ARM Compiler toolchain v4.1 for
uVision

Using the fromelf Image Converter

ARM

Copyright © 2008, 2011 ARM. All rights reserved.
ARM DUI 0459B (ID061811)

ARM Compiler toolchain v4.1 for pVision
Using the fromelf Image Converter

Copyright © 2008, 2011 ARM. All rights reserved.
Release Information

The following changes have been made to this book.

Change History

Date Issue Confidentiality Change

December 2008 A Non-Confidential Release for RVCT v4.0 for pVision

June 2011 B Non-Confidential Release for ARM Compiler toolchain v4.1 for
wVision

Proprietary Notice

Words and logos marked with or are registered trademarks or trademarks of ARM in the EU and other countries, except
as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the trademarks
of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be
adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the
product and its use contained in this document are given by ARM in good faith. However, all warranties implied or
expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM shall not be liable for any loss or
damage arising from the use of any information in this document, or any error or omission in such information, or any
incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.
Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this
document to.

Product Status
The information in this document is final, that is for a developed product.
Web Address

http://www.arm.com

ARM DUI 0459B
ID061811

Copyright © 2008, 2011 ARM. All rights reserved. ii
Non-Confidential

Contents

ARM Compiler toolchain v4.1 for yVision Using the
fromelf Image Converter

Chapter 1 Conventions and feedback
Chapter 2 Overview of the fromelf image converter
21 About the fromelf image CoONVErterooi e 2-2
2.2 fromelf eXeCULION MOAESccciiiiiii et 2-3
2.3 Considerations when using fromelfcooooiiiiiiiiiiie e 2-4
2.4 Getting help on the fromelf commandc..cccciiii i 2-5
25 fromelf command-line SYNTaXccciiiiiiiiiii e 2-6
26 fromelf command-line options listed in groupscccccvveiiiiiiie e 2-7
Chapter 3 Using fromelf
3.1 Converting an ELF image to Intel Hex-32 formatccccociiiiiiiiiee e, 3-2
3.2 Converting an ELF image to Motorola 32-bit formatccccoeiiiniiiiiiie, 3-3
3.3 Converting an ELF image to plain binary formatccccooiiiiiiinie e 3-4
3.4 Converting an ELF image to Byte oriented (Verilog Memory Model) hexadecimal format
3-5
3.5 Printing details of ELF-formatted filescccociiiiiiii e 3-6
3.6 Using fromelf to find where a symbol is placed in an executable ELF image 3-7
Chapter 4 fromelf command reference
41 --base [[object_file::]load_region_ID=]NUmM ... 4-3
4.2 S TP PRP PR 4-4
4.3 ==DINCOMDINEA ... e 4-5
4.4 --bincombined_base=addressccccciiiiiiiiiiiii 4-6
4.5 --bincombined_padding=SiZe,NUMccccuiiiiiiiiiiiiie e 4-7
4.6 o= 1o LSS PP PP SPPTP 4-8
ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. iii

ID061811

Non-Confidential

Contents

4.7 o= Lo [o7o] 0 0] o1 0 =T PSR 4-10
4.8 --CcomMPAare=optioN[,0PtioN,...] «.occeiiiie i 4-11
4.9 rere] a1 il o TV T= T o T =1 (o) SR UPUUR R SSRPPPRN 4-13
4.10 SmCPUTIISE ot e e eraa e sreeas 4-14
4.1 B o1 L 0 F= 10 T O TP PP OO PP PO UPPPPPPPOt 4-15
412 —=datasSyMDOISooiiiii e 4-16
4.13 --decode_build_attributes ... 4-17
414 -—diag_error=tag[,1ag,...] - oo e 4-18
415 -—diag_remark=tag[,tag,...] . eeccoorrreieieiiie e 4-19
4.16 --diag_style={arm[ide|gNUu}cccoiiiiiiiiii 4-20
417 --diag_suppress=tag[,Iag,...] .o 4-21
4.18 --diag_warning=tag[,tag,...] - - eeeeerire e 4-22
4.19 --dump_build_attributescooviiiiii i —————— 4-23
4.20 == eMit=0PtION[,OPLION,...] e —————— 4-24
4.21 “=@XPANTAITAYS ...vveieeeeiieiieieeeeeittreeeeeeeitaaeeaeeasaeeeaeeesstaeeeessasbseaaesaassseeaesaanssseeeesannnres 4-26
4.22 ——extract_build_attributes ... 4-27
4.23 B (1] [0 [0 1 £7= €T PR SPRTRN 4-28
4.24] T 1 PR URR 4-29
4.25 “EPUTNAME ..ot e e et e e e e e e e anaes 4-30
4.26] 1Yo SR 4-31
4.27 G OSSPSR 4-32
4.28 ==I32COMDINEA ... e a e 4-33
4.29 --ignore_section=option[,0ption,...] ..o 4-34
4.30 --ignore_symbol=option[,0ption,...] ..o 4-35
4.31 =—iNfO=tOPIC[,EOPIC,...] coeerieee e e 4-36
4.32 INPUL Tl oo e et e e e e aareee s 4-37
4.33 ==INEErEAVE=0PHONouiiiiiiiiiiiiei e ————————— 4-38
4.34 B 111C 77 OSSR U PSP U PR ORPRROTR 4-39
4.35 B 102 oro] 191 o] 1 o1 To [N PRSP 4-40
4.36 =—ONIY=SECHON_NAIMEiiiiiiiiie et 4-41
4.37 =—OUPUESAESTINGLION .oeeeeieieeeeeeeee e ——————————— 4-42
4.38 o U= 11 USSR 4-43
4.39 --relax_section=option[,0ptioN,...] ...cccceiiiiiii e 4-44
4.40 --relax_symbol=0option[,0ption,...] ...cocciiiiiiiii 4-45
4.41 --S€eleCt=SeleCt_OPLIONScoiiiiiiiiii e 4-46
4.42 ==SNOW_CMIAIINE ...t 4-47
4.43 --source_direCtory=path ... 4-48
4.44 LS 4 USRS 4-49
4.45 2= =3 o T 10T o] o =Y PR 4-51
4.46 Y10 S SR U PSR OUPPOURPTRP 4-52
4.47 VA L= L 11 TSP OP PRSPPI 4-53
4.48] 1 PSR SUSS 4-54
4.49 USSR 4-55
4.50 =WIAthXDANKS ... e 4-56
ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. iv
ID061811 Non-Confidential

Chapter 1
Conventions and feedback

The following describes the typographical conventions and how to give feedback:

Typographical conventions
The following typographical conventions are used:

monospace Denotes text that can be entered at the keyboard, such as commands,
file and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. The
underlined text can be entered instead of the full command or option
name.

monospace italic
Denotes arguments to commands and functions where the argument is
to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

italic Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Also used for
emphasis in descriptive lists, where appropriate, and for ARM®
processor signal names.
Feedback on this product

If you have any comments and suggestions about this product, contact your
supplier and give:

. your name and company

ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. 1-1
ID061811 Non-Confidential

Conventions and feedback

. the serial number of the product

. details of the release you are using

. details of the platform you are using, such as the hardware platform,
operating system type and version

. a small standalone sample of code that reproduces the problem

. a clear explanation of what you expected to happen, and what actually
happened

. the commands you used, including any command-line options

. sample output illustrating the problem

. the version string of the tools, including the version number and build
numbers.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

. the title

. the number, ARM DUI 0459B

. if viewing online, the topic names to which your comments apply

. if viewing a PDF version of a document, the page numbers to which your

comments apply

. a concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.
ARM periodically provides updates and corrections to its documentation on the ARM
Information Center, together with knowledge articles and Frequently Asked Questions (FAQs).
Other information
. ARM Product Manuals, http://www.keil.com/support/man_arm.htm
. Keil Support Knowledgebase, http://www.keil.com/support/knowledgebase.asp
. Keil Product Support, http://www.keil.com/support/

. ARM Glossary,
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html.

ARM DUI 0459B
ID061811

Copyright © 2008, 2011 ARM. All rights reserved. 1-2
Non-Confidential

Chapter 2
Overview of the fromelf image converter

The following topics give an overview of the frome1f image converter provided with the ARM
Compiler toolchain:

Tasks
. Getting help on the fromelf command on page 2-5

Concepts
. About the fromelf image converter on page 2-2
. Considerations when using fromelf on page 2-4.

Reference
. fromelf command-line syntax on page 2-6
. fromelf command-line options listed in groups on page 2-7.

ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. 2-1
ID061811 Non-Confidential

Overview of the fromelf image converter

2.1 About the fromelf image converter

211 See also

The image conversion utility, fromel1f, enables you to:

. Process ARM ELF object and image files produced by the compiler, assembler, and
linker.

. Process all ELF files in an archive produced by armar, and output the processed files into
another archive if required.

. Convert ELF images into other formats that can be used by ROM tools or directly loaded
into memory. The formats available are:
— Plain binary
— Motorola 32-bit S-record
— Intel Hex-32
— Byte oriented (Verilog Memory Model) hexadecimal

. Protect Intellectual Property (IP) in images and objects that are delivered to third parties.

. Display information about the input file, for example symbol listings, to either stdout or
a text file.
Note
If your image is produced without debug information, fromelf cannot:
. translate the image into other file formats
. produce a meaningful disassembly listing.
Concepts
. fromelf execution modes on page 2-3
. Considerations when using fromelf on page 2-4
Reference

. fromelf command-line syntax on page 2-6
. fromelf command-line options listed in groups on page 2-7

ARM DUI 0459B
ID061811

Copyright © 2008, 2011 ARM. All rights reserved. 2-2
Non-Confidential

Overview of the fromelf image converter

2.2 fromelf execution modes

fromel1f has the following execution modes:

. text mode (--text, and others), to output information about an object or image file
. format conversion mode (--bin, --m32, --132, --vhx).
2.21 See also
Reference
. --bin on page 4-4
. --i32 on page 4-32
. --m32 on page 4-39
. --text on page 4-49
. --vhx on page 4-52.
ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. 2-3

ID061811 Non-Confidential

Overview of the fromelf image converter

23 Considerations when using fromelf

2.3.1 See also

Be aware of the following:

If you use fromelf to convert an ELF image containing multiple load regions to a binary
format using any of the --bin, --m32, --132, or --vhx options, fromelf creates an output
directory named destination and generates one binary output file for each load region in
the input image. fromelf places the output files in the destination directory.

Note

For multiple load regions, the name of the first non-empty execution region in the
corresponding load region is used for the filename.

If you convert an ELF image containing multiple load regions using either the
--m32combined or --i32combined option, fromelf creates an output directory named
destination, generates one binary output file for all load regions in the input image, and
then places the output file in the destination directory.

ELF images contain multiple load regions if, for example, they are built with a scatter file
that defines more than one load region.
When using fromelf, you cannot:

— Change the image structure or addresses, other than altering the base address of
Motorola S-record or Intel Hex output with the --base option.

— Change a scatter-loaded ELF image into a non scatter-loaded image in another
format. Any structural or addressing information must be provided to the linker at
link time.

Reference

--base [[object file::]load region ID=]num on page 4-3
--bin on page 4-4

--i32 on page 4-32

--i32combined on page 4-33

--m32 on page 4-39

--m32combined on page 4-40

--vhx on page 4-52.

ARM DUI 0459B
ID061811

Copyright © 2008, 2011 ARM. All rights reserved. 2-4
Non-Confidential

Overview of the fromelf image converter

24 Getting help on the fromelf command
Use the --help option to display a summary of the main command-line options.

This is the default if you do not specify any options or files.

241 Example

To display the help information, enter:

fromelf --help

2.4.2 See also

Reference
. fromelf command-line syntax on page 2-6
. --help on page 4-31.

ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. 2-5
ID061811 Non-Confidential

Overview of the fromelf image converter

25 fromelf command-line syntax

2.5.1 See also

The fromelf command-line syntax is:
fromelf [options] input_file
options fromelf command-line options.

input_file The ELF file or library file to be processed. When some options are used, multiple
input files can be specified.

Concepts

Introducing the ARM Compiler toolchain:
. Chapter 2 Overview of the ARM Compiler toolchain.

Reference
. fromelf command-line options listed in groups on page 2-7
. input_file on page 4-37.

ARM DUI 0459B
ID061811

Copyright © 2008, 2011 ARM. All rights reserved. 2-6
Non-Confidential

Overview of the fromelf image converter

2.6 fromelf command-line options listed in groups

The fromelf command-line options are:

Controlling the output format of build attributes

. --decode_build attributes on page 4-17
. --dump_build_attributes on page 4-23
. --extract_build_attributes on page 4-27.

Controlling debug information in output files
. --emit=option[,option,...] on page 4-24

Controlling diagnostic information in output files

Use the following options to control diagnostic information in output files:

. --compare=option[,option,...] on page 4-11

. --continue_on_error on page 4-13

. --diag_error=tag/,tag,...] on page 4-18

. --diag remark=tag/[,tag,...] on page 4-19

. --diag style={armlide|gnu} on page 4-20

. --diag suppress=tag/,tag,...] on page 4-21

. --diag warning=tag/,tag,...] on page 4-22

. --ignore_section=option[,option,...] on page 4-34
. --ignore_symbol=option[,option,...] on page 4-35
. --relax_section=option[,option,...] on page 4-44
. --relax_symbol=option[,option,...] on page 4-45

. --show_cmdline on page 4-47.

Command-line help

. --help on page 4-31

. --version_number on page 4-51

. --vsn on page 4-54.

Getting command-line arguments from a file

. --via=file on page 4-53.

Controlling miscellaneous factors affecting the image content
. --base [[object file::]load region ID=]num on page 4-3
. --cad on page 4-8

. --cadcombined on page 4-10

. --cpu=list on page 4-14

. --cpu=name on page 4-15

. --emit=option[,option,...] on page 4-24

. --expandarrays on page 4-26

. -fieldoffsets on page 4-28
. --fpu=list on page 4-29
. --fpu=name on page 4-30

. --interleave=option on page 4-38
. --qualify on page 4-43
. --select=select options on page 4-46
. --source_directory=path on page 4-48
ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. 2-7

ID061811

Non-Confidential

Controlling the output format

--bin on page 4-4

--bincombined on page 4-5

--bincombined base=address on page 4-6
--bincombined _padding=size,num on page 4-7
--i32 on page 4-32

--i32combined on page 4-33

--m32 on page 4-39

--m32combined on page 4-40
--output=destination on page 4-42

--vhx on page 4-52

--widthxbanks on page 4-56.

Controlling the display of information

--info=topic/,topic,...] on page 4-36
--only=section_name on page 4-41
--text on page 4-49

-w on page 4-55.

Overview of the fromelf image converter

ARM DUI 0459B
ID061811

Copyright © 2008, 2011 ARM. All rights reserved.
Non-Confidential

2-8

Chapter 3
Using fromelf

The following topics describe how to use the image fromel1f conversion utility provided with the
ARM Compiler toolchain:

Tasks

. Converting an ELF image to Intel Hex-32 format on page 3-2

. Converting an ELF image to Motorola 32-bit format on page 3-3

. Converting an ELF image to plain binary format on page 3-4

. Converting an ELF image to Byte oriented (Verilog Memory Model) hexadecimal format
on page 3-5

. Printing details of ELF-formatted files on page 3-6
. Using fromelf to find where a symbol is placed in an executable ELF image on page 3-7.

ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. 3-1
ID061811 Non-Confidential

Using fromelf

3.1 Converting an ELF image to Intel Hex-32 format

3.11 Example

3.1.2 See also

Use one of these options to produce Intel Hex-32 format output:
. —-i32
. --i32combined

--132 generates one output file for each load region in the image. --1i32combined generates one
output file for an image containing multiple load regions.

Note
You must use --output with these options.

You can specify the base address of the output with the --base option.

To convert the ELF file infile.axf to an Intel Hex-32 format file, for example outfile.bin,
enter:

fromelf --i32 --output=outfile.bin infile.axf

To create a single output file,outfile2.bin, from an image file infile2.axf, with two load
regions, and with a start address of 0x1000, enter:

fromelf --i32combined --base=0x1000 --output=outfile2.bin infile2.axf

Concepts
. Considerations when using fromelf on page 2-4.
Reference
. fromelf command-line syntax on page 2-6
. --base [[object file::]load region ID=]num on page 4-3
. --i32 on page 4-32
. --i32combined on page 4-33
. --output=destination on page 4-42.
ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. 3-2

ID061811

Non-Confidential

Using fromelf

3.2 Converting an ELF image to Motorola 32-bit format

Use one of these options to produce Motorola 32-bit format (32-bit S-records) output:
. --m32
. --m32combined

--m32 generates one output file for each load region in the image. --m32combined generates one
output file for an image containing multiple load regions.

Note
You must use --output with these options.

You can specify the base address of the output with the --base option.

3.21 Example

To convert the ELF file infile.axf to a Motorola 32-bit format file, for example outfile.bin,
enter:

fromelf --m32 --output=outfile.bin infile.axf

To create a single Motorola 32-bit format output file, outfile2.bin, from an image file
infile2.axf, with two load regions, and with a start address of 0x1000, enter:

fromelf --m32combined --base=0x1000 --output=outfile2.bin infile2.axf

3.2.2 See also

Concepts
. Considerations when using fromelf on page 2-4.
Reference
. fromelf command-line syntax on page 2-6
. --base [[object file::]load region ID=]num on page 4-3
. --m32 on page 4-39
. --m32combined on page 4-40
. --output=destination on page 4-42.
ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. 3-3

ID061811 Non-Confidential

Using fromelf

3.3 Converting an ELF image to plain binary format

3.31 Examples

3.3.2 See also

Use the --bin option to produce plain binary output, one file for each load region. You can split
the output from this option into multiple files with the --widthxbanks option.

Use the --bincombined option to produce plain binary output. It generates one output file for an
image containing multiple load regions. By default, the start address of the first load region in
memory is used as the base address. fromelf inserts padding between load regions as required
to ensure that they are at the correct relative offset from each other. Separating the load regions
in this way means that the output file can be loaded into memory and correctly aligned starting
at the base address.

Use the --bincombined option with --bincombined_base and --bincombined_padding to change the
default values for the base address and padding.

Be aware of the following when using these options:
. You must use the --output option with --bin and --bincombined.

. For --bincombined, if you use a scatter file that defines two load regions with a large
address space between them, the resulting binary can be very large because it contains
mostly padding. For example, if you have a load region of size 0x100 bytes at address
0x00000000 and another load region at address 0x30000000, the amount of padding is
Ox2FFFFFFOQ bytes.

To convert an ELF file to a plain binary file, for example outfile.bin, enter:
fromelf --bin --output=out.bin in.axf

To produce a binary file that can be loaded at start address 0x1000, enter:
fromelf --bincombined --bincombined_base=0x1000 --output=out.bin in.axf

To produce plain binary output and fill the space between load regions with copies of the 32-bit
word 0x12345678, enter:

fromelf --bincombined --bincombined_padding=4,0x12345678 --output=out.bin in.axf

Concepts
. Considerations when using fromelf on page 2-4.
Reference
. fromelf command-line syntax on page 2-6
. --bin on page 4-4
. --bincombined on page 4-5
. --bincombined _base=address on page 4-6
. --bincombined padding=size,num on page 4-7
. --output=destination on page 4-42
. --widthxbanks on page 4-56.
ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. 3-4

ID061811

Non-Confidential

Using fromelf

3.4 Converting an ELF image to Byte oriented (Verilog Memory Model) hexadecimal

format

3.41 Examples

3.4.2 See also

Use the --vhx option to produce Byte oriented (Verilog Memory Model) hexadecimal format
output. This format is suitable for loading into the memory models of Hardware Description
Language (HDL) simulators. You can split output from this option into multiple files with the
--widthxbanks option.

Note

You must use --output with these options.

To convert the ELF file infile.axf to a byte oriented hexadecimal format file, for example
outfile.bin, enter:

fromelf --vhx --output=outfile.bin infile.axf

To create multiple output files, in the regions directory, from an image file multiload.axf, with
two 8-bit memory banks, enter:

fromelf --vhx --8x2 multiload.axf --output=regions

Concepts

. Considerations when using fromelf on page 2-4.
Reference

. fromelf command-line syntax on page 2-6

. --output=destination on page 4-42

. --vhx on page 4-52

. --widthxbanks on page 4-56.

ARM DUI 0459B
ID061811

Copyright © 2008, 2011 ARM. All rights reserved. 3-5
Non-Confidential

Using fromelf

3.5 Printing details of ELF-formatted files

You can specify the elements of an ELF object that you want to appear in the textual output with
the --emit option. The output includes ELF header and section information. You can specify
these elements as a comma separated list.

Note
You can specify some of the --emit options using the --text option.

3.51 Example of printing data sections

To print the contents of the data sections of an ELF file, infile.axf, enter:

fromelf --emit=data infile.axf

3.5.2 Example of printing relocation information

To print relocation information and the dynamic section contents for the ELF file infile2.axf,
enter:

fromelf --emit=relocation_tables,dynamic_segment infile2.axf

3.5.3 See also

Reference

. fromelf command-line syntax on page 2-6

. --emit=option[,option,...] on page 4-24
. --text on page 4-49.
ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. 3-6

ID061811 Non-Confidential

Using fromelf

3.6 Using fromelf to find where a symbol is placed in an executable ELF image

To find where a symbol is placed in an ELF image file, use the --text -s -v options to view the
symbol table and detailed information on each segment and section header, for example:

fromelf --text -s -v s.axf

The symbol table identifies the section where the symbol is placed.

3.6.1 Example

Do the following:

1

6.

Create the file s.c containing the following source code:
Tong long altstack[10] __attribute__ ((section ("STACK"), zero_init));

int main()

{
}

return sizeof(altstack);

Compile the source:

armcc -c s.Cc -0 s.0

Link the object s.o and keep the STACK symbol:
armlink --keep=s.o(STACK) s.o --output=s.axf

Run the fromelf command to display the symbol table and detailed information on each
segment and section header:

fromelf --text -s -v s.o

Locate the STACK and altstack symbols in the fromelf output, for example:

%% Section #9

Name 1 .symtab

Type : SHT_SYMTAB (0x00000002)
Flags : None (0x00000000)

Addr : 0x00000000

File Offset : 2792 (0xae8)

Size 1 2896 bytes (0xb50)

Link : Section 10 (.strtab)

Info : Last local symbol no = 115

Alignment : 4
Entry Size : 16 Symbol table .symtab (180 symbols, 115 Tocal)

Symbol Name Value Bind Sec Type Vis Size
16 STACK 0x00008228 Lc 2 Sect De 0x50
179 altstack 0x00008228 Gb 2 Data Hi 0x50

The Sec column shows the section where the stack is placed. In this example, section 2.

Locate the section identified for the symbol in the fromelf output, for example:

ARM DUI 0459B
ID061811

Copyright © 2008, 2011 ARM. All rights reserved. 3-7
Non-Confidential

3.6.2 See also

#% Section #2

Name : ER_ZI

Type : SHT_NOBITS (0x00000008)

Flags : SHF_ALLOC + SHF_WRITE (0x00000003)
Addr 1 0x000081c8

File Offset : 508 (0x1fc)

Size : 176 bytes (0xb0)

Link . SHN_UNDEF

Info 10

Alignment : 8

Entry Size : @

This shows that the symbols are placed in a ZI execution region.

Tasks

. How to find where a symbol is placed when linking on page 6-6.

Reference
. --text on page 4-49.

Compiler Reference:
. -c on page 3-17
. -0 filename on page 3-69.

Linker Reference:
. --keep=section_id on page 2-68
. --output=file on page 2-89.

Using fromelf

ARM DUI 0459B
ID061811

Copyright © 2008, 2011 ARM. All rights reserved.
Non-Confidential

3-8

Chapter 4

fromelf command reference

The following topics describe the command-line options of the frome1f image conversion utility
provided with the ARM Compiler toolchain:

--base [[object file::]load region ID=]num on page 4-3

--bin on page 4-4

--bincombined on page 4-5

--bincombined base=address on page 4-6
--bincombined padding=size,num on page 4-7
--cad on page 4-8

--cadcombined on page 4-10
--compare=option[,option,...] on page 4-11
--continue_on_error on page 4-13
--cpu=list on page 4-14

--cpu=name on page 4-15

--datasymbols on page 4-16
--decode_build_attributes on page 4-17
--diag error=tag/,tag,...] on page 4-18
--diag remark=tag/[,tag,...] on page 4-19
--diag_style={arm|ide|gnu} on page 4-20
--diag suppress=tag/,tag,...] on page 4-21
--diag warning=tag/,tag,...] on page 4-22
--dump_build_attributes on page 4-23
--emit=option/[,option,...] on page 4-24
--expandarrays on page 4-26

ARM DUI 0459B
ID061811

Copyright © 2008, 2011 ARM. All rights reserved.
Non-Confidential

4-1

fromelf command reference

. --extract_build_attributes on page 4-27
. -fieldoffsets on page 4-28

. --fpu=list on page 4-29

. --fpu=name on page 4-30

. --help on page 4-31

. --i32 on page 4-32

. --i32combined on page 4-33

. --ignore_section=option[,option,...] on page 4-34
. --ignore_symbol=option[,option,...] on page 4-35
. --info=topic/,topic,...] on page 4-36

. input _file on page 4-37

. --interleave=option on page 4-38

. --m32 on page 4-39

. --m32combined on page 4-40

. --only=section_name on page 4-41

. --output=destination on page 4-42

. --qualify on page 4-43

. --relax_section=option[,option,...] on page 4-44
. --relax_symbol=option[,option,...] on page 4-45
. --select=select options on page 4-46

. --show_cmdline on page 4-47

. --source_directory=path on page 4-48

. --text on page 4-49

. --version_number on page 4-51

. --vhx on page 4-52

. --via=file on page 4-53

. --vsn on page 4-54

. -w on page 4-55
. --widthxbanks on page 4-56

See also fromelf command-line syntax on page 2-6.

ARM DUI 0459B
ID061811

Copyright © 2008, 2011 ARM. All rights reserved. 4-2
Non-Confidential

fromelf command reference

4.1 --base [[object_file::]load_region_ID=]num

411 Restrictions

41.2 Syntax

This option enables you to alter the base address specified for one or more load regions in
Motorola S-record and Intel Hex file formats.

You must use one of the output formats --132, --i32combined, --m32, or --m32combined with this
option.

--base [[object_file::]T1oad_region_ID=]num
Where:
object_file is an optional ELF input file.

load_region_ID

is an optional load region. This can either be a symbolic name of an execution
region belonging to a load region or a zero-based load region number, for
example #0 if referring to the first region.

num is either a decimal or hexadecimal value.

You can:

. use wildcard characters ? and * for symbolic names in object_file and Toad_region_ID
arguments

. specify multiple options in one --base option followed by a comma-separated list of
arguments.

All addresses encoded in the output file start at the base address num. If you do not specify a
--base option, the base address is taken from the load region address.

Table 4-1 Examples using --base

--base 0 decimal value
--base 0x8000 hexadecimal value
--base #0=0 base address for the first load region
--base foo.0::%=0 base address for all load regions in foo.o
--base #0=0,#1=0x8000 base address for the first and second load regions
413 Seealso
Concepts
. Considerations when using fromelf on page 2-4.
Reference
. --i32 on page 4-32
. --i32combined on page 4-33
. --m32 on page 4-39
. --m32combined on page 4-40.
ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. 4-3

ID061811

Non-Confidential

4.2 --bin

421 Restrictions

4.2.2 Example

4.2.3 See also

fromelf command reference

This option produces plain binary output, one file for each load region. You can split the output
from this option into multiple files with the --widthxbanks option.

You cannot use this option with object files.

You must use --output with this option.

To convert an ELF file to a plain binary file (for example outfile.bin), enter:

fromelf --bin --output=outfile.bin infile.axf

Concepts
. Considerations when using fromelf on page 2-4.
Reference

. --output=destination on page 4-42
. --widthxbanks on page 4-56.

ARM DUI 0459B
ID061811

Copyright © 2008, 2011 ARM. All rights reserved. 4-4
Non-Confidential

fromelf command reference

4.3 --bincombined
This option produces plain binary output. It generates one output file for an image containing
multiple load regions. By default, the start address of the first load region in memory is used as
the base address. fromelf inserts padding between load regions as required to ensure that they
are at the correct relative offset from each other. Separating the load regions in this way means
that the output file can be loaded into memory and correctly aligned starting at the base address.
Use this option with --bincombined_base and --bincombined_padding to change the default values
for the base address and padding.

4.3.1 Restrictions
You cannot use this option with object files.
You must use --output with this option.

4.3.2 Considerations when using --bincombined
Use this option with --bincombined_base to change the default value for the base address.
The default padding value is 0xFF. Use this option with --bincombined_padding to change the
default padding value.
If you use a scatter file that defines two load regions with a large address space between them,
the resulting binary can be very large because it contains mostly padding. For example, if you
have a load region of size 9x100 bytes at address 0x00000000 and another load region at address
0x30000000, the amount of padding is 0x2FFFFF00 bytes.
ARM recommends that you use a different method of placing widely spaced load regions, such
as splitting the binary file into multiple files with the --widthxbanks option.

4.3.3 Seealso
Concepts
Using the Linker:
. Input sections, output sections, regions, and Program Segments on page 4-5.
Reference
. --bincombined base=address on page 4-6
. --bincombined _padding=size,num on page 4-7
. --output=destination on page 4-42
. --widthxbanks on page 4-56.

ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. 4-5

ID061811

Non-Confidential

fromelf command reference

4.4 --bincombined_base=address

441 Restrictions

44,2 Syntax

4.4.3 Default

444 Example

4.4.5 See also

This option enables you to lower the base address used by the --bincombined output mode. The
output file generated is suitable to be loaded into memory starting at the specified address.

You must use --bincombined with this option. If you omit --bincombined, a warning message is
displayed.

--bincombined_base=address
Where:

address The start address where the image is to be loaded:

. if the specified address is lower than the start of the first load region,
frome1f adds padding at the start of the output file

. if the specified address is higher than the start of the first load region,
fromelf gives an error.

By default the start address of the first load region in memory is used as the base address.

--bincombined --bincombined_base=0x1000

Concepts

Using the Linker:

. Input sections, output sections, regions, and Program Segments on page 4-5.
Reference

. --bincombined on page 4-5
. --bincombined padding=size,num on page 4-7.

ARM DUI 0459B
ID061811

Copyright © 2008, 2011 ARM. All rights reserved. 4-6
Non-Confidential

fromelf command reference

4.5 --bincombined_padding=size, num

451 Restrictions

45.2 Syntax

4.5.3 Default

454 Example

4.5.5 See also

This option enables you to specify a different padding value from the default used by the
--bincombined output mode.

You must use --bincombined with this option. If you omit --bincombined, a warning message is
displayed.

--bincombined_padding=size, num

Where:
size is 1, 2, or 4 bytes to define whether it is a byte, halfword, or word.
num is the value to be used for padding. If you specify a value that is too large to fit in
the specified size, a warning message is displayed.
Note

fromelf expects that 2-byte and 4-byte padding values are specified in the appropriate
endianness for the input file. For example, if you are translating a big endian ELF file into
binary, the specified padding value is treated as a big endian word or halfword.

The default is --bincombined_padding=1, @xFF.

The following examples show how to use --bincombined_padding:

--bincombined --bincombined_padding=4,0x12345678
This example produces plain binary output and fills the space between load
regions with copies of the 32-bit word 0x12345678.

--bincombined --bincombined_padding=2,0x1234
This example produces plain binary output and fills the space between load
regions with copies of the 16-bit halfword 0x1234.

--bincombined --bincombined_padding=2,0x01

This example when specified for big endian memory, fills the space between load
regions with 0x0100.

Reference
. --bincombined on page 4-5
. --bincombined _base=address on page 4-6.
ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. 4-7

ID061811

Non-Confidential

fromelf command reference

This option produces a C array definition or C++ array definition containing binary output. You
can use each array definition in the source code of another application. For example, you might
want to embed an image in the address space of another application, such as an embedded
operating system.

If your image has a single load region, the output is directed to stdout by default. To save the
output to a file, use the --output option together with a filename.

If your image has multiple load regions, then you must also use the --output option together
with a directory name. Unless you specify a full path name, the path is relative to the current
directory. A file is created for each load region in the specified directory. The name of each file
is the name of the corresponding execution region.

Use this option with --output to generate one output file for each load region in the image.

4.6.1 Restrictions

You cannot use this option with object files.

4.6.2 Example
The following examples show how to use --cad:

. To produce an array definition for an image that has a single load region, use:

fromelf --cad myimage.axf

unsigned char LRO[] = {
0x00,0x00,0x00,0xEB,0x28,0x00,0x00,0xEB,0x2C,0x00,0x8F,0xE2,0x00,0x0C,0x90,0xE8,
0x00,0xA0,0x8A,0xEQ,0x00,0xB0,0x8B,0xED,0x01,0x70,0x4A,0xE2,0x0B,0x00,0x5A,0xEL,
0x00,0x00,0x00,0x1A,0x20,0x00,0x00,0xEB,0x0F ,0x00,0xBA,0xE8,0x18,0xEQ,0x4F,0XE2,
0x01,0x00,0x13,0xE3,0x03,0xF0,0x47,0x10,0x03,0xF0,0xAQ,0xE1, OXAC,0x18,0x00,0x00,
0xBC,0x18,0x00,0x00,0x00,0x30,0xB0,0xE3,0x00,0x40,0xB0,0xE3,0x00,0x50,0xB0,0xE3,
0x00,0x60,0xB0,0xE3,0x10,0%x20,0x52,0xE2,0x78,0%x00,0xA1,0x28,0xFC,0xFF,0xFF,0x8A,
0x82,0x2E,0xB0,0xE1,0x30,0x00,0xA1,0x28,0x00,0x30,0x81,0x45,0x0E , 0xF0,0xA0,0xEL,
0x70,0x00,0x51,0xE3,0x66,0x00,0x00,0x0A,0x64,0x00,0x51,0xE3,0x38,0x00,0x00,0x0A,
0x00,0x00,0xB0,0xE3,0x0E,0xF0,0xA0,0xE1,0x1F,0x40,0x2D,0xE9, 0x00,0x00,0xA0,0xEL,

0x3A,0x74,0x74,0x00,0x43,0x6F,0x6E,0x73,0x74,0x72,0x75,0x63,0x74,0x65,0x64,0x20,
0x41,0%x20,0x23,0%x25,0x64,0%x20,0x61,0x74,0%x20,0x25,0x70,0x0A,0x00,0x00,0x00,0x00,
0x44,0x65,0x73,0x74,0x72,0x6F,0x79,0x65,0x64,0x20,0x41,0x20,0x23,0x25,0x64,0x20,
0x61,0x74,0x20,0x25,0x70,0x0A,0x00,0x00,0x0C,0x99,0x00,0x00,0x0C,0x99,0x00,0x00,
0x50,0x01,0x00,0x00,0x44,0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00

5

. For an image that has multiple load regions, the following commands create a file for each
load region in the directory root\myprojects\multiload\load_regions:

cd root\myprojects\multiload fromelf --cad image_multiload.axf --output
Toad_regions

If image_multiload.axf contains the execution regions EXEC_ROM and RAM, then the files
EXEC_ROM and RAM are created in the Toad_regions subdirectory.

ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. 4-8
ID061811 Non-Confidential

fromelf command reference

4.6.3 See also

Tasks
Using the Linker:
. Chapter 8 Using scatter files.
Concepts
Using the Linker:
. Input sections, output sections, regions, and Program Segments on page 4-5.
Reference
. --cadcombined on page 4-10
. --output=destination on page 4-42.
ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. 4-9

ID061811 Non-Confidential

fromelf command reference

4.7 --cadcombined

4.71 Restrictions

4.7.2 Example

4.7.3 See also

This option produces a C array definition or C++ array definition containing binary output. You
can use each array definition in the source code of another application. For example, you might
want to embed an image in the address space of another application, such as an embedded
operating system.

The output is directed to stdout by default. To save the output to a file, use the --output option
together with a filename.

You cannot use this option with object files.

The following commands create the file Toad_regions.c in the directory
root\myprojects\multiload:

cd root\myprojects\multiload fromelf --cadcombined image_multiload.axf --output
Toad_regions.c

Tasks

Using the Linker:
. Chapter 8 Using scatter files.

Reference
. --cad on page 4-8
. --output=destination on page 4-42

ARM DUI 0459B
ID061811

Copyright © 2008, 2011 ARM. All rights reserved. 4-10
Non-Confidential

fromelf command reference

4.8 --compare=option[,option,...]

4.8.1 Syntax

This option compares two input files and prints a textual list of the differences. The input files
must be the same type, either two ELF files or two library files. Library files are compared
member by member and the differences are concatenated in the output.

All differences between the two input files are reported as errors unless specifically downgraded
to warnings by using the --relax_section option.

--compare=option[,option,...]
Where option is one of:

section_sizes
Compares the size of all sections for each ELF file or ELF member of a library
file.

section_sizes::object_name
Compares the sizes of all sections in ELF objects with a name matching
object_name.

section_sizes::section_name
Compares the sizes of all sections with a name matching section_name.

sections Compares the size and contents of all sections for each ELF file or ELF member
of a library file.

sections::object_name
Compares the size and contents of all sections in ELF objects with a name
matching object_name.

sections::section_name
Compares the size and contents of all sections with a name matching
section_name.

function_sizes
Compares the size of all functions for each ELF file or ELF member of a library
file.

function_sizes::object_name
Compares the size of all functions in ELF objects with a name matching
object_name.

function_size:: function_name

Compares the size of all functions with a name matching function_name.

global_function_sizes
Compares the size of all global functions for each ELF file or ELF member of a
library file.

global_function_sizes:: function_name

Compares the size of all global functions in ELF objects with a name matching
function_name.

ARM DUI 0459B
ID061811

Copyright © 2008, 2011 ARM. All rights reserved. 4-11
Non-Confidential

fromelf command reference

You can:

. use wildcard characters ? and * for symbolic names in section_name, function_name, and
object_name arguments

. specify multiple options in one --compare option followed by a comma-separated list of
arguments.
48.2 Seealso
Reference
. --ignore_section=option[,option,...] on page 4-34
. --ignore_symbol=option[,option,...] on page 4-35
. --relax_section=option[,option,...] on page 4-44
. --relax_symbol=option[,option,...] on page 4-45.
ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. 4-12

ID061811 Non-Confidential

49 --continue_on_error
This option reports any errors and then continues.

Use --diag_warning=error instead of this option.

4.9.1 See also

Reference

. --diag_warning=tag/,tag,...] on page 4-22.

fromelf command reference

ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved.
ID061811 Non-Confidential

4-13

410 --cpu=list

4101 See also

fromelf command reference

This option lists the supported ARM processor names that you can use with --cpu=nare.

Reference
. --cpu=name on page 4-15.

ARM DUI 0459B
ID061811

Copyright © 2008, 2011 ARM. All rights reserved. 4-14
Non-Confidential

411 --cpu=name

4111 Syntax

411.2 See also

fromelf command reference

This option selects disassembly for a specific ARM processor. It affects how fromelf interprets

the instructions it finds in the input files.

--Cpu=name

Where name is the name of an ARM processor.

Reference

. --cpu=list on page 4-14

. --info=topic/,topic,...] on page 4-36
. --text on page 4-49.

Assembler Reference:

. --cpu=name on page 2-8

Compiler Reference:

. --cpu=name on page 3-20

Linker Reference:

. --cpu=name on page 2-27

ARM DUI 0459B
ID061811

Copyright © 2008, 2011 ARM. All rights reserved.

Non-Confidential

4-15

fromelf command reference

412 --datasymbols
This option modifies the output information of data sections so that symbol definitions are
interleaved.
You can use this option only with --text -d.
4121 Seealso
Reference
. --text on page 4-49.
ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. 4-16

ID061811

Non-Confidential

fromelf command reference

413 --decode_build_attributes

This option prints the contents of the build attributes section in human-readable form for
standard build attributes or raw hexadecimal form for nonstandard build attributes.

Note

The standard build attributes are documented in the Application Binary Interface for the ARM
Architecture.

4.13.1 Restrictions

You can use this option only in text mode.

4.13.2 Example

The following example shows the output for --decode_build_attributes:

«% Section #12 '.ARM.attributes' (SHT_ARM_ATTRIBUTES)
Size : 69 bytes

'aeabi' file build attributes:

0x000000: 05 41 52 4d 37 54 44 4d 49 00 06 02 08 01 11 01 .ARM7TDMI.......

0x000010: 12 02 14 02 17 01 18 01 19 01 1a 01 1e 03 20 02 eu... .

0x000020: 41 52 4d 00 ARM.
Tag_CPU_name = "ARM7TDMI"
Tag_CPU_arch = ARM v4T (=2)
Tag_ARM_ISA_use = ARM instructions were permitted to be used (=1)
Tag_ABI_PCS_GOT_use = Data are imported directly (=1)
Tag_ABI_PCS_wchar_t = Size of wchar_t is 2 (=2)
Tag_ABI_FP_denormal = This code was permitted to require that the sign of a flushed-to-zero number be

preserved in the sign of 0 (=2)

Tag_ABI_FP_number_model = This code was permitted to use only IEEE 754 format FP numbers (=1)
Tag_ABI_align8_needed = Code was permitted to depend on the 8-byte alignment of 8-byte data items (=1)
Tag_ABI_align8_preserved = Code was required to preserve 8-byte alignment of 8-byte data objects (=1)
Tag_ABI_enum_size = Enum values occupy the smallest container big enough to hold all values (=1)
Tag_ABI_optimization_goals = Optimized for small size, but speed and debugging illusion preserved (=3)
Tag_compatibility = 2, "ARM"

"ARM" file build attributes:
0x000000: 04 01 12 01

4.13.3 See also

Reference

. --dump_build_attributes on page 4-23

. --emit=option[,option,...] on page 4-24
. --extract_build_attributes on page 4-27.

Other information

. Application Binary Interface for the ARM Architecture,
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0036-/index.html

ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. 4-17
ID061811 Non-Confidential

fromelf command reference

414 --diag_error=tag[,tag,...]

This option sets diagnostic messages that have a specific tag to error severity.

4141 Syntax
--diag_error=tag[, tag,...]

Where tag can be:

. a diagnostic message number to set to error severity
. warning, to treat all warnings as errors.
4.14.2 Seealso
Reference
. --diag remark=tag/,tag,...] on page 4-19
. --diag_style={arm|ide|gnu} on page 4-20
. --diag suppress=tag/,tag,...] on page 4-21
. --diag_warning=tag/,tag,...] on page 4-22.
ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. 4-18

ID061811 Non-Confidential

fromelf command reference

415 --diag_remark=tag[,tag,...]

This option sets diagnostic messages that have a specific tag to remark severity.

4151 Syntax
--diag_remark=tag[, tag,...]

Where tag is a comma-separated list of diagnostic message numbers.

4.15.2 See also

Reference
. --diag_error=tag/,tag,...] on page 4-18
. --diag style={armlide|gnu} on page 4-20
. --diag suppress=tag/,tag,...] on page 4-21
. --diag warning=tag/,tag,...] on page 4-22.
ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. 4-19

ID061811 Non-Confidential

fromelf command reference

416 --diag_style={arm|ide|gnu}

This option specifies the style used to display diagnostic messages.

416.1 Syntax
--diag_style=string
Where string is one of:
arm Display messages using the ARM style.

ide Include the line number and character count for any line that is in error. These
values are displayed in parentheses.

gnu Display messages in the format used by GNU.

4.16.2 Default

The default is --diag_style=arm.

4.16.3 See also

Reference
. --diag_error=tag/,tag,...] on page 4-18
. --diag_remark=tag/[,tag,...] on page 4-19
. --diag suppress=tag/,tag,...] on page 4-21
. --diag warning=tag/,tag,...] on page 4-22.
ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. 4-20

ID061811 Non-Confidential

fromelf command reference

417 --diag_suppress=tag[,tag,...]

This option disables diagnostic messages that have the specified tags.

4171 Syntax
--diag_suppress=tag[, tag, ...]

Where tag can be:

. a diagnostic message number to be suppressed
. error, to suppress all errors
. warning, to suppress all warnings.
4.17.2 Seealso
Reference
. --diag_error=tag/,tag,...] on page 4-18
. --diag_remark=tag/,tag,...] on page 4-19
. --diag_style={arm|ide|gnu} on page 4-20
. --diag warning=tag/,tag,...] on page 4-22.
ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. 4-21

ID061811 Non-Confidential

fromelf command reference

418 --diag_warning=tag[,tag,...]

This option sets diagnostic messages that have a specific tag to warning severity.

4181 Syntax
--diag_warning=tag[, tag,...]

Where tag can be:

. a diagnostic message number to set to warning severity
. error, to downgrade all errors to warnings.
4.18.2 Seealso
Reference
. --diag_error=tag/,tag,...] on page 4-18
. --diag_remark=tag/[,tag,...] on page 4-19
. --diag style={armlide|gnu} on page 4-20
. --diag_warning=tag/,tag,...].
ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. 4-22

ID061811 Non-Confidential

419 --dump_build_attributes

4.19.1 Restrictions

4.19.2 Example

4.19.3 See also

fromelf command reference

This option prints the contents of the build attributes section in raw hexadecimal form.

You can use this option only in text mode.

The following example shows the output for --dump_build_attributes:

#% Section #12 '.ARM.attributes' (SHT_ARM_ATTRIBUTES)
Size : 69 bytes

0x000000:
0x000010:
0x000020:
0x000030:
0x000040:

Reference

41 33 00 00 00 61 65 61 62 69 00 01 29 00 00 00
05 41 52 4d 37 54 44 4d 49 00 06 02 08 01 11 01
12 02 14 02 17 01 18 01 19 01 la 01 le 03 20 02
41 52 4d 00 11 00 00 00 41 52 4d 00 01 09 00 00
00 04 01 12 01

--decode_build_attributes on page 4-17

--emit=option[,option,...] on page 4-24

--extract_build_attributes on page 4-27

--text on page 4-49.

A3...aeabi..)...
ARM7TDMI.......

ARM DUI 0459B
ID061811

Copyright © 2008, 2011 ARM. All rights reserved.

Non-Confidential

4-23

fromelf command reference

4.20 --emit=option[,option,...]

4.20.1 Restrictions

4.20.2 Syntax

This option enables you to specify the elements of an ELF object that you want to appear in the
textual output. The output includes ELF header and section information.

You can use this option only in text mode.

--emit=option[,option,...]
Where option is one of:
addresses This option prints global and static data addresses (including addresses for

structure and union contents). It has the same effect as --text -a.

This option can only be used on files containing debug information. If no debug
information is present, a warning message is generated.

Use the --select option to output a subset of the data addresses.

If you want to view the data addresses of arrays, expanded both inside and outside

structures, use the --expandarrays option with this text category.
build_attributes

This option prints the contents of the build attributes section in human-readable
form for standard build attributes or raw hexadecimal form for nonstandard build
attributes. The produces the same output as the --decode_build_attributes

option.
code This option disassembles code, alongside a dump of the original binary data being
disassembled and the addresses of the instructions. It has the same effect as --text
-C.
Note

The disassembly cannot be input to the assembler.

data This option prints contents of the data sections. It has the same effect as --text -d.

data_symbols
This option modifies the output information of data sections so that symbol
definitions are interleaved.

debug_info This option prints debug information. It has the same effect as --text -g.

dynamic_segment

This option prints dynamic segment contents. It has the same effect as --text -y.

exception_tables

This option decodes exception table information for objects. It has the same effect
as --text -e.

got This option prints the contents of the Global Offset Table (GOT) objects.

raw_build_attributes

This option prints the contents of the build attributes section in raw hexadecimal
form, that is, in the same form as data.

ARM DUI 0459B
ID061811

Copyright © 2008, 2011 ARM. All rights reserved. 4-24
Non-Confidential

fromelf command reference

relocation_tables

This option prints relocation information. It has the same effect as --text -r.

string_tables
This option prints the string tables. It has the same effect as --text -t.

summary This option prints a summary of the segments and sections in a file. It is the
default output of fromelf --text. However, the summary is suppressed by some
--info options. Use --emit summary to explicitly re-enable the summary, if
required.

symbol_tables
This option prints the symbol and versioning tables. It has the same effect as
--text -s.

vfe This option prints information about unused virtual functions.

Multiple options can be specified in one --emit option followed by a comma-separated list of

arguments.
4.20.3 See also
Reference
. --decode build_attributes on page 4-17
. --expandarrays on page 4-26
. --text on page 4-49.
ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. 4-25

ID061811 Non-Confidential

fromelf command reference

4.21 --expandarrays

This option prints data addresses, including arrays that are expanded both inside and outside
structures.

4.21.1 Restrictions

You can use this option only with --text -a.

4.21.2 See also

Reference
. --text on page 4-49.

ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. 4-26
ID061811 Non-Confidential

fromelf command reference

4.22 --extract_build_attributes

This option prints the build attributes only, either in:
. human-readable form for standard build attributes
. raw hexadecimal form for nonstandard build attributes.

4.22.1 Restrictions

You can use this option only in text mode.

4.22.2 Example

The following example shows the output for --extract_build_attributes:

#+ Object/Image Build Attributes

'aeabi' file build attributes:

0x000000: 05 41 52 4d 37 54 44 4d 49 00 06 02 08 01 11 01 .ARM7TDMI.......

0x000010: 12 02 14 02 17 01 18 01 19 01 1a 01 1e 03 20 02 vu... .

0x000020: 41 52 4d 00 ARM.
Tag_CPU_name = "ARM7TDMI"
Tag_CPU_arch = ARM v4T (=2)
Tag_ARM_ISA_use = ARM instructions were permitted to be used (=1)
Tag_ABI_PCS_GOT_use = Data are imported directly (=1)
Tag_ABI_PCS_wchar_t = Size of wchar_t is 2 (=2)
Tag_ABI_FP_denormal = This code was permitted to require that the sign of a flushed-to-zero number be

preserved in the sign of 0 (=2)

Tag_ABI_FP_number_model = This code was permitted to use only IEEE 754 format FP numbers (=1)
Tag_ABI_align8_needed = Code was permitted to depend on the 8-byte alignment of 8-byte data items (=1)
Tag_ABI_align8_preserved = Code was required to preserve 8-byte alignment of 8-byte data objects (=1)
Tag_ABI_enum_size = Enum values occupy the smallest container big enough to hold all values (=1)
Tag_ABI_optimization_goals = Optimized for small size, but speed and debugging il1lusion preserved (=3)
Tag_compatibility = 2, "ARM"

"ARM" file build attributes:
0x000000: 04 01 12 01

4.22.3 See also

Reference
. --decode_build_attributes on page 4-17
. --dump_build_attributes on page 4-23
. --emit=option[,option,...] on page 4-24
. --text on page 4-49.
ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. 4-27

ID061811 Non-Confidential

fromelf command reference

4.23 --fieldoffsets

4.23.1 Restrictions

4.23.2 Example

4.23.3 See also

This option prints a list of assembly language EQU directives that equate C++ class or C structure
field names to their offsets from the base of the class or structure. The input ELF file can be a
relocatable object or an image.

Use --output to redirect the output to a file. Use the INCLUDE command from armasm to load the
produced file and provide access to C++ classes and C structure members by name from
assembly language.

This option outputs all structure information. To output a subset of the structures, use --select
select_options.

If you do not require a file that can be input to armasm, use the --text -a options to format the
display addresses in a more readable form. The -a option only outputs address information for
structures and static data in images because the addresses are not known in a relocatable object.

This option:
. is not available if the source file does not have debug information
. can be used only in text mode.

The following examples show how to use --fieldoffsets:

. To produce an output listing to stdout that contains all the field offsets from all structures
in the file inputfile.o, enter:

fromelf --fieldoffsets inputfile.o

. To produce an output file listing to outputfile.a that contains all the field offsets from
structures in the file inputfile.o that have a name starting with p, enter:

fromelf --fieldoffsets --select=p: --output=outputfile.a inputfile.o

. To produce an output listing to outputfile.a that contains all the field offsets from
structures in the file inputfile.o with names of tools or moretools, enter:
fromelf --fieldoffsets --select=tools.:,moretools.: --output=outputfile.a
inputfile.o

. To produce an output file listing to outputfile.a that contains all the field offsets of
structure fields whose name starts with number and are within structure field top in
structure tools in the file inputfile.o, enter:

fromelf --fieldoffsets --select=tools.top.number: --output=outputfile.a
inputfile.o

Reference

. --qualify on page 4-43

. --select=select_options on page 4-46
. --text on page 4-49

Assembler Reference:

. EQU on page 5-66

. GET or INCLUDE on page 5-70.

ARM DUI 0459B
ID061811

Copyright © 2008, 2011 ARM. All rights reserved. 4-28
Non-Confidential

fromelf command reference

424 --fpu=list

This option lists the supported FPU architecture names that you can use with the --fpu=name

option.
4241 See also
Reference
. --fpu=name on page 4-30.
ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. 4-29

ID061811 Non-Confidential

4.25 --fpu=name

4,251 Syntax

4.25.2 Example

4.25.3 See also

fromelf command reference

This option selects disassembly for a specific FPU architecture. It affects how fromelf interprets

the instructions it finds in the input files.

--fpu=name

Where name is the name of a supported FPU architecture.

To select disassembly for the VFPv2 architecture, use:

--fpu=VFPv2

Reference

. --fpu=list on page 4-29

. --info=topic/,topic,...] on page 4-36
. --text on page 4-49.

ARM DUI 0459B
ID061811

Copyright © 2008, 2011 ARM. All rights reserved.
Non-Confidential

4-30

4.26 --help

4.26.1 See also

This option displays a summary of the main command-line options.

This is the default if you do not specify any options or source files.

Reference

. --show_cmdline on page 4-47

. --version_number on page 4-51
. --vsn on page 4-54.

fromelf command reference

ARM DUI 0459B
ID061811

Copyright © 2008, 2011 ARM. All rights reserved.
Non-Confidential

4-31

4.27 --i32

4.27.1 Restrictions

4.27.2 See also

fromelf command reference

This option produces Intel Hex-32 format output. It generates one output file for each load
region in the image. You can specify the base address of the output with the --base option.

You cannot use this option with object files.

You must use --output with this option.

Concepts
. Considerations when using fromelf on page 2-4.
Reference
. --base [[object file::]load region ID=]num on page 4-3
. --i32combined on page 4-33
. --output=destination on page 4-42.
ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. 4-32

ID061811

Non-Confidential

fromelf command reference

4.28 --i32combined

This option produces Intel Hex-32 format output. This option generates one output file for an
image containing multiple load regions. You can specify the base address of the output with the
--base option.

4.28.1 Restrictions
You cannot use this option with object files.

You must use --output with this option.

4.28.2 See also

Concepts
. Considerations when using fromelf on page 2-4.
Reference
. --base [[object file::]load region ID=]num on page 4-3
. --i32 on page 4-32
. --output=destination on page 4-42.
ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. 4-33

ID061811 Non-Confidential

fromelf command reference

4.29 --ignore_section=option[,option,...]
This option specifies the sections to be ignored during a compare. Differences between the input
files being compared are ignored if they are in these sections.

4.29.1 Restrictions

You must use --compare with this option.

4.29.2 Syntax
--ignore_section=option[,option,...]
Where option is one of:

object_name: :

All sections in ELF objects with a name matching object_name.

object_name: :section_name

All sections in ELF objects with a name matching object_name and also a section
name matching section_name.

section_name All sections with a name matching section_name.

You can:

. use wildcard characters ? and = for symbolic names in section_name and object_name
arguments

. specify multiple options in one --ignore_section option followed by a comma-separated

list of arguments.

4.29.3 See also

Reference
. --compare=option[,option,...] on page 4-11
. --ignore_symbol=option[,option,...] on page 4-35
. --relax_section=option[,option,...] on page 4-44.
ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. 4-34

ID061811 Non-Confidential

fromelf command reference

4.30 --ignore_symbol=option[,option,...]

4.30.1 Restrictions

4.30.2 Syntax

4.30.3 See also

This option specifies the symbols to be ignored during a compare. Differences between the input
files being compared are ignored if they are related to these symbols.

You must use --compare with this option.

--ignore_symbol=option[,option,...]
Where option is one of:

object_name: :

All symbols in ELF objects with a name matching object_name.

object_name: : symbol_name

All symbols in ELF objects with a name matching object_name and also a symbols
name matching symboT_name.

symboTl_name All symbols with a name matching symboT_name.

You can:

. use wildcard characters ? and * for symbolic names in symboT_name and object_name
arguments

. specify multiple options in one --ignore_symhol option followed by a comma-separated

list of arguments.

Reference
. --compare=option[,option,...] on page 4-11
. --ignore_section=optionf[,option,...] on page 4-34
. --relax_symbol=option[,option,...] on page 4-45.
ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. 4-35

ID061811

Non-Confidential

fromelf command reference

4.31 --info=topic[, topic,...]

4.31.1 Restrictions

4.31.2 Syntax

4.31.3 See also

This option prints information about specific topics.

You can use this option only in text mode.

--info=topicl[, topic,...]
Where topic is a comma-separated list from the following topic keywords:

instruction_usage
Categorizes and lists the ARM and Thumb instructions defined in the code
sections of each input file.
function_sizes
Lists the names of the global functions defined in one or more input files, together
with their sizes in bytes and whether they are ARM or Thumb functions.
function_sizes_all

Lists the names of the local and global functions defined in one or more input
files, together with their sizes in bytes and whether they are ARM or Thumb
functions.

sizes Lists the Code, RO Data, RW Data, ZI Data, and Debug sizes for each input object and
library member in the image. Using this option implies --info=sizes, totals.

totals Lists the totals of the Code, RO Data, RW Data, ZI Data, and Debug sizes for input
objects and libraries.

The output from --info=sizes, totals always includes the padding values in the totals for input
objects and libraries.

Note

Spaces are not permitted between topic keywords in the list. For example, you can enter
--info=sizes,totals but not --info=sizes, totals.

Reference
. --text on page 4-49.

ARM DUI 0459B
ID061811

Copyright © 2008, 2011 ARM. All rights reserved. 4-36
Non-Confidential

4.32 input_file

4.321 Usage

4.32.2 See also

fromelf command reference

This option specifies the ELF file or archive containing ELF files to be processed. Multiple
input files are supported if you:

. output --text format
. use the --compare option
. specify an output directory using --output.

If input_fileis a scatter-loaded image that contains more than one load region and the output
format is one of --bin, --cad, --m32, --i132, or --vhx, then fromelf creates a separate file for each
load region.

If input_fileis a scatter-loaded image that contains more than one load region and the output
format is one of --cadcombined, --m32combined, or --i32combined, then fromelf creates a single
file containing all load regions.

If input_fileis an archive, you can process all files, or a subset of files, in that archive. To
process a subset of files in the archive, specify a filter after the archive name as follows:

archive.a(filter_pattern)

where filter_pattern specifies a member file. To specify a subset of files use the following
wildcard characters:

to match zero or more characters
? to match any single character.

Any files in the archive that are not processed are included in the output archive together with
the processed files.

Reference
. --bin on page 4-4
. --cad on page 4-8
. --cadcombined on page 4-10
. --compare=optionf,option,...] on page 4-11
. --132 on page 4-32
. --i32combined on page 4-33
. --m32 on page 4-39
. --m32combined on page 4-40
. --output=destination on page 4-42
. --text on page 4-49
. --vhx on page 4-52.
ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. 4-37

ID061811

Non-Confidential

4.33 --interleave=option

4.33.1 Syntax

4.33.2 Default

4.33.3 See also

fromelf command reference

This option inserts the original source code as comments into the disassembly if debug
information is present.

Use this option with --emit=code, or --text -c.

Use this option with --source_directory if you want to specify additional paths to search for

source code.

--interleave=

option

Where option can be one of the following:

Tine_directives

Tine_numbers

none

source

source_only

interleaves #11ine directives containing filenames and line numbers of the
disassembled instructions.

interleaves comments containing filenames and line numbers of the disassembled
instructions.

interleaving is disabled. This is useful if you have a generated makefile where the
fromelf command has multiple options in addition to --interleave. You can then
specify --interTleave=none as the last option to ensure that interleaving is disabled
without having to reproduce the complete fromelf command.

interleaves comments containing source code. If the source code is no longer
available then fromelf interleaves in the same way as Tine_numbers.

interleaves comments containing source code. If the source code is no longer
available then fromelf does not interleave that code.

The default is --interleave=none.

Reference
. --emit=option[,option,...] on page 4-24
. --source_directory=path on page 4-48
. --text on page 4-49.
ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. 4-38

ID061811

Non-Confidential

fromelf command reference

434 --m32

This option produces Motorola 32-bit format (32-bit S-records) output. It generates one output
file for each load region in the image. You can specify the base address of the output with the
--base option.

4.34.1 Restrictions
You cannot use this option with object files.

You must use --output with this option.

4.34.2 See also

Concepts
. Considerations when using fromelf on page 2-4.
Reference
. --base [[object file::]load region ID=]num on page 4-3
. --m32combined on page 4-40
. --output=destination on page 4-42.
ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. 4-39

ID061811 Non-Confidential

fromelf command reference

4.35 --m32combined

This option produces Motorola 32-bit format (32-bit S-records) output. This option generates
one output file for an image containing multiple load regions. You can specify the base address
of the output with the --base option.

4.35.1 Restrictions
You cannot use this option with object files.

You must use --output with this option.

4.35.2 See also

Concepts
. Considerations when using fromelf on page 2-4.
Reference
. --base [[object file::]load region ID=]num on page 4-3
. --m32 on page 4-39
. --output=destination on page 4-42.
ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. 4-40

ID061811 Non-Confidential

fromelf command reference

4.36 --only=section_name

4.36.1 Syntax

4.36.2 Example

4.36.3 See also

This option forces the output to display only the named section.

--only=section_name

Where section_name is the name of the section to be displayed.

You can:
. use wildcard characters ? and = for a section name
. use multiple --onTy options to specify additional sections to display.

The following examples show how to use --only:

. To display only the symbol table, .symtab, enter:

fromelf --only=.symtab --text -s test.axf

. To display all ERn sections, enter:

fromelf --only=ER? test.axf

. To display the HEAP section and all symbol and string table sections, enter:

fromelf --only=HEAP --only=.:tab --text -s -t test.axf

Reference

. --text on page 4-49.

ARM DUI 0459B
ID061811

Copyright © 2008, 2011 ARM. All rights reserved. 4-41
Non-Confidential

fromelf command reference

4.37 --output=destination
This option specifies the name of the output file, or the name of the output directory if multiple
output files are created.
4,371 Syntax
--output=destination
Where destination can be either a file or a directory. For example:
--output=foo is the name of an output file

--output=Ffoo/

is the name of an output directory.

4.37.2 Usage
Usage with --bin:
. You can specify a single input file and a single output filename.

. If you specify many input filenames and specify an output directory, then the output from
processing each file is written into the output directory. Each output filename is derived
from the corresponding input file. Therefore, specifying an output directory in this way is
the only method of converting many ELF files to a binary or hexadecimal format in a
single run of fromelf.

. If you specify an archive file as the input, then the output file is also an archive.

. If you specify a pattern in parentheses to select a subset of objects from an archive,
fromelf only converts the subset. All the other objects are passed through to the output
archive unchanged.

4.37.3 See also

Reference
. --bin on page 4-4
. --text on page 4-49.
ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. 4-42

ID061811 Non-Confidential

4.38 --qualify

4.38.1 Example

4.38.2 See also

fromelf command reference

This option modifies the effect of the --fieldoffsets option so that the name of each output
symbol includes an indication of the source file containing the relevant structure. This enables
the --fieldoffsets option to produce functional output even if two source files define different
structures with the same name.

A structure called foo is defined in two headers for example, one.h and two.h.

Using fromelf --fieldoffsets, the linker might define the following symbols:
. foo.a, foo.b, and foo.c
. foo.x, foo.y, and foo.z

Using fromelf --qualify --fieldoffsets, the linker defines the following symbols:

. oneh_foo.a, oneh_foo.b and oneh_foo.c
. twoh_fo0o.x, twoh_foo.y and twoh_foo.z
Reference

. -fieldoffsets on page 4-28.

ARM DUI 0459B
ID061811

Copyright © 2008, 2011 ARM. All rights reserved. 4-43
Non-Confidential

fromelf command reference

4.39 --relax_section=option[,option,...]

4.39.1 Restrictions

4.39.2 Syntax

4.39.3 See also

This option changes the severity of a compare report for the specified sections to warnings rather
than errors.

You must use --compare with this option.

--relax_section=option[,option,...]
Where option is one of:

object_name: :

All sections in ELF objects with a name matching object_name.

object_name: :section_name

All sections in ELF objects with a name matching object_name and also a section
name matching section_name.

section_name All sections with a name matching section_name.

You can:

. use wildcard characters ? and = for symbolic names in section_name and object_name
arguments

. specify multiple options in one --relax_section option followed by a comma-separated

list of arguments.

Reference
. --compare=option[,option,...] on page 4-11
. --ignore_section=optionf[,option,...] on page 4-34
. --relax_symbol=option[,option,...] on page 4-45.
ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. 4-44

ID061811

Non-Confidential

fromelf command reference

440 --relax_symbol=option[,option,...]

4.40.1 Restrictions

4.40.2 Syntax

This option changes the severity of a compare report for the specified symbols to warnings
rather than errors.

You must use --compare with this option.

--relax_symbol=option[,option,...]
Where option is one of:

object_name: :

All symbols in ELF objects with a name matching object_name.

object_name: :section_name

All symbols in ELF objects with a name matching object_name and also a symbol
name matching symboT_name.

symboTl_name All symbols with a name matching symboT_name.

You can:
. use wildcard characters ? and * for symbolic names in symboT_name and object_name
arguments
. specify multiple options in one --relax_symbol option followed by a comma-separated list
of arguments.
4.40.3 Seealso
Reference
. --compare=option[,option,...] on page 4-11
. --ignore_symbol=option[,option,...] on page 4-35
. --relax_section=option[,option,...] on page 4-44.
ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. 4-45

ID061811

Non-Confidential

fromelf command reference

441 --select=select_options

4.411 Syntax

4.41.2 See also

This option selects only those fields that match a specified pattern list.

Use this option with either --fieldoffsets or --text -a.

--select=select_options

Where select_options is a list of patterns to match. Use special characters to select multiple
fields:

Use a comma-separated list to specify multiple fields, for example:

ak, b , C*
Use the wildcard character « to match any name.
Use the wildcard character ? to match any single letter.

Prefix the select_options string with + to specify the fields to include. This is the default
behavior.

Prefix the select_options string with ~ to specify the fields to exclude.

If you are using a special character on Unix platforms, you must enclose the options in quotes
to prevent the shell expanding the selection.

Reference

--fieldoffsets on page 4-28
--text on page 4-49.

ARM DUI 0459B
ID061811

Copyright © 2008, 2011 ARM. All rights reserved. 4-46
Non-Confidential

fromelf command reference

442 --show_cmdline

4421 See also

This option shows how fromelf has processed the command line. It shows the command-line
after processing by fromelf, and can be useful to check:

. the command-line a build system is using

. how fromelf is interpreting the supplied command-line, for example, the ordering of
command line options.

The commands are shown in their preferred form, and the contents of any via files are expanded.

Reference
. --via=file on page 4-53
. Chapter 4 fromelf command reference.
ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. 4-47

ID061811

Non-Confidential

fromelf command reference

443 --source_directory=path

This option explicitly specifies the directory of the source code. By default, the source code is
assumed to be located in a directory relative to the ELF input file. You can use this option
multiple times to specify a search path involving multiple directories.

You can use this option with --interleave.

4431 See also

Reference
. --interleave=option on page 4-38.

ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. 4-48
ID061811 Non-Confidential

444 --text

4.441 Syntax

fromelf command reference

This option prints image information in text format. You can decode an ELF image or ELF
object file using this option.

If you do not specify a code output format, --text is assumed. That is, you can specify one or
more options without having to specify --text. For example, fromelf -a is the same as fromelf

--text -a.

If you specify a code output format, such as --bin, then any --text options are ignored.

If destination is not specified with the --output option, or --output is not specified, the
information is displayed on stdout.

--text [options]

Where options specifies what is displayed, and can be one or more of the following:

-a

Prints the global and static data addresses (including addresses for structure and
union contents).

This option can only be used on files containing debug information. If no debug
information is present, a warning is displayed.

Use the --select option to output a subset of the data addresses.
If you want to view the data addresses of arrays, expanded both inside and outside

structures, use the --expandarrays option with this text category.

This option disassembles code, alongside a dump of the original binary data being
disassembled and the addresses of the instructions.

Note
The disassembly cannot be input to the assembler.

Prints contents of the data sections.

Decodes exception table information for objects. Use with -c when disassembling
images.

Prints debug information.

Prints relocation information.

Prints the symbol and versioning tables.

Prints the string tables.

Prints detailed information on each segment and section header of the image.
Eliminates line wrapping.

Prints dynamic segment contents.

Prints the code and data sizes.

These options are only recognized in text mode.

ARM DUI 0459B
ID061811

Copyright © 2008, 2011 ARM. All rights reserved. 4-49

Non-Confidential

4.44.2 Example

4.44.3 See also

fromelf command reference

The following examples show how to use --text:

Tasks

To produce a plain text output file that contains the disassembled version of an ELF image
and the symbol table, enter:

fromelf --text -c -s --output=outfile.lst infile.axf

To list to stdout all the global and static data variables and all the structure field addresses,
enter:

fromelf -a --select=+ infile.axf

To produce a text file containing all of the structure addresses in inputfile.axf but none
of the global or static data variable information, enter:

fromelf --text -a --select=:+.: --output=structaddress.txt infile.axf

To produce a text file containing addresses of the nested structures only, enter:

fromelf --text -a --select=s.s.s --output=structaddress.txt infile.axf

To produce a text file containing all of the global or static data variable information in
inputfile.axf but none of the structure addresses, enter:

fromelf --text -a --select=s,~%.% --output=structaddress.txt infile.axf

Using fromelf to find where a symbol is placed in an executable ELF image on page 3-7.

Using the Linker:

Linker options for getting information about images on page 6-2.

Reference

--cpu=name on page 4-15
--emit=option[,option,...] on page 4-24
--expandarrays on page 4-26
--info=topic/,topic,...] on page 4-36
--interleave=option on page 4-38
--only=section_name on page 4-41
--output=destination on page 4-42
--select=select options on page 4-46
-w on page 4-55.

ARM DUI 0459B
ID061811

Copyright © 2008, 2011 ARM. All rights reserved. 4-50
Non-Confidential

fromelf command reference

445 --version_number

This option displays the version of fromelf you are using.

4451 Syntax
fromelf --version_number

frome1f displays the version number in the format nnnbbb, where:
. nnn is the version number
. bbb is the build number.

4.45.2 Example
Version 4.1.0 build 713 is displayed as 410713.

4.45.3 See also

Reference
. --help on page 4-31
. --vsn on page 4-54
ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. 4-51

ID061811 Non-Confidential

fromelf command reference

446 --vhx

This option produces Byte oriented (Verilog Memory Model) hexadecimal format output. This
format is suitable for loading into the memory models of Hardware Description Language
(HDL) simulators. You can split output from this option into multiple files with the
--widthxbanks option.

4.46.1 Restrictions

You cannot use this option with object files.

You must use --output with this option.

4.46.2 See also

Concepts
. Considerations when using fromelf on page 2-4.
Reference

. --output=destination on page 4-42
. --widthxbanks on page 4-56

ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. 4-52
ID061811 Non-Confidential

fromelf command reference

4.47 --via=file

Instructs fromelf to use options specified in fiTe.

4471 See also

Reference

Compiler Reference:
. Appendix B Via File Syntax.

ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. 4-53
ID061811 Non-Confidential

fromelf command reference

448 --vsn

This option displays fromelf version information, including the type of license being used. For
example:

>fromelf --vsn

ARM FromELF, N.n [Build num]
license_type

Software supplied by: ARM Limited

4.48.1 See also

Reference
. --help on page 4-31
. --version_number on page 4-51.
ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. 4-54

ID061811 Non-Confidential

fromelf command reference

449 -w

This option causes some text output information that usually appears on multiple lines to be
displayed on a single line.

This makes the output easier to parse with text processing utilities such as Perl.

For example:

> fromelf --text -w -c test.axf

%% ELF Header Information

#% Section #1 '.text' (SHT_PROGBITS) [SHF_ALLOC + SHF_EXECINSTR] Size : 36 bytes (alignment 4) Address:
0x00000000 $a
.text

%% Section #7 '.rel.text' (SHT_REL) Size : 8 bytes (alignment 4) Symbol table #6 '.symtab' 1
relocations applied to section #1 '.text'

%% Section #2 '.ARM.exidx' (SHT_ARM_EXIDX) [SHF_ALLOC + SHF_LINK_ORDER] Size : 8 bytes (alignment 4)
Address: 0x

00000000 Link to section #1 '.text'

«x% Section #8 '.rel.ARM.exidx' (SHT_REL) Size : 8 bytes (alignment 4) Symbol table #6 '.symtab' 1
relocations applied to section #2 '.ARM.exidx'

xx Section #3 '.arm_vfe_header' (SHT_PROGBITS) Size : 4 bytes (alignment 4)

#% Section #4 '.comment' (SHT_PROGBITS) Size : 74 bytes

«% Section #5 '.debug_frame' (SHT_PROGBITS) Size : 140 bytes

«% Section #9 '.rel.debug_frame' (SHT_REL) Size : 32 bytes (alignment 4) Symbol table #6 '.symtab' 4
relocations applied to section #5 '.debug_frame'

x% Section #6 '.symtab' (SHT_SYMTAB) Size : 176 bytes (alignment 4) String table #11 '.strtab' Last
Tocal symbol no. 5

%% Section #10 '.shstrtab' (SHT_STRTAB) Size : 110 bytes

#x% Section #11 '.strtab' (SHT_STRTAB) Size : 223 bytes

x% Section #12 '.ARM.attributes' (SHT_ARM_ATTRIBUTES) Size : 69 bytes

4491 See also

Reference

. --text on page 4-49.

ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. 4-55
ID061811 Non-Confidential

fromelf command reference

450 --widthxbanks

4.50.1 Restrictions

4.50.2 Syntax

4.50.3 Usage

This option outputs multiple files for multiple memory banks.

fromelf uses the last specified configuration if more than one configuration is specified.

You must use --output with this option.

--widthxbanks
Where:

banks specifies the number of memory banks in the target memory system. It determines
the number of output files that are generated for each load region.

width is the width of memory in the target memory system (8-bit, 16-bit, 32-bit, or
64-bit).

Valid configurations are:

--8x1
--8x2
--8x4
--16x1
--16x2
--32x1
--32x2
--64x1

If the image has one load region, fromelf generates the same number of files as the number of
banks specified. The filenames are derived from the --output=destination argument, using the
following naming conventions:

. If there is one memory bank (banks=1) the output file is named destination.

. If there are multiple memory banks (banks>1), frome1f generates banks number of files
named destinationN where N is in the range 0 to banks-1. If you specify a file extension
for the output filename, then the number Nis placed before the file extension. For example:

fromelf --vhx --8x2 test.axf --output=test.txt

This generates two files named test@.txt and testl.txt.

If the image has multiple load regions, fromelf creates a directory named destination and
generates banks files for each load region in that directory. The files for each load region are
named Toad_regionN where Toad_region is the name of the load region, and Nis in the range 0 to
banks-1. For example:

fromelf --vhx --8x2 multiload.axf --output=regions/
This might produce the following files in the regions directory:

EXEC_ROM0
EXEC_ROM1
RAM@
RAM1

ARM DUI 0459B
ID061811

Copyright © 2008, 2011 ARM. All rights reserved. 4-56
Non-Confidential

fromelf command reference

The memory width specified by width controls the amount of memory that is stored in a single
line of each output file. The size of each output file is the size of memory to be read divided by
the number of files created. For example:

. fromelf --vhx --8x4 test.axf --output=file produces four files (file0, filel, file2, and
file3). Each file contains lines of single bytes, for example:

00
00
2D
00
2C
8F

. fromelf --vhx --16x2 test.axf --output=file produces two files (filed and filel). Each
file contains lines of two bytes, for example:

0000
002D
002C
4.50.4 See also
Reference
. --bin on page 4-4
. --output=destination on page 4-42
. --vhx on page 4-52.
ARM DUI 0459B Copyright © 2008, 2011 ARM. All rights reserved. 4-57

ID061811 Non-Confidential

	ARM Compiler toolchain v4.1 for µVision Using the fromelf Image Converter
	Contents
	Conventions and feedback
	Overview of the fromelf image converter
	2.1 About the fromelf image converter
	2.1.1 See also

	2.2 fromelf execution modes
	2.2.1 See also

	2.3 Considerations when using fromelf
	2.3.1 See also

	2.4 Getting help on the fromelf command
	2.4.1 Example
	2.4.2 See also

	2.5 fromelf command-line syntax
	2.5.1 See also

	2.6 fromelf command-line options listed in groups

	Using fromelf
	3.1 Converting an ELF image to Intel Hex-32 format
	3.1.1 Example
	3.1.2 See also

	3.2 Converting an ELF image to Motorola 32-bit format
	3.2.1 Example
	3.2.2 See also

	3.3 Converting an ELF image to plain binary format
	3.3.1 Examples
	3.3.2 See also

	3.4 Converting an ELF image to Byte oriented (Verilog Memory Model) hexadecimal format
	3.4.1 Examples
	3.4.2 See also

	3.5 Printing details of ELF-formatted files
	3.5.1 Example of printing data sections
	3.5.2 Example of printing relocation information
	3.5.3 See also

	3.6 Using fromelf to find where a symbol is placed in an executable ELF image
	3.6.1 Example
	3.6.2 See also

	fromelf command reference
	4.1 --base [[object_file::]load_region_ID=]num
	4.1.1 Restrictions
	4.1.2 Syntax
	4.1.3 See also

	4.2 --bin
	4.2.1 Restrictions
	4.2.2 Example
	4.2.3 See also

	4.3 --bincombined
	4.3.1 Restrictions
	4.3.2 Considerations when using --bincombined
	4.3.3 See also

	4.4 --bincombined_base=address
	4.4.1 Restrictions
	4.4.2 Syntax
	4.4.3 Default
	4.4.4 Example
	4.4.5 See also

	4.5 --bincombined_padding=size,num
	4.5.1 Restrictions
	4.5.2 Syntax
	4.5.3 Default
	4.5.4 Example
	4.5.5 See also

	4.6 --cad
	4.6.1 Restrictions
	4.6.2 Example
	4.6.3 See also

	4.7 --cadcombined
	4.7.1 Restrictions
	4.7.2 Example
	4.7.3 See also

	4.8 --compare=option[,option,...]
	4.8.1 Syntax
	4.8.2 See also

	4.9 --continue_on_error
	4.9.1 See also

	4.10 --cpu=list
	4.10.1 See also

	4.11 --cpu=name
	4.11.1 Syntax
	4.11.2 See also

	4.12 --datasymbols
	4.12.1 See also

	4.13 --decode_build_attributes
	4.13.1 Restrictions
	4.13.2 Example
	4.13.3 See also

	4.14 --diag_error=tag[,tag,...]
	4.14.1 Syntax
	4.14.2 See also

	4.15 --diag_remark=tag[,tag,...]
	4.15.1 Syntax
	4.15.2 See also

	4.16 --diag_style={arm|ide|gnu}
	4.16.1 Syntax
	4.16.2 Default
	4.16.3 See also

	4.17 --diag_suppress=tag[,tag,...]
	4.17.1 Syntax
	4.17.2 See also

	4.18 --diag_warning=tag[,tag,...]
	4.18.1 Syntax
	4.18.2 See also

	4.19 --dump_build_attributes
	4.19.1 Restrictions
	4.19.2 Example
	4.19.3 See also

	4.20 --emit=option[,option,...]
	4.20.1 Restrictions
	4.20.2 Syntax
	4.20.3 See also

	4.21 --expandarrays
	4.21.1 Restrictions
	4.21.2 See also

	4.22 --extract_build_attributes
	4.22.1 Restrictions
	4.22.2 Example
	4.22.3 See also

	4.23 --fieldoffsets
	4.23.1 Restrictions
	4.23.2 Example
	4.23.3 See also

	4.24 --fpu=list
	4.24.1 See also

	4.25 --fpu=name
	4.25.1 Syntax
	4.25.2 Example
	4.25.3 See also

	4.26 --help
	4.26.1 See also

	4.27 --i32
	4.27.1 Restrictions
	4.27.2 See also

	4.28 --i32combined
	4.28.1 Restrictions
	4.28.2 See also

	4.29 --ignore_section=option[,option,...]
	4.29.1 Restrictions
	4.29.2 Syntax
	4.29.3 See also

	4.30 --ignore_symbol=option[,option,...]
	4.30.1 Restrictions
	4.30.2 Syntax
	4.30.3 See also

	4.31 --info=topic[,topic,...]
	4.31.1 Restrictions
	4.31.2 Syntax
	4.31.3 See also

	4.32 input_file
	4.32.1 Usage
	4.32.2 See also

	4.33 --interleave=option
	4.33.1 Syntax
	4.33.2 Default
	4.33.3 See also

	4.34 --m32
	4.34.1 Restrictions
	4.34.2 See also

	4.35 --m32combined
	4.35.1 Restrictions
	4.35.2 See also

	4.36 --only=section_name
	4.36.1 Syntax
	4.36.2 Example
	4.36.3 See also

	4.37 --output=destination
	4.37.1 Syntax
	4.37.2 Usage
	4.37.3 See also

	4.38 --qualify
	4.38.1 Example
	4.38.2 See also

	4.39 --relax_section=option[,option,...]
	4.39.1 Restrictions
	4.39.2 Syntax
	4.39.3 See also

	4.40 --relax_symbol=option[,option,...]
	4.40.1 Restrictions
	4.40.2 Syntax
	4.40.3 See also

	4.41 --select=select_options
	4.41.1 Syntax
	4.41.2 See also

	4.42 --show_cmdline
	4.42.1 See also

	4.43 --source_directory=path
	4.43.1 See also

	4.44 --text
	4.44.1 Syntax
	4.44.2 Example
	4.44.3 See also

	4.45 --version_number
	4.45.1 Syntax
	4.45.2 Example
	4.45.3 See also

	4.46 --vhx
	4.46.1 Restrictions
	4.46.2 See also

	4.47 --via=file
	4.47.1 See also

	4.48 --vsn
	4.48.1 See also

	4.49 -w
	4.49.1 See also

	4.50 --widthxbanks
	4.50.1 Restrictions
	4.50.2 Syntax
	4.50.3 Usage
	4.50.4 See also

