent range had been big enough, and then adjusting the exponent so
that it fits in the format. The exponent is adjusted by 192 (0xC0) in
single-precision, and by 1536 (0x600) in double-precision.
If Overflow happens when converting a double to a float, the result is
supplied in double format, rounded to single-precision, with the exponent
biased by 192.

• For the Underflow exception, a similar intermediate result is produced, but
the bias value is added to the exponent instead of being subtracted. The
edata parameter also contains a flag to show whether the intermediate result
has had to be rounded up, down, or not at all.

The type __ieee_value_t is defined as a union of all the possible types that an
operand can be passed as:
typedef union{
 float __f;
 float __s;
 double __d;

short __h;
unsigned short __uh;

 int __i;
 unsigned int __ui;

long long __l;
unsigned long long __ul;
...

/* __STRICT_ANSI__ */
 struct { int __word1, __word2; } __str;
} __ieee_value_t; /* in and out values passed to traps */

Note
 If you do not compile with --strict, and you have code that used the older

definition of __ieee_value_t, your older code still works. See the file fenv.h for
more information.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 4-22
ID061811 Non-Confidential

Floating-point support
edata This contains flags that give information about the exception that occurred, and
what operation was being performed. (The type __ieee_edata_t is a synonym for
unsigned int.)

__softfp__ieee_value_t myhandler

The return value from the function is used as the result of the operation that
caused the exception.

4.18.1 edata flags for exception trap handler

The flags contained in edata are:

edata & FE_EX_RDIR

This is nonzero if the intermediate result in Underflow was rounded down, and 0
if it was rounded up or not rounded. (The difference between the last two is given
in the Inexact Result bit.) This bit is meaningless for any other type of exception.

edata & FE_EX_exception

This is nonzero if the given exception (INVALID, DIVBYZERO, OVERFLOW, UNDERFLOW,
or INEXACT) occurred. This enables you to:
• use the same handler function for more than one exception type (the

function can test these bits to tell what exception it is supposed to handle)
• determine whether Overflow and Underflow intermediate results have been

rounded or are exact.
Because the FE_EX_INEXACT bit can be set in combination with either
FE_EX_OVERFLOW or FE_EX_UNDERFLOW, you must determine the type of exception that
actually occurred by testing Overflow and Underflow before testing Inexact.

edata & FE_EX_FLUSHZERO

This is nonzero if the FZ bit was set when the operation was performed.

edata & FE_EX_ROUND_MASK

This gives the rounding mode that applies to the operation. This is normally the
same as the current rounding mode, unless the operation that caused the exception
was a routine such as _ffix, that always rounds toward zero. The available
rounding mode values are FE_EX_ROUND_NEAREST, FE_EX_ROUND_PLUSINF,
FE_EX_ROUND_MINUSINF and FE_EX_ROUND_ZERO.

edata & FE_EX_INTYPE_MASK

This gives the type of the operands to the function, as one of the type values
shown in Table 4-6.

Table 4-6 FE_EX_INTYPE_MASK operand type flags

Flag Operand type

FE_EX_INTYPE_FLOAT float

FE_EX_INTYPE_DOUBLE double

FE_EX_INTYPE_FD float double

FE_EX_INTYPE_DF double float

FE_EX_INTYPE_HALF short

FE_EX_INTYPE_INT int
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 4-23
ID061811 Non-Confidential

Floating-point support
edata & FE_EX_OUTTYPE_MASK

This gives the type of the operands to the function, as one of the type values
shown in Table 4-7.

edata & FE_EX_FN_MASK

This gives the nature of the operation that caused the exception, as one of the
operation codes shown in Table 4-8.

FE_EX_INTYPE_UINT unsigned int

FE_EX_INTYPE_LONGLONG long long

FE_EX_INTYPE_ULONGLONG unsigned long long

Table 4-7 FE_EX_OUTTYPE_MASK operand type flags

Flag Operand type

FE_EX_OUTTYPE_FLOAT float

FE_EX_OUTTYPE_DOUBLE double

FE_EX_OUTTYPE_HALF short

FE_EX_OUTTYPE_INT int

FE_EX_OUTTYPE_UINT unsigned int

FE_EX_OUTTYPE_LONGLONG long long

FE_EX_OUTTYPE_ULONGLONG unsigned long long

Table 4-8 FE_EX_FN_MASK operation type flags

Flag Operation type

FE_EX_FN_ADD Addition.

FE_EX_FN_SUB Subtraction.

FE_EX_FN_MUL Multiplication.

FE_EX_FN_DIV Division.

FE_EX_FN_REM Remainder.

FE_EX_FN_RND Round to integer.

FE_EX_FN_SQRT Square root.

FE_EX_FN_CMP Compare.

FE_EX_FN_CVT Convert between formats.

FE_EX_FN_LOGB Exponent fetching.

Table 4-6 FE_EX_INTYPE_MASK operand type flags (continued)

Flag Operand type
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 4-24
ID061811 Non-Confidential

Floating-point support
When the operation is a comparison, the result must be returned as if it were an
int, and must be one of the four values shown in Table 4-9.
Input and output types are the same for all operations except Compare and
Convert.

4.18.2 See also

Tasks
• Controlling the ARM floating-point environment on page 4-13.

Concepts
• Example of a custom exception handler on page 4-26.
• ARM floating-point compiler extensions to the C99 interface on page 4-21
• C99-compatible functions for controlling the ARM floating-point environment on

page 4-15.

Reference

ARM® C and C++ Libraries and Floating-Point Support Reference:
• __ieee_status() on page 3-8.
Compiler Reference:
• --fpmode=model on page 3-42
• --strict, --no_strict on page 3-88.

FE_EX_FN_SCALBN Scaling.

Note
 The FE_EX_INTYPE_MASK flag only specifies the type of the
first operand. The second operand is always an int.

FE_EX_FN_NEXTAFTER Next representable number.

Note
 Both operands are the same type. Calls to nexttoward cause
the value of the second operand to change to a value that
is of the same type as the first operand. This does not affect
the result.

FE_EX_FN_RAISE The exception was raised explicitly, by feraiseexcept() or
feupdateenv(). In this case, almost nothing in the edata
word is valid.

Table 4-9 FE_EX_CMPRET_MASK comparison type flags

Flag Comparison

FE_EX_CMPRET_LESS op1 is less than op2

FE_EX_CMPRET_EQUAL op1 is equal to op2

FE_EX_CMPRET_GREATER op1 is greater than op2

FE_EX_CMPRET_UNORDERED op1 and op2 are not comparable

Table 4-8 FE_EX_FN_MASK operation type flags (continued)

Flag Operation type
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 4-25
ID061811 Non-Confidential

Floating-point support
4.19 Example of a custom exception handler

Note
 The following functionality requires you to select a floating-point model that supports
exceptions, such as --fpmode=ieee_full or --fpmode=ieee_fixed.

Example 4-1 shows a custom exception handler. Suppose you are converting some Fortran code
into C. The Fortran numerical standard requires 0 divided by 0 to be 1, whereas IEEE 754
defines 0 divided by 0 to be an Invalid Operation and so by default it returns a quiet NaN. The
Fortran code is likely to rely on this behavior, and rather than modifying the code, it is probably
easier to make 0 divided by 0 return 1.

When compiling, you must select a floating-point model that supports exceptions, for example
--fpmode=ieee_full or --fpmode=ieee_fixed.

After the handler is installed, dividing 0.0 by 0.0 returns 1.0.

Example 4-1 Custom exception handler

#include <fenv.h>
#include <signal.h>
#include <stdio.h>
__softfp __ieee_value_t myhandler(__ieee_value_t op1, __ieee_value_t op2,
 __ieee_edata_t edata)
{
 __ieee_value_t ret;
 if ((edata & FE_EX_FN_MASK) == FE_EX_FN_DIV)

{
 if ((edata & FE_EX_INTYPE_MASK) == FE_EX_INTYPE_FLOAT)

{
 if (op1.f == 0.0 && op2.f == 0.0)

{
 ret.f = 1.0;
 return ret;
 }
 }
 if ((edata & FE_EX_INTYPE_MASK) == FE_EX_INTYPE_DOUBLE)

{
 if (op1.d == 0.0 && op2.d == 0.0)

{
 ret.d = 1.0;
 return ret;
 }
 }
 }
 /* For all other invalid operations, raise SIGFPE as usual */
 raise(SIGFPE);
}
int main(void)
{
 float i, j, k;
 fenv_t env;
 fegetenv(&env);
 env.statusword |= FE_IEEE_MASK_INVALID;
 env.invalid_handler = myhandler;
 fesetenv(&env);
 i = 0.0;
 j = 0.0;
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 4-26
ID061811 Non-Confidential

Floating-point support
 k = i/j;
 printf("k is %f\n", k);
}

4.19.1 See also

Tasks
• Writing a custom exception trap handler on page 4-22
• Controlling the ARM floating-point environment on page 4-13.

Concepts
• ARM floating-point compiler extensions to the C99 interface on page 4-21
• C99-compatible functions for controlling the ARM floating-point environment on

page 4-15.

Reference
Compiler Reference:
• --fpmode=model on page 3-42.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 4-27
ID061811 Non-Confidential

Floating-point support
4.20 Exception trap handling by signals

Note
 The following functionality requires you to select a floating-point model that supports
exceptions, such as --fpmode=ieee_full or --fpmode=ieee_fixed.

If an exception is trapped but the trap handler address is set to NULL, a default trap handler is used.

The default trap handler raises a SIGFPE signal. The default handler for SIGFPE prints an
error message and terminates the program.

If you trap SIGFPE, you can declare your signal handler function to have a second parameter
that tells you the type of floating-point exception that occurred. This feature is provided for
compatibility with Microsoft products. The values are _FPE_INVALID, _FPE_ZERODIVIDE,
_FPE_OVERFLOW, _FPE_UNDERFLOW and _FPE_INEXACT. They are defined in float.h. For example:

void sigfpe(int sig, int etype){
 printf("SIGFPE (%s)\n",
 etype == _FPE_INVALID ? "Invalid Operation" :
 etype == _FPE_ZERODIVIDE ? "Divide by Zero" :
 etype == _FPE_OVERFLOW ? "Overflow" :
 etype == _FPE_UNDERFLOW ? "Underflow" :
 etype == _FPE_INEXACT ? "Inexact Result" :
 "Unknown");
}
signal(SIGFPE, (void(*)(int))sigfpe);

To generate your own SIGFPE signals with this extra information, you can call the function
__rt_raise() instead of the ISO function raise(). For example:

 __rt_raise(SIGFPE, _FPE_INVALID);

__rt_raise() is declared in rt_misc.h.

4.20.1 See also

Tasks
• Writing a custom exception trap handler on page 4-22
• Controlling the ARM floating-point environment on page 4-13.

Concepts
• ARM floating-point compiler extensions to the C99 interface on page 4-21
• C99-compatible functions for controlling the ARM floating-point environment on

page 4-15.

Reference
ARM® C and C++ Libraries and Floating-Point Support Reference:
• __rt_raise() on page 2-35.
Compiler Reference:
• --fpmode=model on page 3-42.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 4-28
ID061811 Non-Confidential

Floating-point support
4.21 Using C99 signalling NaNs provided by mathlib (_WANT_SNAN)
If you want to use signalling NaNs, you must indicate this to the compiler by defining the macro
_WANT_SNAN in your application. This macro must be defined before you include any standard C
headers. If your application is comprised of two or more translation units, either all or none of
them must define _WANT_SNAN. That is, the definition must be consistent for any given
application.

You must also use the relevant command-line option when you compile your source code. This
is associated with the predefined macro, __SUPPORT_SNAN__.

4.21.1 See also

Reference
 Compiler Reference:
• Predefined macros on page 5-98.

Other information
• WG14 - C N965, Optional support for Signaling NaNs, http://www.open-std.org/
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 4-29
ID061811 Non-Confidential

Floating-point support
4.22 mathlib double and single-precision floating-point functions
The math library, mathlib, provides double and single-precision functions for mathematical
calculations. For example, to calculate a cube root, you can use cbrt() (double-precision) or
cbrtf() (single-precision).

ISO/IEC 14882 specifies that in addition to the double versions of the math functions in <cmath>,
C++ adds float (and long double) overloaded versions of these functions. The ARM
implementation extends this in scope to include the additional math functions that do not exist
in C89, but that do exist in C99.

In C++, std::cbrt() on a float argument selects the single-precision version of the function,
and the same type of selection applies to other floating-point functions in C++.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 4-30
ID061811 Non-Confidential

Floating-point support
4.23 Nonstandard functions in mathlib
See the following topics for nonstandard mathlib functions:
• gamma(), gamma_r() on page 3-7
• j0(), j1(), jn(), Bessel functions of the first kind on page 3-11
• y0(), y1(), yn(), Bessel functions of the second kind on page 3-14.
• significand(), fractional part of a number on page 3-12.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 4-31
ID061811 Non-Confidential

Floating-point support
4.24 IEEE 754 arithmetic
The ARM floating-point environment is an implementation of the IEEE 754 standard for binary
floating-point arithmetic. See the following topics for a summary of the standard as it is
implemented by the ARM compiler:
• Basic data types for IEEE 754 arithmetic on page 4-33
• IEEE 754 arithmetic and rounding on page 4-41
• Exceptions arising from IEEE 754 floating-point arithmetic on page 4-42.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 4-32
ID061811 Non-Confidential

Floating-point support
4.25 Basic data types for IEEE 754 arithmetic
ARM floating-point values are stored in one of two data types, single-precision and
double-precision. In this documentation, they are called float and double, these being the
corresponding C data types.

4.25.1 See also

Concepts
• Single precision data type for IEEE 754 arithmetic on page 4-34
• Double precision data type for IEEE 754 arithmetic on page 4-36
• Sample single precision floating-point values for IEEE 754 arithmetic on page 4-37
• Sample double precision floating-point values for IEEE 754 arithmetic on page 4-39.

Other information
• IEEE Standard for Floating-Point Arithmetic (IEEE 754), 1985 version,

http://ieeexplore.ieee.org
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 4-33
ID061811 Non-Confidential

Floating-point support
4.26 Single precision data type for IEEE 754 arithmetic
A float value is 32 bits wide. The structure is shown in Figure 4-1.

Figure 4-1 IEEE 754 single-precision floating-point format

The S field gives the sign of the number. It is 0 for positive, or 1 for negative.

The Exp field gives the exponent of the number, as a power of two. It is biased by 0x7F (127), so
that very small numbers have exponents near zero and very large numbers have exponents near
0xFF (255).

So, for example:
• if Exp = 0x7D (125), the number is between 0.25 and 0.5 (not including 0.5)
• if Exp = 0x7E (126), the number is between 0.5 and 1.0 (not including 1.0)
• if Exp = 0x7F (127), the number is between 1.0 and 2.0 (not including 2.0)
• if Exp = 0x80 (128), the number is between 2.0 and 4.0 (not including 4.0)
• if Exp = 0x81 (129), the number is between 4.0 and 8.0 (not including 8.0).

The Frac field gives the fractional part of the number. It usually has an implicit 1 bit on the front
that is not stored to save space.

So if Exp is 0x7F, for example:
• if Frac = 00000000000000000000000 (binary), the number is 1.0
• if Frac = 10000000000000000000000 (binary), the number is 1.5
• if Frac = 01000000000000000000000 (binary), the number is 1.25
• if Frac = 11000000000000000000000 (binary), the number is 1.75.

So in general, the numeric value of a bit pattern in this format is given by the formula:

(–1)S * 2(Exp–0x7F) * (1 + Frac * 2–23)

Numbers stored in this form are called normalized numbers.

The maximum and minimum exponent values, 0 and 255, are special cases. Exponent 255 is
used to represent infinity, and store Not a Number (NaN) values. Infinity can occur as a result
of dividing by zero, or as a result of computing a value that is too large to store in this format.
NaN values are used for special purposes. Infinity is stored by setting Exp to 255 and Frac to all
zeros. If Exp is 255 and Frac is nonzero, the bit pattern represents a NaN.

Exponent 0 is used to represent very small numbers in a special way. If Exp is zero, then the Frac
field has no implicit 1 on the front. This means that the format can store 0.0, by setting both Exp
and Frac to all 0 bits. It also means that numbers that are too small to store using Exp >= 1 are
stored with less precision than the ordinary 23 bits. These are called denormals.

4.26.1 See also

Concepts
• Basic data types for IEEE 754 arithmetic on page 4-33.

Reference
• Sample single precision floating-point values for IEEE 754 arithmetic on page 4-37.

31 23 2230 0

S Exp Frac
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 4-34
ID061811 Non-Confidential

Floating-point support
Other information
• IEEE Standard for Floating-Point Arithmetic (IEEE 754), 1985 version,

http://ieeexplore.ieee.org
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 4-35
ID061811 Non-Confidential

Floating-point support
4.27 Double precision data type for IEEE 754 arithmetic
A double value is 64 bits wide. Figure 4-2 shows its structure.

Figure 4-2 IEEE 754 double-precision floating-point format

As before, S is the sign, Exp the exponent, and Frac the fraction. Most of the detail of float values
remains true for double values, except that:

• The Exp field is biased by 0x3FF (1023) instead of 0x7F, so numbers between 1.0 and 2.0
have an Exp field of 0x3FF.

• The Exp value used to represent infinity and NaNs is 0x7FF (2047) instead of 0xFF.

4.27.1 See also

Concepts
• Single precision data type for IEEE 754 arithmetic on page 4-34
• Basic data types for IEEE 754 arithmetic on page 4-33.

Reference
• Sample double precision floating-point values for IEEE 754 arithmetic on page 4-39.

Other information
• IEEE Standard for Floating-Point Arithmetic (IEEE 754), 1985 version,

http://ieeexplore.ieee.org

63 52 5162 0

S Exp Frac
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 4-36
ID061811 Non-Confidential

Floating-point support
4.28 Sample single precision floating-point values for IEEE 754 arithmetic
Some sample float bit patterns, together with their mathematical values, are given in
Table 4-10.

4.28.1 Notes on sample single precision floating-point values

a The smallest representable number that can be seen to be greater than 1.0. The
amount that it differs from 1.0 is known as the machine epsilon. This is 0.000 000
119 in float, and 0.000 000 000 000 000 222 in double. The machine epsilon
gives a rough idea of the number of significant figures the format can keep track
of. float can do six or seven places. double can do fifteen or sixteen.

b The smallest value that can be represented as a normalized number in each
format. Numbers smaller than this can be stored as denormals, but are not held
with as much precision.

c The smallest positive number that can be distinguished from zero. This is the
absolute lower limit of the format.

d The largest finite number that can be stored. Attempting to increase this number
by addition or multiplication causes overflow and generates infinity (in general).

e Zero. Strictly speaking, they show plus zero. Zero with a sign bit of 1, minus zero,
is treated differently by some operations, although the comparison operations (for
example == and !=) report that the two types of zero are equal.

f There are two types of NaNs, signaling NaNs and quiet NaNs. Quiet NaNs have
a 1 in the first bit of Frac, and signaling NaNs have a zero there. The difference
is that signaling NaNs cause an exception when used, whereas quiet NaNs do not.

Table 4-10 Sample single-precision floating-point values

Float value S Exp Frac Mathematical
value Notesa

a. See Notes on sample single precision floating-point values for more information.

0x3F800000 0 0x7F 000...000 1.0 -

0xBF800000 1 0x7F 000...000 -1.0 -

0x3F800001 0 0x7F 000...001 1.000 000 119 a

0x3F400000 0 0x7E 100...000 0.75 -

0x00800000 0 0x01 000...000 1.18*10-38 b

0x00000001 0 0x00 000...001 1.40*10-45 c

0x7F7FFFFF 0 0xFE 111...111 3.40*1038 d

0x7F800000 0 0xFF 000...000 Plus infinity -

0xFF800000 1 0xFF 000...000 Minus infinity -

0x00000000 0 0x00 000...000 0.0 e

0x7F800001 0 0xFF 000...001 Signaling NaN f

0x7FC00000 0 0xFF 100...000 Quiet NaN f
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 4-37
ID061811 Non-Confidential

Floating-point support
4.28.2 See also

Concepts
• Single precision data type for IEEE 754 arithmetic on page 4-34
• Basic data types for IEEE 754 arithmetic on page 4-33
• Exceptions arising from IEEE 754 floating-point arithmetic on page 4-42.

Other information
• IEEE Standard for Floating-Point Arithmetic (IEEE 754), 1985 version,

http://ieeexplore.ieee.org
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 4-38
ID061811 Non-Confidential

Floating-point support
4.29 Sample double precision floating-point values for IEEE 754 arithmetic
Some sample double bit patterns, together with their mathematical values, are given in
Table 4-11.

4.29.1 Notes on sample double precision floating-point values

a The smallest representable number that can be seen to be greater than 1.0. The
amount that it differs from 1.0 is known as the machine epsilon. This is 0.000 000
119 in float, and 0.000 000 000 000 000 222 in double. The machine epsilon
gives a rough idea of the number of significant figures the format can keep track
of. float can do six or seven places. double can do fifteen or sixteen.

b The smallest value that can be represented as a normalized number in each
format. Numbers smaller than this can be stored as denormals, but are not held
with as much precision.

c The smallest positive number that can be distinguished from zero. This is the
absolute lower limit of the format.

d The largest finite number that can be stored. Attempting to increase this number
by addition or multiplication causes overflow and generates infinity (in general).

e Zero. Strictly speaking, they show plus zero. Zero with a sign bit of 1, minus zero,
is treated differently by some operations, although the comparison operations (for
example == and !=) report that the two types of zero are equal.

f There are two types of NaNs, signaling NaNs and quiet NaNs. Quiet NaNs have
a 1 in the first bit of Frac, and signaling NaNs have a zero there. The difference
is that signaling NaNs cause an exception when used, whereas quiet NaNs do not.

Table 4-11 Sample double-precision floating-point values

Double value S Exp Frac Mathematical value Notesa

a. See Notes on sample double precision floating-point values for more information.

0x3FF00000 00000000 0 0x3FF 000...000 1.0 -

0xBFF00000 00000000 1 0x3FF 000...000 -1.0 -

0x3FF00000 00000001 0 0x3FF 000...001 1.000 000 000 000 000 222 a

0x3FE80000 00000000 0 0x3FE 100...000 0.75 -

0x00100000 00000000 0 0x001 000...000 2.23*10-308 b

0x00000000 00000001 0 0x000 000...001 4.94*10-324 c

0x7FEFFFFF FFFFFFFF 0 0x7FE 111...111 1.80*10308 d

0x7FF00000 00000000 0 0x7FF 000...000 Plus infinity -

0xFFF00000 00000000 1 0x7FF 000...000 Minus infinity -

0x00000000 00000000 0 0x000 000...000 0.0 e

0x7FF00000 00000001 0 0x7FF 000...001 Signaling NaN f

0x7FF80000 00000000 0 0x7FF 100...000 Quiet NaN f
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 4-39
ID061811 Non-Confidential

Floating-point support
4.29.2 See also

Concepts
• Exceptions arising from IEEE 754 floating-point arithmetic on page 4-42
• Double precision data type for IEEE 754 arithmetic on page 4-36
• Basic data types for IEEE 754 arithmetic on page 4-33.

Other information
• IEEE Standard for Floating-Point Arithmetic (IEEE 754), 1985 version,

http://ieeexplore.ieee.org
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 4-40
ID061811 Non-Confidential

Floating-point support
4.30 IEEE 754 arithmetic and rounding
Arithmetic is generally performed by computing the result of an operation as if it were stored
exactly (to infinite precision), and then rounding it to fit in the format. Apart from operations
whose result already fits exactly into the format (such as adding 1.0 to 1.0), the correct answer
is generally somewhere between two representable numbers in the format. The system then
chooses one of these two numbers as the rounded result. It uses one of the following methods:

Round to nearest
The system chooses the nearer of the two possible outputs. If the correct answer
is exactly halfway between the two, the system chooses the output where the least
significant bit of Frac is zero. This behavior (round-to-even) prevents various
undesirable effects.
This is the default mode when an application starts up. It is the only mode
supported by the ordinary floating-point libraries. Hardware floating-point
environments and the enhanced floating-point libraries support all four rounding
modes.

Round up, or round toward plus infinity
The system chooses the larger of the two possible outputs (that is, the one further
from zero if they are positive, and the one closer to zero if they are negative).

Round down, or round toward minus infinity
The system chooses the smaller of the two possible outputs (that is, the one closer
to zero if they are positive, and the one further from zero if they are negative).

Round toward zero, or chop, or truncate
The system chooses the output that is closer to zero, in all cases.

4.30.1 See also

Concepts
• IEEE 754 arithmetic on page 4-32.

Reference
• C and C++ library naming conventions on page 2-120.

Other information
• IEEE Standard for Floating-Point Arithmetic (IEEE 754), 1985 version,

http://ieeexplore.ieee.org
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 4-41
ID061811 Non-Confidential

Floating-point support
4.31 Exceptions arising from IEEE 754 floating-point arithmetic
Floating-point arithmetic operations can run into various problems. For example, the result
computed might be either too big or too small to fit into the format, or there might be no way to
calculate the result (as in trying to take the square root of a negative number, or trying to divide
zero by zero). These are known as exceptions, because they indicate unusual or exceptional
situations.

The ARM floating-point environment can handle an exception by inventing a plausible result
for the operation and returning that result, or by trapping the exception.

4.31.1 See also

Concepts
• Ignoring exceptions from IEEE 754 floating-point arithmetic operations on page 4-43
• Trapping exceptions from IEEE 754 floating-point arithmetic operations on page 4-44
• Exception types recognized by the ARM floating-point environment on page 4-45
• IEEE 754 arithmetic on page 4-32.

Other information
• IEEE Standard for Floating-Point Arithmetic (IEEE 754), 1985 version,

http://ieeexplore.ieee.org
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 4-42
ID061811 Non-Confidential

Floating-point support
4.32 Ignoring exceptions from IEEE 754 floating-point arithmetic operations
The system invents a plausible result for the operation and returns that result. For example, the
square root of a negative number can produce a NaN, and trying to compute a value too big to
fit in the format can produce infinity. If an exception occurs and is ignored, a flag is set in the
floating-point status word to tell you that something went wrong at some time in the past.

4.32.1 See also

Concepts
• Exceptions arising from IEEE 754 floating-point arithmetic on page 4-42
• IEEE 754 arithmetic on page 4-32.

Other information
• IEEE Standard for Floating-Point Arithmetic (IEEE 754), 1985 version,

http://ieeexplore.ieee.org
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 4-43
ID061811 Non-Confidential

Floating-point support
4.33 Trapping exceptions from IEEE 754 floating-point arithmetic operations
When an exception occurs, a piece of code called a trap handler is run. The system provides a
default trap handler that prints an error message and terminates the application. However, you
can supply your own trap handlers to clean up the exceptional condition in whatever way you
choose. Trap handlers can even supply a result to be returned from the operation.

For example, if you had an algorithm where it was convenient to assume that 0 divided by 0 was
1, you could supply a custom trap handler for the Invalid Operation exception to identify that
particular case and substitute the answer you required.

4.33.1 See also

Concepts
• Exceptions arising from IEEE 754 floating-point arithmetic on page 4-42
• IEEE 754 arithmetic on page 4-32.

Other information
• IEEE Standard for Floating-Point Arithmetic (IEEE 754), 1985 version,

http://ieeexplore.ieee.org
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 4-44
ID061811 Non-Confidential

Floating-point support
4.34 Exception types recognized by the ARM floating-point environment
The ARM floating-point environment recognizes the following types of exception:

• The Invalid Operation exception. This occurs when there is no sensible result for an
operation. This can happen for any of the following reasons:
— performing any operation on a signaling NaN, except the simplest operations

(copying and changing the sign)
— adding plus infinity to minus infinity, or subtracting an infinity from itself
— multiplying infinity by zero
— dividing 0 by 0, or dividing infinity by infinity
— taking the remainder from dividing anything by 0, or infinity by anything
— taking the square root of a negative number (not including minus zero)
— converting a floating-point number to an integer if the result does not fit
— comparing two numbers if one of them is a NaN.
If the Invalid Operation exception is not trapped, these operations return a quiet NaN. The
exception is conversion to an integer. This returns zero because there are no quiet NaNs
in integers.

• The Divide by Zero exception. This occurs if you divide a finite nonzero number by zero.
Be aware that:
— Dividing zero by zero gives an Invalid Operation exception.
— Dividing infinity by zero is valid and returns infinity.
If Divide by Zero is not trapped, the operation returns infinity.

• The Overflow exception. This occurs when the result of an operation is too big to fit into
the format. This happens, for example, if you add the largest representable number to
itself. The largest float value is 0x7F7FFFFF.
If Overflow is not trapped, the operation returns infinity, or the largest finite number,
depending on the rounding mode.

• The Underflow exception. This can occur when the result of an operation is too small to
be represented as a normalized number (with Exp at least 1).
The situations that cause Underflow depend on whether it is trapped or not:
— If Underflow is trapped, it occurs whenever a result is too small to be represented

as a normalized number.
— If Underflow is not trapped, it only occurs if the result requires rounding. So, for

example, dividing the float number 0x00800000 by 2 does not signal Underflow,
because the result 0x00400000 is exact. However, trying to multiply the float number
0x00000001 by 1.5 does signal Underflow.

Note
 For readers familiar with the IEEE 754 specification, the chosen implementation

options in the ARM compiler are to detect tininess before rounding, and to detect
loss of accuracy as an inexact result.

If Underflow is not trapped, the result is rounded to one of the two nearest
representable denormal numbers, according to the current rounding mode. The loss
of precision is ignored and the system returns the best result it can.
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 4-45
ID061811 Non-Confidential

Floating-point support
— The Inexact Result exception happens whenever the result of an operation requires
rounding. This would cause significant loss of speed if it had to be detected on every
operation in software, so the ordinary floating-point libraries do not support the
Inexact Result exception. The enhanced floating-point libraries, and hardware
floating-point systems, all support Inexact Result.
If Inexact Result is not trapped, the system rounds the result in the usual way.
The flag for Inexact Result is also set by Overflow and Underflow if either one of
those is not trapped.

All exceptions are untrapped by default.

4.34.1 See also

Tasks
• Writing a custom exception trap handler on page 4-22.

Concepts
• Exception flag handling on page 4-17
• Example of a custom exception handler on page 4-26
• Exception trap handling by signals on page 4-28
• IEEE 754 arithmetic on page 4-32
• Exceptions arising from IEEE 754 floating-point arithmetic on page 4-42
• Ignoring exceptions from IEEE 754 floating-point arithmetic operations on page 4-43
• Trapping exceptions from IEEE 754 floating-point arithmetic operations on page 4-44.

Reference
• Sample single precision floating-point values for IEEE 754 arithmetic on page 4-37.

Other information
• IEEE Standard for Floating-Point Arithmetic (IEEE 754), 1985 version,

http://ieeexplore.ieee.org
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 4-46
ID061811 Non-Confidential

Floating-point support
4.35 Using the Vector Floating-Point (VFP) support libraries
The VFP support libraries are used by the VFP Support Code. The VFP Support Code is
executed from an undefined instruction trap that is triggered when an exceptional floating-point
condition occurs.

4.35.1 See also

Concepts
Using the Compiler:
• Limitations on hardware handling of floating-point arithmetic on page 5-59
• Implementation of Vector Floating-Point (VFP) support code on page 5-60.

Other information
• Using VFP with RVDS, Application Note 133,

http://infocenter.arm.com/help/topic/com.arm.doc.dai0133-/index.html
ARM DUI 0378C Copyright © 2007-2008, 2011 ARM. All rights reserved. 4-47
ID061811 Non-Confidential

	ARM Compiler toolchain v4.1 for µVision Using ARM C and C++ Libraries and Floating-Point Support
	Contents
	Conventions and feedback
	The ARM C and C++ libraries
	2.1 Mandatory linkage with the C library
	2.1.1 See also

	2.2 C and C++ runtime libraries
	2.2.1 See also

	2.3 C and C++ library features
	2.4 Library heap usage requirements of the ARM C and C++ libraries
	2.4.1 See also

	2.5 Compliance with the Application Binary Interface (ABI) for the ARM architecture
	2.5.1 See also

	2.6 Increasing portability of object files to other CLIBABI implementations
	2.6.1 See also

	2.7 ARM C and C++ library directory structure
	2.8 Selection of ARM C and C++ library variants based on build options
	2.8.1 See also

	2.9 Thumb C libraries
	2.9.1 See also

	2.10 C++ and C libraries and the std namespace
	2.10.1 See also

	2.11 ARM C libraries and multithreading
	2.11.1 See also

	2.12 ARM C libraries and reentrant functions
	2.12.1 See also

	2.13 ARM C libraries and thread-safe functions
	2.13.1 See also

	2.14 Use of static data in the C libraries
	2.14.1 See also

	2.15 Use of the __user_libspace static data area by the C libraries
	2.15.1 See also

	2.16 C library functions to access subsections of the __user_libspace static data area
	2.16.1 See also

	2.17 Re-implementation of legacy function __user_libspace() in the C library
	2.17.1 See also

	2.18 Management of locks in multithreaded applications
	2.18.1 See also

	2.19 How to ensure re-implemented mutex functions are called
	2.19.1 See also

	2.20 Using the ARM C library in a multithreaded environment
	2.20.1 See also

	2.21 Thread safety in the ARM C library
	2.21.1 See also

	2.22 Thread safety in the ARM C++ library
	2.22.1 See also

	2.23 The floating-point status word in a multithreaded environment
	2.23.1 See also

	2.24 Using the C library with an application
	2.24.1 See also

	2.25 Using the C and C++ libraries with an application in a semihosting environment
	2.25.1 See also

	2.26 Using $Sub$$ to mix semihosted and nonsemihosted I/O functionality
	2.26.1 See also

	2.27 Using the libraries in a nonsemihosting environment
	2.27.1 See also

	2.28 C++ exceptions in a non-semihosting environment
	2.28.1 See also

	2.29 Direct semihosting C library function dependencies
	2.29.1 See also

	2.30 Indirect semihosting C library function dependencies
	2.30.1 See also

	2.31 C library API definitions for targeting a different environment
	2.31.1 See also

	2.32 Building an application without the C library
	2.32.1 See also

	2.33 Creating an application as bare machine C without the C library
	2.34 Integer and floating-point compiler functions and building an application without the C library
	2.34.1 See also

	2.35 Bare machine integer C
	2.35.1 See also

	2.36 Bare machine C with floating-point processing
	2.36.1 See also

	2.37 Customized C library startup code and access to C library functions
	2.37.1 See also

	2.38 Program design when exploiting the C library
	2.38.1 See also

	2.39 Using low-level functions when exploiting the C library
	2.39.1 See also

	2.40 Using high-level functions when exploiting the C library
	2.40.1 See also

	2.41 Using malloc() when exploiting the C library
	2.41.1 See also

	2.42 Tailoring the C library to a new execution environment
	2.42.1 See also

	2.43 How C and C++ programs use the library functions
	2.44 Initialization of the execution environment and execution of the application
	2.44.1 See also

	2.45 C++ initialization, construction and destruction
	2.45.1 See also

	2.46 Legacy support for C$$pi_ctorvec instead of .init_array
	2.46.1 See also

	2.47 Exceptions system initialization
	2.47.1 See also

	2.48 Emergency buffer memory for exceptions
	2.48.1 See also

	2.49 Library functions called from main()
	2.49.1 See also

	2.50 Program exit and the assert macro
	2.50.1 See also

	2.51 Assembler macros that tailor locale functions in the C library
	2.52 Link time selection of the locale subsystem in the C library
	2.52.1 See also

	2.53 ISO8859-1 implementation
	2.53.1 See also

	2.54 Shift-JIS and UTF-8 implementation
	2.54.1 See also

	2.55 Runtime selection of the locale subsystem in the C library
	2.55.1 See also

	2.56 Definition of locale data blocks in the C library
	2.56.1 Beginning the definition of a locale block
	2.56.2 Specifying the data for a locale block
	2.56.3 Ending the definition of a locale block
	2.56.4 Example of a fixed locale block
	2.56.5 Example of multiple contiguous locale blocks
	2.56.6 See also

	2.57 LC_CTYPE data block
	2.57.1 See also

	2.58 LC_COLLATE data block
	2.58.1 See also

	2.59 LC_MONETARY data block
	2.59.1 See also

	2.60 LC_NUMERIC data block
	2.60.1 See also

	2.61 LC_TIME data block
	2.61.1 See also

	2.62 Modification of C library functions for error signaling, error handling, and program exit
	2.62.1 See also

	2.63 Modification of memory management functions in the C library
	2.64 Avoiding the heap and heap-using library functions supplied by ARM
	2.64.1 See also

	2.65 C library support for memory allocation functions
	2.66 Heap1, standard heap implementation
	2.66.1 See also

	2.67 Heap2, alternative heap implementation
	2.67.1 See also

	2.68 Using a heap implementation from bare machine C
	2.68.1 See also

	2.69 Stack pointer initialization and heap bounds
	2.69.1 See also

	2.70 Defining __initial_sp, __heap_base and __heap_limit
	2.70.1 See also

	2.71 Extending heap size at runtime
	2.71.1 See also

	2.72 Legacy support for __user_initial_stackheap()
	2.72.1 See also

	2.73 Tailoring input/output functions in the C and C++ libraries
	2.73.1 See also

	2.74 Target dependencies on low-level functions in the C and C++ libraries
	2.74.1 See also

	2.75 The C library printf family of functions
	2.75.1 See also

	2.76 The C library scanf family of functions
	2.76.1 See also

	2.77 Redefining low-level library functions to enable direct use of high-level library functions
	2.77.1 See also

	2.78 The C library functions fread(), fgets() and gets()
	2.78.1 See also

	2.79 Re-implementing __backspace() in the C library
	2.79.1 See also

	2.80 Re-implementing __backspacewc() in the C library
	2.80.1 See also

	2.81 Target-dependent I/O support functions in the C library
	2.81.1 See also

	2.82 Tailoring non-input/output C library functions
	2.82.1 See also

	2.83 Real-time integer division in the ARM libraries
	2.83.1 See also

	2.84 Selecting real-time division in the ARM libraries
	2.84.1 See also

	2.85 How the ARM C library fulfills ISO C specification requirements
	2.85.1 See also

	2.86 mathlib error handling
	2.86.1 mathlib error handling in RVCT 4.0 and earlier
	2.86.2 See also

	2.87 ISO-compliant implementation of signals supported by the signal() function in the C library and additional type arguments
	2.87.1 See also

	2.88 ISO-compliant C library input/output characteristics
	2.88.1 See also

	2.89 Standard C++ library implementation definition
	2.90 C library functions and extensions
	2.90.1 See also

	2.91 Persistence of C and C++ library names across releases of the ARM compilation tools
	2.91.1 See also

	2.92 Link time selection of C and C++ libraries
	2.92.1 See also

	2.93 Managing projects that have explicit C or C++ library names in makefiles
	2.93.1 See also

	2.94 Compiler generated and library-resident helper functions
	2.94.1 See also

	2.95 C and C++ library naming conventions
	2.95.1 See also

	2.96 Using macro__ARM_WCHAR_NO_IO to disable FILE declaration and wide I/O function prototypes

	The ARM C micro-library
	3.1 About microlib
	3.1.1 See also

	3.2 Differences between microlib and the default C library
	3.2.1 See also

	3.3 Library heap usage requirements of the ARM C micro-library
	3.3.1 See also

	3.4 ISO C features missing from microlib
	3.4.1 See also

	3.5 Building an application with microlib
	3.5.1 See also

	3.6 Creating an initial stack pointer for use with microlib
	3.6.1 See also

	3.7 Creating the heap for use with microlib
	3.7.1 See also

	3.8 Entering and exiting programs linked with microlib
	3.9 Tailoring the microlib input/output functions
	3.9.1 See also

	Floating-point support
	4.1 About floating-point support
	4.1.1 See also

	4.2 The software floating-point library, fplib
	4.2.1 See also

	4.3 Calling fplib routines
	4.3.1 See also

	4.4 fplib arithmetic on numbers in a particular format
	4.4.1 Notes on arithmetic routines
	4.4.2 See also

	4.5 fplib conversions between floats, doubles, and ints
	4.5.1 Notes on rounding
	4.5.2 See also

	4.6 fplib conversion between long longs, floats, and doubles
	4.6.1 Notes on rounding
	4.6.2 See also

	4.7 fplib comparisons between floats and doubles
	4.7.1 Notes on floating-point comparison routines
	4.7.2 See also

	4.8 fplib C99 functions
	4.8.1 See also

	4.9 Controlling the ARM floating-point environment
	4.9.1 See also

	4.10 Floating-point functions for compatibility with Microsoft products
	4.10.1 See also

	4.11 C99-compatible functions for controlling the ARM floating-point environment
	4.11.1 See also

	4.12 C99 rounding mode and floating-point exception macros
	4.12.1 See also

	4.13 Exception flag handling
	4.13.1 See also

	4.14 Functions for handling rounding modes
	4.14.1 See also

	4.15 Functions for saving and restoring the whole floating-point environment
	4.15.1 See also

	4.16 Functions for temporarily disabling exceptions
	4.16.1 See also

	4.17 ARM floating-point compiler extensions to the C99 interface
	4.17.1 See also

	4.18 Writing a custom exception trap handler
	4.18.1 edata flags for exception trap handler
	4.18.2 See also

	4.19 Example of a custom exception handler
	4.19.1 See also

	4.20 Exception trap handling by signals
	4.20.1 See also

	4.21 Using C99 signalling NaNs provided by mathlib (_WANT_SNAN)
	4.21.1 See also

	4.22 mathlib double and single-precision floating-point functions
	4.23 Nonstandard functions in mathlib
	4.24 IEEE 754 arithmetic
	4.25 Basic data types for IEEE 754 arithmetic
	4.25.1 See also

	4.26 Single precision data type for IEEE 754 arithmetic
	4.26.1 See also

	4.27 Double precision data type for IEEE 754 arithmetic
	4.27.1 See also

	4.28 Sample single precision floating-point values for IEEE 754 arithmetic
	4.28.1 Notes on sample single precision floating-point values
	4.28.2 See also

	4.29 Sample double precision floating-point values for IEEE 754 arithmetic
	4.29.1 Notes on sample double precision floating-point values
	4.29.2 See also

	4.30 IEEE 754 arithmetic and rounding
	4.30.1 See also

	4.31 Exceptions arising from IEEE 754 floating-point arithmetic
	4.31.1 See also

	4.32 Ignoring exceptions from IEEE 754 floating-point arithmetic operations
	4.32.1 See also

	4.33 Trapping exceptions from IEEE 754 floating-point arithmetic operations
	4.33.1 See also

	4.34 Exception types recognized by the ARM floating-point environment
	4.34.1 See also

	4.35 Using the Vector Floating-Point (VFP) support libraries
	4.35.1 See also

