
ARM® Compiler toolchain v4.1 for
µVision

Assembler Reference
Copyright © 2011 ARM. All rights reserved.
ARM DUI 0588A (ID061811)

ARM Compiler toolchain v4.1 for µVision
Assembler Reference

Copyright © 2011 ARM. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

Words and logos marked with or are registered trademarks or trademarks of ARM in the EU and other countries, except
as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the trademarks
of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be
adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the
product and its use contained in this document are given by ARM in good faith. However, all warranties implied or
expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM shall not be liable for any loss or
damage arising from the use of any information in this document, or any error or omission in such information, or any
incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this
document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Change History

Date Issue Confidentiality Change

June 2011 A Non-Confidential Release for ARM Compiler toolchain v4.1 for
µVision
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. ii
ID061811 Non-Confidential

Contents
ARM Compiler toolchain v4.1 for µVision Assembler
Reference

Chapter 1 Conventions and feedback

Chapter 2 Assembler command line options
2.1 Assembler command line syntax ... 2-2
2.2 Assembler command line options .. 2-3

Chapter 3 ARM and Thumb Instructions
3.1 Instruction summary .. 3-2
3.2 Instruction width specifiers ... 3-8
3.3 Memory access instructions .. 3-9
3.4 General data processing instructions .. 3-44
3.5 Multiply instructions ... 3-75
3.6 Saturating instructions ... 3-96
3.7 Parallel instructions .. 3-101
3.8 Packing and unpacking instructions .. 3-108
3.9 Branch and control instructions ... 3-115
3.10 Coprocessor instructions ... 3-124
3.11 Miscellaneous instructions ... 3-133
3.12 ThumbEE instructions .. 3-150
3.13 Pseudo-instructions ... 3-154
3.14 Condition codes ... 3-162

Chapter 4 VFP Programming
4.1 VFP instruction summary ... 4-2
4.2 VFP pseudo-instructions .. 4-4
4.3 VFP instructions ... 4-7
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. iii
ID061811 Non-Confidential

Contents
Chapter 5 Directives Reference
5.1 Alphabetical list of directives .. 5-2
5.2 Symbol definition directives ... 5-3
5.3 Data definition directives .. 5-15
5.4 Assembly control directives ... 5-29
5.5 Frame directives .. 5-37
5.6 Reporting directives ... 5-50
5.7 Instruction set and syntax selection directives ... 5-55
5.8 Miscellaneous directives .. 5-57
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. iv
ID061811 Non-Confidential

Chapter 1
Conventions and feedback

The following describes the typographical conventions and how to give feedback:

Typographical conventions
The following typographical conventions are used:
monospace Denotes text that can be entered at the keyboard, such as commands,

file and program names, and source code.
monospace Denotes a permitted abbreviation for a command or option. The

underlined text can be entered instead of the full command or option
name.

monospace italic
Denotes arguments to commands and functions where the argument is
to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

italic Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Also used for
emphasis in descriptive lists, where appropriate, and for ARM®
processor signal names.

Feedback on this product
If you have any comments and suggestions about this product, contact your
supplier and give:
• your name and company
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 1-1
ID061811 Non-Confidential

Conventions and feedback
• the serial number of the product
• details of the release you are using
• details of the platform you are using, such as the hardware platform,

operating system type and version
• a small standalone sample of code that reproduces the problem
• a clear explanation of what you expected to happen, and what actually

happened
• the commands you used, including any command-line options
• sample output illustrating the problem
• the version string of the tools, including the version number and build

numbers.

Feedback on content
If you have comments on content then send an e-mail to errata@arm.com. Give:
• the title
• the number, ARM DUI 0588A
• if viewing online, the topic names to which your comments apply
• if viewing a PDF version of a document, the page numbers to which your

comments apply
• a concise explanation of your comments.
ARM also welcomes general suggestions for additions and improvements.

ARM periodically provides updates and corrections to its documentation on the ARM
Information Center, together with knowledge articles and Frequently Asked Questions (FAQs).

Other information
• ARM Product Manuals, http://www.keil.com/support/man_arm.htm
• Keil Support Knowledgebase, http://www.keil.com/support/knowledgebase.asp
• Keil Product Support, http://www.keil.com/support/
• ARM Glossary,

http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 1-2
ID061811 Non-Confidential

Chapter 2
Assembler command line options

The following topics describe the ARM® Compiler toolchain assembler command line syntax
and the command line options accepted by the assembler, armasm:
• Assembler command line syntax on page 2-2
• Assembler command line options on page 2-3.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 2-1
ID061811 Non-Confidential

Assembler command line options
2.1 Assembler command line syntax
The command for invoking the ARM assembler is:

armasm {options} {inputfile}

where:

options are commands to the assembler. You can invoke the assembler with any
combination of options separated by spaces. You can specify values for some
options. To specify a value for an option, use either ‘=’ (option=value) or a space
character (option value).

inputfile can be one or more assembly source files separated by spaces. Input files must be
UAL, or pre-UAL ARM or Thumb® assembly language source files.

See also

Using the Compiler:
• Order of compiler command-line options on page 3-10.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 2-2
ID061811 Non-Confidential

Assembler command line options
2.2 Assembler command line options
The following command line options are supported by the assembler:
• --16 on page 2-4
• --32 on page 2-4
• --apcs=qualifier…qualifier on page 2-5
• --arm on page 2-6
• --arm_only on page 2-6
• --bi on page 2-6
• --bigend on page 2-6
• --brief_diagnostics on page 2-6
• --checkreglist on page 2-6
• --compatible=name on page 2-7
• --cpreproc on page 2-7
• --cpreproc_opts=options on page 2-7
• --cpu=list on page 2-8
• --cpu=name on page 2-8
• --debug on page 2-8
• --depend=dependfile on page 2-8
• --depend_format=string on page 2-9
• --diag_error=tag{, tag} on page 2-9
• --diag_remark=tag{, tag} on page 2-10
• --diag_style=style on page 2-10
• --diag_suppress=tag{, tag} on page 2-10
• --diag_warning=tag{, tag} on page 2-11
• --dllexport_all on page 2-11
• --dwarf2 on page 2-11
• --dwarf3 on page 2-11
• --errors=errorfile on page 2-11
• --execstack on page 2-12
• --exceptions on page 2-12
• --exceptions_unwind on page 2-12
• --fpmode=model on page 2-12
• --fpu=list on page 2-13
• --fpu=name on page 2-13
• -g on page 2-15
• --help on page 2-15
• -idir{,dir, …} on page 2-15
• --keep on page 2-15
• --length=n on page 2-15
• --li on page 2-15
• --library_type=lib on page 2-15
• --list=file on page 2-16
• --list= on page 2-16
• --littleend on page 2-16
• -m on page 2-17
• --maxcache=n on page 2-17
• --md on page 2-17
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 2-3
ID061811 Non-Confidential

Assembler command line options
• --no_code_gen on page 2-17
• --no_esc on page 2-17
• --no_execstack on page 2-17
• --no_exceptions on page 2-18
• --no_exceptions_unwind on page 2-18
• --no_hide_all on page 2-18
• --no_project on page 2-18
• --no_reduce_paths on page 2-18
• --no_regs on page 2-19
• --no_terse on page 2-19
• --no_unaligned_access on page 2-19
• --no_warn on page 2-19
• -o filename on page 2-19
• --pd on page 2-19
• --predefine "directive" on page 2-20
• --project=filename on page 2-20
• --reduce_paths on page 2-20
• --regnames=none on page 2-21
• --regnames=callstd on page 2-21
• --regnames=all on page 2-21
• --reinitialize_workdir on page 2-21
• --report-if-not-wysiwyg on page 2-22
• --show_cmdline on page 2-22
• --split_ldm on page 2-22
• --thumb on page 2-23
• --thumbx on page 2-23
• --unaligned_access on page 2-23
• --unsafe on page 2-23
• --untyped_local_labels on page 2-23
• --version_number on page 2-23
• --via=file on page 2-24
• --vsn on page 2-24
• --width=n on page 2-24
• --workdir=directory on page 2-24
• --xref on page 2-24.

2.2.1 --16

This option instructs the assembler to interpret instructions as Thumb® instructions using the
pre-UAL Thumb syntax. This is equivalent to a CODE16 directive at the head of the source file.
Use the --thumb option to specify Thumb instructions using the UAL syntax.

See also
• --thumb on page 2-23
• ARM, THUMB, THUMBX, CODE16 and CODE32 on page 5-56.

2.2.2 --32

This option is a synonym for --arm.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 2-4
ID061811 Non-Confidential

Assembler command line options
See also
• --arm on page 2-6.

2.2.3 --apcs=qualifier…qualifier

This option specifies whether you are using the Procedure Call Standard for the ARM
Architecture (AAPCS). It can also specify some attributes of code sections.

The AAPCS forms part of the Base Standard Application Binary Interface for the ARM
Architecture (BSABI) specification. By writing code that adheres to the AAPCS, you can ensure
that separately compiled and assembled modules can work together.

Note
 AAPCS qualifiers do not affect the code produced by the assembler. They are an assertion by
the programmer that the code in inputfile complies with a particular variant of AAPCS. They
cause attributes to be set in the object file produced by the assembler. The linker uses these
attributes to check compatibility of files, and to select appropriate library variants.

Values for qualifier are:

none Specifies that inputfile does not use AAPCS. AAPCS registers are not set
up. Other qualifiers are not permitted if you use none.

/interwork, /nointerwork

/interwork specifies that the code in the inputfile can interwork between
ARM and Thumb safely. The default is /nointerwork.

/inter, /nointer

Are synonyms for /interwork and /nointerwork.

/ropi, /noropi /ropi specifies that the code in inputfile is Read-Only
Position-Independent (ROPI). The default is /noropi.

/pic, /nopic Are synonyms for /ropi and /noropi.

/rwpi, /norwpi /rwpi specifies that the code in inputfile is Read-Write
Position-Independent (RWPI). The default is /norwpi.

/pid, /nopid Are synonyms for /rwpi and /norwpi.

Note
 You must specify at least one qualifier. If you specify more than one qualifier, ensure that there
are no spaces or commas between the individual qualifiers in the list.

Example

armasm --apcs=/inter/ropi inputfile.s

See also

Procedure Call Standard for the ARM Architecture,
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042-/index.html.

Compiler Reference:
• --apcs=qualifer...qualifier on page 3-7.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 2-5
ID061811 Non-Confidential

Assembler command line options
2.2.4 --arm

This option instructs the assembler to interpret instructions as ARM instructions. It does not,
however, guarantee ARM-only code in the object file. This is the default. Using this option is
equivalent to specifying the ARM or CODE32 directive at the start of the source file.

See also
• --32 on page 2-4
• --arm_only
• ARM, THUMB, THUMBX, CODE16 and CODE32 on page 5-56.

2.2.5 --arm_only

This option instructs the assembler to only generate ARM code. This is similar to --arm but also
has the property that the assembler does not permit the generation of any Thumb code.

See also
• --arm.

2.2.6 --bi

This option is a synonym for --bigend.

See also
• --bigend
• --littleend on page 2-16

2.2.7 --bigend

This option instructs the assembler to assemble code suitable for a big-endian ARM. The default
is --littleend.

See also
• --littleend on page 2-16.

2.2.8 --brief_diagnostics

This option instructs the assembler to use a shorter form of the diagnostic output. In this form,
the original source line is not displayed and the error message text is not wrapped when it is too
long to fit on a single line. The default is --no_brief_diagnostics.

See also
• --diag_error=tag{, tag} on page 2-9
• --diag_warning=tag{, tag} on page 2-11.

2.2.9 --checkreglist

This option instructs the assembler to check RLIST, LDM, and STM register lists to ensure that all
registers are provided in increasing register number order. A warning is given if registers are not
listed in order.

This option is deprecated. Use --diag_warning 1206 instead.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 2-6
ID061811 Non-Confidential

Assembler command line options
See also
• --diag_warning=tag{, tag} on page 2-11.

2.2.10 --compatible=name

This option specifies a second processor or architecture, name, for which the assembler generates
compatible code.

When you specify a processor or architecture name using --compatible, valid values of name for
both the --cpu and --compatible options are restricted to those shown in Table 2-1 and must not
be from the same group.

Specify --compatible=NONE to turn off all previous instances of the option on the command line.

Example

armasm --cpu=arm7tdmi --compatible=cortex-m3 inputfile.s

See also
• --cpu=name on page 2-8.

2.2.11 --cpreproc

This option instructs the assembler to call armcc to preprocess the input file before assembling it.

See also
• --cpreproc_opts=options.

Using the Assembler:
• Using the C preprocessor on page 7-21.

2.2.12 --cpreproc_opts=options

This option enables the assembler to pass compiler options to armcc when using the C
preprocessor.

options is a comma-separated list of options and their values.

Example

armasm --cpreproc --cpreproc_opts=’-DDEBUG=1’ inputfile.s

See also
• --cpreproc.

Using the Assembler:
• Using the C preprocessor on page 7-21.

Table 2-1 Compatible processor or architecture combinations

Group 1 ARM7TDMI, 4T

Group 2 Cortex™-M0, Cortex-M1, Cortex-M3,
Cortex-M4, 7-M, 6-M, 6S-M
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 2-7
ID061811 Non-Confidential

Assembler command line options
2.2.13 --cpu=list

This option lists the supported CPU names that can be used with the --cpu name option.

Example

armasm --cpu=list

See also
• --cpu=name.

2.2.14 --cpu=name

This option sets the target CPU. Some instructions produce either errors or warnings if
assembled for the wrong target CPU.

Valid values for name are part numbers such as ARM7TDMI®. The default is ARM7TDMI.

When you specify an alternative processor name using --compatible, valid values of name for
both the --cpu and --compatible options are restricted to those shown in Table 2-1 on page 2-7.

Example

armasm --cpu=Cortex-M3 inputfile.s

See also
• --cpu=list
• --unsafe on page 2-23
• --compatible=name on page 2-7
• ARM Architecture Reference Manual,

http://infocenter.arm.com/help/topic/com.arm.doc.subset.arch.reference/index.html.

2.2.15 --debug

This option instructs the assembler to generate DWARF debug tables. --debug is a synonym for
-g. The default is DWARF 3.

Note
 Local symbols are not preserved with --debug. You must specify --keep if you want to preserve
the local symbols to aid debugging.

See also
• --dwarf2 on page 2-11
• --dwarf3 on page 2-11
• --keep on page 2-15.

2.2.16 --depend=dependfile

This option instructs the assembler to save source file dependency lists to dependfile. These are
suitable for use with make utilities.

See also
• --depend_format=string on page 2-9.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 2-8
ID061811 Non-Confidential

Assembler command line options
2.2.17 --depend_format=string

This option changes the format of output dependency files to UNIX-style format, for
compatibility with some UNIX make programs.

The value of string can be one of:

unix Generates dependency files with UNIX-style path separators.

unix_escaped
Is the same as unix, but escapes spaces with backslash.

unix_quoted
Is the same as unix, but surrounds path names with double quotes.

See also
• --depend=dependfile on page 2-8.

2.2.18 --diag_error=tag{, tag}

Diagnostic messages output by the assembler can be identified by a tag in the form of
{prefix}number, where the prefix is A. The --diag_error option sets the diagnostic messages
that have the specified tags to the error severity.

You can specify more than one tag with these options by separating each tag using a comma.You
can specify the optional assembler prefix A before the tag number. If any prefix other than A is
included, the message number is ignored.

Table 2-2 shows the meaning of the term severity used in the option descriptions.

You can set the tag to warning to treat all warnings as errors.

See also
• --brief_diagnostics on page 2-6
• --diag_warning=tag{, tag} on page 2-11
• --diag_suppress=tag{, tag} on page 2-10.

Table 2-2 Severity of diagnostic messages

Severity Description

Error Errors indicate violations in the syntactic or semantic rules of assembly
language. Assembly continues, but object code is not generated.

Warning Warnings indicate unusual conditions in your code that might indicate a
problem. Assembly continues, and object code is generated unless any
problems with an Error severity are detected.

Remark Remarks indicate common, but not recommended, use of assembly
language. These diagnostics are not issued by default. Assembly
continues, and object code is generated unless any problems with an
Error severity are detected.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 2-9
ID061811 Non-Confidential

Assembler command line options
2.2.19 --diag_remark=tag{, tag}

Diagnostic messages output by the assembler can be identified by a tag in the form of
{prefix}number, where the prefix is A. The --diag_remark option sets the diagnostic messages
that have the specified tags to the remark severity.

You can specify more than one tag with these options by separating each tag using a comma.You
can specify the optional assembler prefix A before the tag number. If any prefix other than A is
included, the message number is ignored.

See also
• --brief_diagnostics on page 2-6
• --diag_error=tag{, tag} on page 2-9.

2.2.20 --diag_style=style

This option instructs the assembler to display diagnostic messages using the specified style,
where style is one of:

arm Display messages using the ARM assembler style. This is the default if
--diag_style is not specified.

ide Include the line number and character count for the line that is in error. These
values are displayed in parentheses.

gnu Display messages using the GNU style.

Choosing the option --diag_style=ide implicitly selects the option --brief_diagnostics.
Explicitly selecting --no_brief_diagnostics on the command line overrides the selection of
--brief_diagnostics implied by --diag_style=ide.

Selecting either the option --diag_style=arm or the option --diag_style=gnu does not imply any
selection of --brief_diagnostics.

See also
• --brief_diagnostics on page 2-6
• --diag_style=style.

2.2.21 --diag_suppress=tag{, tag}

Diagnostic messages output by the assembler can be identified by a tag in the form of
{prefix}number, where the prefix is A. The --diag_suppress option disables the diagnostic
messages that have the specified tags.

You can specify more than one tag with these options by separating each tag using a comma.

For example, to suppress the warning messages that have numbers 1293 and 187, use the
following command:

armasm --diag_suppress=1293,187

You can specify the optional assembler prefix A before the tag number. For example:

armasm --diag_suppress=A1293,A187

If any prefix other than A is included, the message number is ignored. Diagnostic message tags
can be cut and pasted directly into a command line.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 2-10
ID061811 Non-Confidential

Assembler command line options
You can also set the tag to:
• warning, to suppress all warnings
• error, to suppress all downgradeable errors.

See also
• --diag_error=tag{, tag} on page 2-9.

2.2.22 --diag_warning=tag{, tag}

Diagnostic messages output by the assembler can be identified by a tag in the form of
{prefix}number, where the prefix is A. The --diag_warning option sets the diagnostic messages
that have the specified tags to the warning severity.

You can specify more than one tag with these options by separating each tag using a comma.You
can specify the optional assembler prefix A before the tag number. If any prefix other than A is
included, the message number is ignored.

You can set the tag to error to downgrade the severity of all downgradeable errors to warnings.

See also
• --diag_error=tag{, tag} on page 2-9.

2.2.23 --dllexport_all

This option gives all exported global symbols STV_PROTECTED visibility in ELF rather than
STV_HIDDEN, unless overridden by source directives.

See also
• EXPORT or GLOBAL on page 5-67.

2.2.24 --dwarf2

This option can be used with --debug, to instruct the assembler to generate DWARF 2 debug
tables.

See also
• --debug on page 2-8
• --dwarf3.

2.2.25 --dwarf3

This option can be used with --debug, to instruct the assembler to generate DWARF 3 debug
tables. This is the default if --debug is specified.

See also
• --debug on page 2-8
• --dwarf2.

2.2.26 --errors=errorfile

This option instructs the assembler to output error messages to errorfile.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 2-11
ID061811 Non-Confidential

Assembler command line options
2.2.27 --execstack

This option generates a .note.GNU-stack section marking the stack as executable.

You can also use the AREA directive to generate an executable .note.GNU-stack section:

AREA |.note.GNU-stack|,ALIGN=0,READONLY,NOALLOC,CODE

In the absence of --execstack and --no_execstack, the .note.GNU-stack section is not generated
unless it is specified by the AREA directive.

See also
• --no_execstack on page 2-17
• AREA on page 5-61.

2.2.28 --exceptions

This option instructs the assembler to switch on exception table generation for all functions
defined by FUNCTION (or PROC) and ENDFUNC (or ENDP).

See also
• --no_exceptions on page 2-18
• --exceptions_unwind
• --no_exceptions_unwind on page 2-18
• FRAME UNWIND ON on page 5-47
• FUNCTION or PROC on page 5-47
• ENDFUNC or ENDP on page 5-49
• FRAME UNWIND OFF on page 5-47.

2.2.29 --exceptions_unwind

This option instructs the assembler to produce unwind tables for functions where possible. This
is the default.

For finer control, use FRAME UNWIND ON and FRAME UNWIND OFF directives.

See also
• --no_exceptions_unwind on page 2-18
• --exceptions
• --no_exceptions on page 2-18
• FRAME UNWIND ON on page 5-47
• FRAME UNWIND OFF on page 5-47
• FUNCTION or PROC on page 5-47
• ENDFUNC or ENDP on page 5-49.

2.2.30 --fpmode=model

This option specifies the floating-point model, and sets library attributes and floating-point
optimizations to select the most suitable library when linking.

Note
 This does not cause any changes to the code that you write.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 2-12
ID061811 Non-Confidential

Assembler command line options
model can be one of:

none Source code is not permitted to use any floating-point type or floating point
instruction. This option overrides any explicit --fpu=name option.

ieee_full All facilities, operations, and representations guaranteed by the IEEE standard are
available in single and double-precision. Modes of operation can be selected
dynamically at runtime.

ieee_fixed IEEE standard with round-to-nearest and no inexact exception.

ieee_no_fenv IEEE standard with round-to-nearest and no exceptions. This mode is compatible
with the Java floating-point arithmetic model.

std IEEE finite values with denormals flushed to zero, round-to-nearest and no
exceptions. It is C and C++ compatible. This is the default option.
Finite values are as predicted by the IEEE standard. It is not guaranteed that NaNs
and infinities are produced in all circumstances defined by the IEEE model, or
that when they are produced, they have the same sign. Also, it is not guaranteed
that the sign of zero is that predicted by the IEEE model.

fast Some value altering optimizations, where accuracy is sacrificed to fast execution.
This is not IEEE compatible, and is not standard C.

Example

armasm --fpmode ieee_full inputfile.s

See also
• --fpu=name.

2.2.31 --fpu=list

This option lists the supported FPU names that can be used with the --fpu=name option.

Example

armasm --fpu=list

See also
• --fpu=name
• --fpmode=model on page 2-12.

2.2.32 --fpu=name

This option selects the target floating-point unit (FPU) architecture. If you specify this option it
overrides any implicit FPU set by the --cpu option. The assembler produces an error if the FPU
you specify explicitly is incompatible with the CPU. Floating-point instructions also produce
either errors or warnings if assembled for the wrong target FPU.

The assembler sets a build attribute corresponding to name in the object file. The linker
determines compatibility between object files, and selection of libraries, accordingly.

Valid values for name are:

none Selects no floating-point architecture. This makes your assembled object
file compatible with object files built with any FPU.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 2-13
ID061811 Non-Confidential

Assembler command line options
vfpv3 Selects hardware floating-point unit conforming to architecture VFPv3.

vfpv3_fp16 Selects hardware floating-point unit conforming to architecture VFPv3
with half-precision floating-point extension.

vfpv3_d16 Selects hardware floating-point unit conforming to architecture
VFPv3-D16.

vfpv3_d16_fp16 Selects hardware floating-point unit conforming to architecture
VFPv3-D16 with half-precision floating-point extension.

vfpv4 Selects hardware floating-point unit conforming to architecture VFPv4.

vfpv4_d16 Selects hardware floating-point unit conforming to architecture
VFPv4-D16.

fpv4-sp Selects hardware floating-point unit conforming to the single precision
variant of architecture FPv4.

vfpv2 Selects hardware floating-point unit conforming to architecture VFPv2.

softvfp Selects software floating-point linkage. This is the default if you do not
specify a --fpu option and the --cpu option selected does not imply a
particular FPU.

softvfp+vfpv2 Selects a floating-point library with software floating-point linkage that
uses VFP instructions.
This is otherwise equivalent to using --fpu vfpv2.

softvfp+vfpv3 Selects a floating-point library with software floating-point linkage that
uses VFP instructions.
This is otherwise equivalent to using --fpu vfpv3.

softvfp+vfpv3_fp16 Selects a floating-point library with software floating-point linkage that
uses VFP instructions.
This is otherwise equivalent to using --fpu vfpv3_fp16.

softvfp+vfpv3_d16 Selects a floating-point library with software floating-point linkage that
uses VFP instructions.
This is otherwise equivalent to using --fpu vfpv3_d16.

softvfp+vfpv3_d16_fp16
Selects a floating-point library with software floating-point linkage that
uses VFP instructions.
This is otherwise equivalent to using --fpu vfpv3_d16_fp16.

softvfp+vfpv4 Selects a floating-point library with software floating-point linkage that
uses VFP instructions.
This is otherwise equivalent to using --fpu vfpv4.

softvfp+vfpv4_d16 Selects a floating-point library with software floating-point linkage that
uses VFP instructions.
This is otherwise equivalent to using --fpu vfpv4_d16.

softvfp+fpv4-sp Selects a floating-point library with software floating-point linkage that
uses VFP instructions.
This is otherwise equivalent to using --fpu fpv4-sp.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 2-14
ID061811 Non-Confidential

Assembler command line options
See also
• --fpmode=model on page 2-12.

2.2.33 -g

This option is a synonym for --debug.

See also
• --debug on page 2-8.

2.2.34 --help

This option instructs the assembler to show a summary of the available command line options.

2.2.35 -idir{,dir, …}

This option adds directories to the source file include path. Any directories added using this
option have to be fully qualified.

See also
• GET or INCLUDE on page 5-70.

2.2.36 --keep

This option instructs the assembler to keep local labels in the symbol table of the object file, for
use by the debugger.

2.2.37 --length=n

This option sets the listing page length to n. Length zero means an unpaged listing. The default
is 66 lines.

See also
• --list=file on page 2-16.

2.2.38 --li

This option is a synonym for --littleend.

See also
• --littleend on page 2-16
• --bigend on page 2-6.

2.2.39 --library_type=lib

This option enables the relevant library selection to be used at link time.

Where lib can be one of:

standardlib Specifies that the full ARM runtime libraries are selected at link time. This
is the default.

microlib Specifies that the C micro-library (microlib) is selected at link time.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 2-15
ID061811 Non-Confidential

Assembler command line options
Note
 This option can be used with the compiler, assembler or linker when use of the libraries require
more specialized optimizations.

Use this option with the linker to override all other --library_type options.

See also

• Building an application with microlib on page 3-7 in the Using ARM C and C++
Libraries and Floating Point Support

• --library_type=lib on page 3-58 in the Compiler Reference.

2.2.40 --list=file

This option instructs the assembler to output a detailed listing of the assembly language
produced by the assembler to file.

If - is given as file, listing is sent to stdout.

Use the following command line options to control the behavior of --list:
• --no_terse

• --width

• --length

• --xref.

See also
• --no_terse on page 2-19
• --width=n on page 2-24
• --length=n on page 2-15
• --xref on page 2-24.

2.2.41 --list=

This option instructs the assembler to send the detailed assembly language listing to
inputfile.lst.

Note
 You can use --list without a filename to send the output to inputfile.lst. However, this syntax
is deprecated and the assembler issues a warning. This syntax will be removed in a later release.
Use --list= instead.

See also
• --list=file.

2.2.42 --littleend

This option instructs the assembler to assemble code suitable for a little-endian ARM.

See also
• --bigend on page 2-6.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 2-16
ID061811 Non-Confidential

Assembler command line options
2.2.43 -m

This option instructs the assembler to write source file dependency lists to stdout.

See also
• --md.

2.2.44 --maxcache=n

This option sets the maximum source cache size to n bytes. The default is 8MB. armasm gives a
warning if size is less than 8MB.

2.2.45 --md

This option instructs the assembler to write source file dependency lists to inputfile.d.

See also
• -m.

2.2.46 --no_code_gen

This option instructs the assembler to exit after pass 1. No object file is generated. This option
is useful if you only want to check the syntax of the source code or directives.

2.2.47 --no_esc

This option instructs the assembler to ignore C-style escaped special characters, such as \n and
\t.

2.2.48 --no_execstack

This option generates a .note.GNU-stack section marking the stack as non-executable.

You can also use the AREA directive to generate a non executable .note.GNU-stack section:

AREA |.note.GNU-stack|,ALIGN=0,READONLY,NOALLOC

In the absence of --execstack and --no_execstack, the .note.GNU-stack section is not generated
unless it is specified by the AREA directive.

If both the command line option and source directive are used and are different, then the stack
is marked as executable.

See also
• --execstack on page 2-12
• AREA on page 5-61.

Table 2-3 Specifying a command line option and an AREA directive for GNU-stack sections

--execstack
command line
option

--no_execstack
command line
option

execstack AREA directive execstack execstack

no_execstack AREA directive execstack no_execstack
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 2-17
ID061811 Non-Confidential

Assembler command line options
2.2.49 --no_exceptions

This option instructs the assembler to switch off exception table generation. No tables are
generated. This is the default.

See also
• --exceptions on page 2-12
• --exceptions_unwind on page 2-12
• --no_exceptions_unwind
• FRAME UNWIND ON on page 5-47
• FRAME UNWIND OFF on page 5-47.

2.2.50 --no_exceptions_unwind

This option instructs the assembler to produce nounwind tables for every function.

See also
• --exceptions on page 2-12
• --no_exceptions
• --exceptions_unwind on page 2-12.

2.2.51 --no_hide_all

This option gives all exported and imported global symbols STV_DEFAULT visibility in ELF rather
than STV_HIDDEN, unless overridden by source directives.

See also
• EXPORT or GLOBAL on page 5-67
• IMPORT and EXTERN on page 5-71.

2.2.52 --no_project

This option disables the use of a project template file.

Note
 This option is deprecated.

See also
• --project=filename on page 2-20
• --reinitialize_workdir on page 2-21
• --workdir=directory on page 2-24.

2.2.53 --no_reduce_paths

This option disables the elimination of redundant pathname information in file paths. This is the
default setting. This option is valid for Windows systems only.

See also
• --reduce_paths on page 2-20
• --reduce_paths, --no_reduce_paths on page 3-81 in the Compiler Reference.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 2-18
ID061811 Non-Confidential

Assembler command line options
2.2.54 --no_regs

This option instructs the assembler not to predefine register names.

This option is deprecated. Use --regnames=none instead.

See also
• --regnames=none on page 2-21
• Predeclared core register names on page 3-12 in Using the Assembler
• Predeclared extension register names on page 3-13 in Using the Assembler
• Predeclared coprocessor names on page 3-14 in Using the Assembler.

2.2.55 --no_terse

This option instructs the assembler to show the lines of assembler code that have been skipped
due to conditional assembly in the list file. When this option is not specified on the command
line, the assembler does not output the skipped assembler code to the list file.

This option turns off the terse flag. By default the terse flag is on.

See also
• --list=file on page 2-16.

2.2.56 --no_unaligned_access

This option instructs the assembler to set an attribute in the object file to disable the use of
unaligned accesses.

See also
• --unaligned_access on page 2-23.

2.2.57 --no_warn

This option turns off warning messages.

See also
• --diag_warning=tag{, tag} on page 2-11.

2.2.58 -o filename

This option names the output object file. If this option is not specified, the assembler creates an
object filename of the form inputfilename.o. This option is case-sensitive.

2.2.59 --pd

This option is a synonym for --predefine.

See also
• --predefine "directive" on page 2-20.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 2-19
ID061811 Non-Confidential

Assembler command line options
2.2.60 --predefine "directive"

This option instructs the assembler to pre-execute one of the SET directives. This is useful for
conditional assembly.

The directive is one of the SETA, SETL, or SETS directives. You must enclose directive in quotes,
for example:

armasm --predefine "VariableName SETA 20" inputfile.s

The assembler also executes a corresponding GBLL, GBLS, or GBLA directive to define the variable
before setting its value.

The variable name is case-sensitive. The variables defined using the command line are global
to the assembler source files specified on the command line.

Note
 The command line interface of your system might require you to enter special character
combinations, such as \”, to include strings in directive. Alternatively, you can use --via file
to include a --predefine argument. The command line interface does not alter arguments from
--via files.

See also
• --pd on page 2-19
• Assembly conditional on a variable being defined on page 5-35.

2.2.61 --project=filename

This option enables the use of a project template file.

Project templates are files containing project information such as command line options for a
particular configuration. These files are stored in the project template working directory.

Note
 This option is deprecated.

See also
• --no_project on page 2-18
• --reinitialize_workdir on page 2-21
• --workdir=directory on page 2-24.

2.2.62 --reduce_paths

This option enables the elimination of redundant pathname information in file paths. This option
is valid for Windows systems only.

Windows systems impose a 260 character limit on file paths. Where relative pathnames exist
whose absolute names expand to longer than 260 characters, you can use the --reduce_paths
option to reduce absolute pathname length by matching up directories with corresponding
instances of .. and eliminating the directory/.. sequences in pairs.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 2-20
ID061811 Non-Confidential

Assembler command line options
Note
 It is recommended that you avoid using long and deeply nested file paths, in preference to
minimizing path lengths using the --reduce_paths option.

See also
• --no_reduce_paths on page 2-18
• --reduce_paths, --no_reduce_paths on page 3-81 in the Compiler Reference.

2.2.63 --regnames=none

This option instructs the assembler not to predefine register names.

See also
• --regnames=callstd
• --regnames=all
• --no_regs on page 2-19
• Predeclared core register names on page 3-12 in Using the Assembler
• Predeclared extension register names on page 3-13 in Using the Assembler
• Predeclared coprocessor names on page 3-14 in Using the Assembler.

2.2.64 --regnames=callstd

This option defines additional register names based on the AAPCS variant that you are using as
specified by the --apcs option.

See also
• --apcs=qualifier…qualifier on page 2-5
• --regnames=none
• --regnames=all.

2.2.65 --regnames=all

This option defines all AAPCS registers regardless of the value of --apcs.
• --apcs=qualifier…qualifier on page 2-5
• --regnames=none
• --regnames=callstd.

2.2.66 --reinitialize_workdir

This option enables you to re-initialize the project template working directory.

Note
 This option is deprecated.

See also
• --project=filename on page 2-20
• --no_project on page 2-18
• --workdir=directory on page 2-24
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 2-21
ID061811 Non-Confidential

Assembler command line options
2.2.67 --report-if-not-wysiwyg

This option instructs the assembler to report when the assembler outputs an encoding that was
not directly requested in the source code. This can happen when the assembler:

• uses a pseudo-instruction that is not available in other assemblers, for example MOV32

• outputs an encoding that does not directly match the instruction mnemonic, for example
if the assembler outputs the MVN encoding when assembling the MOV instruction

• inserts additional instructions where necessary for instruction syntax semantics, for
example the assembler can insert a missing IT instruction before a conditional Thumb
instruction.

2.2.68 --show_cmdline

This option outputs the command line used by the assembler. It shows the command line after
processing by the assembler, and can be useful to check:

• the command line a build system is using

• how the assembler is interpreting the supplied command line, for example, the ordering
of command line options.

The commands are shown normalized, and the contents of any via files are expanded.

The output is sent to the standard output stream (stdout).

See also
• --via=file on page 2-24.

2.2.69 --split_ldm

This option instructs the assembler to fault LDM and STM instructions with a large number of
registers. Use of this option is deprecated.

This option faults LDM instructions if the maximum number of registers transferred exceeds:
• 5, for LDMs that do not load the PC
• 4, for LDMs that load the PC.

This option faults STM instructions if the maximum number of registers transferred exceeds 5.

Avoiding large multiple register transfers can reduce interrupt latency on ARM systems that:
• do not have a cache or a write buffer (for example, a cacheless ARM7TDMI)
• use zero wait-state, 32-bit memory.

Also, avoiding large multiple register transfers:

• always increases code size.

• has no significant benefit for cached systems or processors with a write buffer.

• has no benefit for systems without zero wait-state memory, or for systems with slow
peripheral devices. Interrupt latency in such systems is determined by the number of
cycles required for the slowest memory or peripheral access. This is typically much
greater than the latency introduced by multiple register transfers.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 2-22
ID061811 Non-Confidential

Assembler command line options
2.2.70 --thumb

This option instructs the assembler to interpret instructions as Thumb instructions, using the
UAL syntax. This is equivalent to a THUMB directive at the start of the source file.

See also
• --arm on page 2-6
• ARM, THUMB, THUMBX, CODE16 and CODE32 on page 5-56.

2.2.71 --thumbx

This option instructs the assembler to interpret instructions as Thumb-2EE instructions, using
the UAL syntax. This is equivalent to a THUMBX directive at the start of the source file.

See also
• ARM, THUMB, THUMBX, CODE16 and CODE32 on page 5-56.

2.2.72 --unaligned_access

This option instructs the assembler to set an attribute in the object file to enable the use of
unaligned accesses.

See also
• --no_unaligned_access on page 2-19.

2.2.73 --unsafe

This option enables instructions from differing architectures to be assembled without error. It
changes corresponding error messages to warning messages. It also suppresses warnings about
operator precedence.

See also
• --diag_error=tag{, tag} on page 2-9
• --diag_warning=tag{, tag} on page 2-11
• Binary operators on page 8-22 in Using the Assembler.

2.2.74 --untyped_local_labels

This option forces the assembler not to set the Thumb bit when referencing local labels in
Thumb code.

See also
• LDR pseudo-instruction on page 3-158
• Local labels on page 8-12 in Using the Assembler.

2.2.75 --version_number

This option instructs the assembler to display an integer that increases with each version of
armasm. The format of the integer is PVbbbb, where:
P is the major version
V is the minor version
bbbb is the build number.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 2-23
ID061811 Non-Confidential

Assembler command line options
For example if the assembler prints 400123, the version number of armasm is 4.0 and the build
number is 123.

See also
• --vsn
• --help on page 2-15.

2.2.76 --via=file

This option instructs the assembler to open file and read in command line arguments to the
assembler.

See also
• Appendix B Via File Syntax in the Compiler Reference.

2.2.77 --vsn

This option displays the version information and license details.

See also
• --version_number on page 2-23
• --help on page 2-15.

2.2.78 --width=n

This option sets the listing page width to n. The default is 79 characters.

See also
• --list=file on page 2-16.

2.2.79 --workdir=directory

This option enables you to provide a working directory for a project template.

Note
 This option is deprecated.

See also
• --project=filename on page 2-20
• --no_project on page 2-18
• --reinitialize_workdir on page 2-21

2.2.80 --xref

This option instructs the assembler to list cross-referencing information on symbols, including
where they were defined and where they were used, both inside and outside macros. The default
is off.

See also
• --list=file on page 2-16.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 2-24
ID061811 Non-Confidential

Chapter 3
ARM and Thumb Instructions

The following topics describe the ARM, Thumb (all versions), and ThumbEE instructions
supported by the ARM assembler:
• Instruction summary on page 3-2
• Instruction width specifiers on page 3-8
• Memory access instructions on page 3-9
• General data processing instructions on page 3-44
• Multiply instructions on page 3-75
• Saturating instructions on page 3-96
• Parallel instructions on page 3-101
• Packing and unpacking instructions on page 3-108
• Branch and control instructions on page 3-115
• Coprocessor instructions on page 3-124
• Miscellaneous instructions on page 3-133
• ThumbEE instructions on page 3-150
• Pseudo-instructions on page 3-154.
• Condition codes on page 3-162

Some instruction sections have an Architectures subsection. Instructions that do not have an
Architecture subsection are available in all versions of the ARM instruction set, and all versions
of the Thumb instruction set.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-1
ID061811 Non-Confidential

ARM and Thumb Instructions
3.1 Instruction summary
Table 3-1 gives an overview of the instructions available in the ARM, Thumb, and ThumbEE
instruction sets. Use it to locate individual instructions and pseudo-instructions.

Note
 Unless stated otherwise, ThumbEE instructions are identical to Thumb instructions.

Table 3-1 Location of instructions

Mnemonic Brief description See Arch. a

ADC, ADD Add with Carry, Add page 3-50 All

ADR Load program or register-relative address (short range) page 3-24 All

ADRL pseudo-instruction Load program or register-relative address (medium range) page 3-155 x6M

AND Logical AND page 3-56 All

ASR Arithmetic Shift Right page 3-71 All

B Branch page 3-116 All

BFC, BFI Bit Field Clear and Insert page 3-109 T2

BIC Bit Clear page 3-56 All

BKPT Breakpoint page 3-134 5

BL Branch with Link page 3-116 All

BLX Branch with Link, change instruction set page 3-116 T

BX Branch, change instruction set page 3-116 T

BXJ Branch, change to Jazelle® page 3-116 J, x7M

CBZ, CBNZ Compare and Branch if {Non}Zero page 3-122 T2

CDP Coprocessor Data Processing operation page 3-125 x6M

CDP2 Coprocessor Data Processing operation page 3-125 5, x6M

CHKA Check array page 3-152 EE

CLREX Clear Exclusive page 3-42 K, x6M

CLZ Count leading zeros page 3-58 5, x6M

CMN, CMP Compare Negative, Compare page 3-59 All

CPS Change Processor State page 3-140 6

DBG Debug page 3-146 7

DMB, DSB Data Memory Barrier, Data Synchronization Barrier page 3-147 7, 6M

ENTERX, LEAVEX Change state to or from ThumbEE page 3-151 EE

EOR Exclusive OR page 3-56 All

HB, HBL, HBLP, HBP Handler Branch, branches to a specified handler page 3-153 EE

ISB Instruction Synchronization Barrier page 3-147 7, 6M
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-2
ID061811 Non-Confidential

ARM and Thumb Instructions
IT If-Then page 3-119 T2

LDC Load Coprocessor page 3-131 x6M

LDC2 Load Coprocessor page 3-131 5, x6M

LDM Load Multiple registers page 3-30 All

LDR Load Register with word page 3-9 All

LDR pseudo-instruction Load Register pseudo-instruction page 3-158 All

LDRB Load Register with byte page 3-9 All

LDRBT Load Register with byte, user mode page 3-9 x6M

LDRD Load Registers with two words page 3-9 5E, x6M

LDREX Load Register Exclusive page 3-39 6, x6M

LDREXB, LDREXH Load Register Exclusive Byte, Halfword page 3-39 K, x6M

LDREXD Load Register Exclusive Doubleword page 3-39 K, x7M

LDRH Load Register with halfword page 3-9 All

LDRHT Load Register with halfword, user mode page 3-9 T2

LDRSB Load Register with signed byte page 3-9 All

LDRSBT Load Register with signed byte, user mode page 3-9 T2

LDRSH Load Register with signed halfword page 3-9 All

LDRSHT Load Register with signed halfword, user mode page 3-9 T2

LDRT Load Register with word, user mode page 3-9 x6M

LSL, LSR Logical Shift Left, Logical Shift Right page 3-71 All

MAR Move from Registers to 40-bit Accumulator page 3-149 XScale

MCR Move from Register to Coprocessor page 3-126 x6M

MCR2 Move from Register to Coprocessor page 3-126 5, x6M

MCRR Move from Registers to Coprocessor page 3-126 5E, x6M

MCRR2 Move from Registers to Coprocessor page 3-126 6, x6M

MIA, MIAPH, MIAxy Multiply with Internal 40-bit Accumulate page 3-94 XScale

MLA Multiply Accumulate page 3-76 x6M

MLS Multiply and Subtract page 3-76 T2

MOV Move page 3-61 All

MOVT Move Top page 3-64 T2

MOV32 pseudo-instruction Move 32-bit immediate to register page 3-157 T2

MRA Move from 40-bit Accumulator to Registers page 3-149 XScale

MRC Move from Coprocessor to Register page 3-127 x6M

Table 3-1 Location of instructions (continued)

Mnemonic Brief description See Arch. a
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-3
ID061811 Non-Confidential

ARM and Thumb Instructions
MRC2 Move from Coprocessor to Register page 3-127 5, x6M

MRRC Move from Coprocessor to Registers page 3-127 5E, x6M

MRRC2 Move from Coprocessor to Registers page 3-127 6, x6M

MRS Move from PSR to register page 3-136 All

MRS Move from system Coprocessor to Register page 3-129 7A, 7R

MSR Move from register to PSR page 3-138 All

MSR Move from Register to system Coprocessor page 3-128 7A, 7R

MUL Multiply page 3-76 All

MVN Move Not page 3-61 All

NOP No Operation page 3-143 All

ORN Logical OR NOT page 3-56 T2

ORR Logical OR page 3-56 All

PKHBT, PKHTB Pack Halfwords page 3-113 6, 7EM

PLD Preload Data page 3-28 5E, x6M

PLDW Preload Data with intent to Write page 3-28 7MP

PLI Preload Instruction page 3-28 7

PUSH, POP PUSH registers to stack, POP registers from stack page 3-33 All

QADD, QDADD, QDSUB, QSUB Saturating Arithmetic page 3-97 5E, 7EM

QADD8, QADD16, QASX, QSUB8,
QSUB16, QSAX

Parallel signed Saturating Arithmetic page 3-102 6, 7EM

RBIT Reverse Bits page 3-69 T2

REV, REV16, REVSH Reverse byte order page 3-69 6

RFE Return From Exception page 3-35 T2, x7M

ROR Rotate Right Register page 3-71 All

RRX Rotate Right with Extend page 3-71 x6M

RSB Reverse Subtract page 3-50 All

RSC Reverse Subtract with Carry page 3-50 x7M

SADD8, SADD16, SASX Parallel signed arithmetic page 3-102 6, 7EM

SBC Subtract with Carry page 3-50 All

SBFX, UBFX Signed, Unsigned Bit Field eXtract page 3-110 T2

SDIV Signed divide page 3-74 7M, 7R

SEL Select bytes according to APSR GE flags page 3-67 6, 7EM

SETEND Set Endianness for memory accesses page 3-142 6, x7M

Table 3-1 Location of instructions (continued)

Mnemonic Brief description See Arch. a
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-4
ID061811 Non-Confidential

ARM and Thumb Instructions
SEV Set Event page 3-144 K, 6M

SHADD8, SHADD16, SHASX, SHSUB8,
SHSUB16, SHSAX

Parallel signed Halving arithmetic page 3-102 6, 7EM

SMC Secure Monitor Call page 3-141 Z

SMLAxy Signed Multiply with Accumulate (32 <= 16 x 16 + 32) page 3-80 5E, 7EM

SMLAD Dual Signed Multiply Accumulate page 3-89 6, 7EM

(32 <= 32 + 16 x 16 + 16 x 16)

SMLAL Signed Multiply Accumulate (64 <= 64 + 32 x 32) page 3-78 x6M

SMLALxy Signed Multiply Accumulate (64 <= 64 + 16 x 16) page 3-83 5E, 7EM

SMLALD Dual Signed Multiply Accumulate Long page 3-91 6, 7EM

(64 <= 64 + 16 x 16 + 16 x 16)

SMLAWy Signed Multiply with Accumulate (32 <= 32 x 16 + 32) page 3-82 5E, 7EM

SMLSD Dual Signed Multiply Subtract Accumulate page 3-89 6, 7EM

(32 <= 32 + 16 x 16 – 16 x 16)

SMLSLD Dual Signed Multiply Subtract Accumulate Long page 3-91 6, 7EM

(64 <= 64 + 16 x 16 – 16 x 16)

SMMLA Signed top word Multiply with Accumulate (32 <=
TopWord(32 x 32 + 32))

page 3-87 6, 7EM

SMMLS Signed top word Multiply with Subtract (32 <=
TopWord(32 - 32 x 32))

page 3-87 6, 7EM

SMMUL Signed top word Multiply (32 <= TopWord(32 x 32)) page 3-87 6, 7EM

SMUAD, SMUSD Dual Signed Multiply, and Add or Subtract products page 3-85 6, 7EM

SMULxy Signed Multiply (32 <= 16 x 16) page 3-80 5E, 7EM

SMULL Signed Multiply (64 <= 32 x 32) page 3-78 x6M

SMULWy Signed Multiply (32 <= 32 x 16) page 3-82 5E, 7EM

SRS Store Return State page 3-37 T2, x7M

SSAT Signed Saturate page 3-99 6, x6M

SSAT16 Signed Saturate, parallel halfwords page 3-106 6, 7EM

SSUB8, SSUB16, SSAX Parallel signed arithmetic page 3-102 6, 7EM

STC Store Coprocessor page 3-131 x6M

STC2 Store Coprocessor page 3-131 5, x6M

STM Store Multiple registers page 3-30 All

STR Store Register with word page 3-9 All

STRB Store Register with byte page 3-9 All

Table 3-1 Location of instructions (continued)

Mnemonic Brief description See Arch. a
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-5
ID061811 Non-Confidential

ARM and Thumb Instructions
STRBT Store Register with byte, user mode page 3-9 x6M

STRD Store Registers with two words page 3-9 5E, x6M

STREX Store Register Exclusive page 3-39 6, x6M

STREXB, STREXH Store Register Exclusive Byte, Halfword page 3-39 K, x6M

STREXD Store Register Exclusive Doubleword page 3-39 K, x7M

STRH Store Register with halfword page 3-9 All

STRHT Store Register with halfword, user mode page 3-9 T2

STRT Store Register with word, user mode page 3-9 x6M

SUB Subtract page 3-50 All

SUBS pc, lr Exception return, no stack page 3-54 T2, x7M

SVC (formerly SWI) SuperVisor Call page 3-135 All

SWP, SWPB Swap registers and memory (ARM only) page 3-43 All, x7M

SXTAB, SXTAB16, SXTAH Signed extend, with Addition page 3-111 6, 7EM

SXTB, SXTH Signed extend page 3-111 6

SXTB16 Signed extend page 3-111 6, 7EM

SYS Execute system coprocessor instruction page 3-130 7A, 7R

TBB, TBH Table Branch Byte, Halfword page 3-123 T2

TEQ Test Equivalence page 3-65 x6M

TST Test page 3-65 All

UADD8, UADD16, UASX Parallel Unsigned Arithmetic page 3-102 6, 7EM

UDIV Unsigned divide page 3-74 7M, 7R

UHADD8, UHADD16, UHASX, UHSUB8,
UHSUB16, UHSAX

Parallel Unsigned Halving Arithmetic page 3-102 6, 7EM

UMAAL Unsigned Multiply Accumulate Accumulate Long page 3-93 6, 7EM

(64 <= 32 + 32 + 32 x 32)

UMLAL, UMULL Unsigned Multiply Accumulate, Unsigned Multiply page 3-78 x6M

(64 <= 32 x 32 + 64), (64 <= 32 x 32)

UQADD8, UQADD16, UQASX, UQSUB8,
UQSUB16, UQSAX

Parallel Unsigned Saturating Arithmetic page 3-102 6, 7EM

USAD8 Unsigned Sum of Absolute Differences page 3-104 6, 7EM

USADA8 Accumulate Unsigned Sum of Absolute Differences page 3-104 6, 7EM

USAT Unsigned Saturate page 3-99 6, x6M

USAT16 Unsigned Saturate, parallel halfwords page 3-106 6, 7EM

Table 3-1 Location of instructions (continued)

Mnemonic Brief description See Arch. a
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-6
ID061811 Non-Confidential

ARM and Thumb Instructions
USUB8, USUB16, USAX Parallel unsigned arithmetic page 3-102 6, 7EM

UXTAB, UXTAB16, UXTAH Unsigned extend with Addition page 3-111 6, 7EM

UXTB, UXTH Unsigned extend page 3-111 6

UXTB16 Unsigned extend page 3-111 6, 7EM

V* See Chapter 4 VFP Programming

WFE, WFI, YIELD Wait For Event, Wait For Interrupt, Yield page 3-144 T2, 6M

a. Entries in the Architecture column have the following meanings:
All These instructions are available in all versions of the ARM architecture.
5 These instructions are available in the ARMv5T*, ARMv6*, and ARMv7 architectures.
5E These instructions are available in the ARMv5TE, ARMv6*, and ARMv7 architectures.
6 These instructions are available in the ARMv6* and ARMv7 architectures.
6M These instructions are available in the ARMv6-M and ARMv7 architectures.
x6M These instructions are not available in the ARMv6-M architecture.
7 These instructions are available in the ARMv7 architectures.
7M These instructions are available in the ARMv7-M architecture, including ARMv7E-M implementations.
x7M These instructions are not available in the ARMv6-M or ARMv7-M architecture, or any ARMv7E-M

implementation.
7EM These instructions are available in ARMv7E-M implementations but not in the ARMv7-M or ARMv6-M

architecture.
7R These instructions are available in the ARMv7-R architecture.
7MP These instructions are available in the ARMv7 architectures that implement the Multiprocessing Extensions.
EE These instructions are available in ThumbEE variants of the ARM architecture.
J This instruction is available in the ARMv5TEJ, ARMv6*, and ARMv7 architectures.
K These instructions are available in the ARMv6K, and ARMv7 architectures.
T These instructions are available in ARMv4T, ARMv5T*, ARMv6*, and ARMv7 architectures.
T2 These instructions are available in the ARMv6T2 and above architectures.
XScale These instructions are available in XScale versions of the ARM architecture.
Z This instruction is available if Security Extensions are implemented.

Table 3-1 Location of instructions (continued)

Mnemonic Brief description See Arch. a
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-7
ID061811 Non-Confidential

ARM and Thumb Instructions
3.2 Instruction width specifiers
The instruction width specifiers .W and .N control the instruction size of Thumb code assembled
for ARMv6T2 or later.

In Thumb code (ARMv6T2 or later) the .W width specifier forces the assembler to generate a
32-bit encoding, even if a 16-bit encoding is available. The .W specifier has no effect when
assembling to ARM code.

In Thumb code the .N width specifier forces the assembler to generate a 16-bit encoding. In this
case, if the instruction cannot be encoded in 16 bits or if .N is used in ARM code, the assembler
generates an error.

If you use an instruction width specifier, you must place it immediately after the instruction
mnemonic and any condition code, for example:

 BCS.W label ; forces 32-bit instruction even for a short branch
B.N label : faults if label out of range for 16-bit instruction
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-8
ID061811 Non-Confidential

ARM and Thumb Instructions
3.3 Memory access instructions
This section contains the following subsections:

• LDR and STR (immediate offset) on page 3-11
Load and Store with immediate offset, pre-indexed immediate offset, or post-indexed
immediate offset.

• LDR and STR (register offset) on page 3-14
Load and Store with register offset, pre-indexed register offset, or post-indexed register
offset.

• LDR and STR, unprivileged on page 3-17
Load and Store, with User mode privilege.

• LDR (PC-relative) on page 3-19
Load register. The address is an offset from the PC.

• LDR (register-relative) on page 3-21
Load register. The address is an offset from a base register.

• ADR (PC-relative) on page 3-24
Load a PC-relative address.

• ADR (register-relative) on page 3-26
Load a register-relative address.

• PLD, PLDW, and PLI on page 3-28
Preload an address for the future.

• LDM and STM on page 3-30
Load and Store Multiple Registers.

• PUSH and POP on page 3-33
Push low registers, and optionally the LR, onto the stack.
Pop low registers, and optionally the PC, off the stack.

• RFE on page 3-35
Return From Exception.

• SRS on page 3-37
Store Return State.

• LDREX and STREX on page 3-39
Load and Store Register Exclusive.

• CLREX on page 3-42
Clear Exclusive.

• SWP and SWPB on page 3-43
Swap data between registers and memory.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-9
ID061811 Non-Confidential

ARM and Thumb Instructions
Note
 There is also an LDR pseudo-instruction. This pseudo-instruction either assembles to an LDR
instruction, or to a MOV or MVN instruction.

See also

Concepts:
Using the Assembler:
• Memory accesses on page 5-27.

Reference:
• LDR pseudo-instruction on page 3-158.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-10
ID061811 Non-Confidential

ARM and Thumb Instructions
3.3.1 LDR and STR (immediate offset)

Load and Store with immediate offset, pre-indexed immediate offset, or post-indexed
immediate offset.

Syntax

op{type}{cond} Rt, [Rn {, #offset}] ; immediate offset

op{type}{cond} Rt, [Rn, #offset]! ; pre-indexed

op{type}{cond} Rt, [Rn], #offset ; post-indexed

opD{cond} Rt, Rt2, [Rn {, #offset}] ; immediate offset, doubleword

opD{cond} Rt, Rt2, [Rn, #offset]! ; pre-indexed, doubleword

opD{cond} Rt, Rt2, [Rn], #offset ; post-indexed, doubleword

where:

op can be either:
LDR Load Register
STR Store Register.

type can be any one of:
B unsigned Byte (Zero extend to 32 bits on loads.)
SB signed Byte (LDR only. Sign extend to 32 bits.)
H unsigned Halfword (Zero extend to 32 bits on loads.)
SH signed Halfword (LDR only. Sign extend to 32 bits.)
- omitted, for Word.

cond is an optional condition code.

Rt is the register to load or store.

Rn is the register on which the memory address is based.

offset is an offset. If offset is omitted, the address is the contents of Rn.

Rt2 is the additional register to load or store for doubleword operations.

Not all options are available in every instruction set and architecture.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-11
ID061811 Non-Confidential

ARM and Thumb Instructions
Offset ranges and architectures

Table 3-2 shows the ranges of offsets and availability of these instructions.

Register restrictions

Rn must be different from Rt in the pre-index and post-index forms.

Doubleword register restrictions

Rn must be different from Rt2 in the pre-index and post-index forms.

For Thumb instructions, you must not specify SP or PC for either Rt or Rt2.

For ARM instructions:
• Rt must be an even-numbered register
• Rt must not be LR
• it is strongly recommended that you do not use R12 for Rt
• Rt2 must be R(t + 1).

Table 3-2 Offsets and architectures, LDR/STR, word, halfword, and byte

Instruction Immediate offset Pre-indexed Post-indexed Arch.

ARM, word or byte a –4095 to 4095 –4095 to 4095 –4095 to 4095 All

ARM, signed byte, halfword, or signed
halfword

–255 to 255 –255 to 255 –255 to 255 All

ARM, doubleword –255 to 255 –255 to 255 –255 to 255 v5TE +

32-bit Thumb, word, halfword, signed
halfword, byte, or signed byte a

–255 to 4095 –255 to 255 –255 to 255 v6T2, v7

32-bit Thumb, doubleword –1020 to 1020 c –1020 to 1020 c –1020 to 1020 c v6T2, v7

16-bit Thumb, word b 0 to 124 c Not available Not available All T

16-bit Thumb, unsigned halfword b 0 to 62 d Not available Not available All T

16-bit Thumb, unsigned byte b 0 to 31 Not available Not available All T

16-bit Thumb, word, Rn is SP e 0 to 1020 c Not available Not available All T

16-bit ThumbEE, word b –28 to 124 c Not available Not available T-2EE

16-bit ThumbEE, word, Rn is R9 e 0 to 252 c Not available Not available T-2EE

16-bit ThumbEE, word, Rn is R10 e 0 to 124 c Not available Not available T-2EE

a. For word loads, Rt can be the PC. A load to the PC causes a branch to the address loaded. In ARMv4, bits[1:0] of the address
loaded must be 0b00. In ARMv5T and above, bits[1:0] must not be 0b10, and if bit[0] is 1, execution continues in Thumb
state, otherwise execution continues in ARM state.

b. Rt and Rn must be in the range R0-R7.
c. Must be divisible by 4.
d. Must be divisible by 2.
e. Rt must be in the range R0-R7.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-12
ID061811 Non-Confidential

ARM and Thumb Instructions
Use of PC

In ARM instructions:

• You can use PC for Rt in LDR word instructions and PC for Rn in LDR instructions.

• You can use PC for Rt in STR word instructions and PC for Rn in STR instructions with
immediate offset syntax (that is the forms that do not writeback to the Rn). However, these
are deprecated in ARMv6T2 and above.

Other uses of PC are not permitted in these ARM instructions.

In Thumb instructions you can use PC for Rt in LDR word instructions and PC for Rn in LDR
instructions. Other uses of PC in these Thumb instructions are not permitted.

Use of SP

You can use SP for Rn.

In ARM, you can use SP for Rt in word instructions. You can use SP for Rt in non-word
instructions in ARM code but this is deprecated in ARMv6T2 and above.

In Thumb, you can use SP for Rt in word instructions only. All other use of SP for Rt in these
instructions are not permitted in Thumb code.

Examples

 LDR r8,[r10] ; loads R8 from the address in R10.
 LDRNE r2,[r5,#960]! ; (conditionally) loads R2 from a word
 ; 960 bytes above the address in R5, and
 ; increments R5 by 960.
 STR r2,[r9,#consta-struc] ; consta-struc is an expression evaluating
 ; to a constant in the range 0-4095.

See also

Reference:
• Memory access instructions on page 3-9
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-13
ID061811 Non-Confidential

ARM and Thumb Instructions
3.3.2 LDR and STR (register offset)

Load and Store with register offset, pre-indexed register offset, or post-indexed register offset.

Syntax

op{type}{cond} Rt, [Rn, +/-Rm {, shift}] ; register offset

op{type}{cond} Rt, [Rn, +/-Rm {, shift}]! ; pre-indexed ; ARM only

op{type}{cond} Rt, [Rn], +/-Rm {, shift} ; post-indexed ; ARM only

opD{cond} Rt, Rt2, [Rn, +/-Rm] ; register offset, doubleword ; ARM only

opD{cond} Rt, Rt2, [Rn, +/-Rm]! ; pre-indexed, doubleword ; ARM only

opD{cond} Rt, Rt2, [Rn], +/-Rm ; post-indexed, doubleword ; ARM only

where:

op can be either:
LDR Load Register
STR Store Register.

type can be any one of:
B unsigned Byte (Zero extend to 32 bits on loads.)
SB signed Byte (LDR only. Sign extend to 32 bits.)
H unsigned Halfword (Zero extend to 32 bits on loads.)
SH signed Halfword (LDR only. Sign extend to 32 bits.)
- omitted, for Word.

cond is an optional condition code.

Rt is the register to load or store.

Rn is the register on which the memory address is based.

Rm is a register containing a value to be used as the offset. –Rm is not permitted in
Thumb code.

shift is an optional shift.

Rt2 is the additional register to load or store for doubleword operations.

Not all options are available in every instruction set and architecture.

Offset register and shift options

Table 3-3 shows the ranges of offsets and availability of these instructions.

Table 3-3 Options and architectures, LDR/STR (register offsets)

Instruction +/–Rm a shift Arch.

ARM, word or byte b +/–Rm LSL #0-31 LSR #1-32 All

ASR #1-32 ROR #1-31 RRX

ARM, signed byte, halfword, or signed halfword +/–Rm Not available All

ARM, doubleword +/–Rm Not available v5TE +
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-14
ID061811 Non-Confidential

ARM and Thumb Instructions
Register restrictions

In the pre-index and post-index forms:
• Rn must be different from Rt
• Rn must be different from Rm in architectures before ARMv6.

Doubleword register restrictions

For ARM instructions:
• Rt must be an even-numbered register
• Rt must not be LR
• it is strongly recommended that you do not use R12 for Rt
• Rt2 must be R(t + 1)
• Rm must be different from Rt and Rt2 in LDRD instructions
• Rn must be different from Rt2 in the pre-index and post-index forms.

Use of PC

In ARM instructions:

• You can use PC for Rt in LDR word instructions, and you can use PC for Rn in LDR
instructions with register offset syntax (that is the forms that do not writeback to the Rn).

• You can use PC for Rt in STR word instructions, and you can use PC for Rn in STR
instructions with register offset syntax (that is the forms that do not writeback to the Rn).
However, these are deprecated in ARMv6T2 and above.

Other uses of PC are not permitted in ARM instructions.

In Thumb instructions you can use PC for Rt in LDR word instructions. Other uses of PC in these
Thumb instructions are not permitted.

Use of SP

You can use SP for Rn.

32-bit Thumb, word, halfword, signed halfword,
byte, or signed byte b

+Rm LSL #0-3 v6T2, v7

16-bit Thumb, all except doublewordc +Rm Not available All T

16-bit ThumbEE, word b +Rm LSL #2 (required) T-2EE

16-bit ThumbEE, halfword, signed halfword b +Rm LSL #1 (required) T-2EE

16-bit ThumbEE, byte, signed byte b +Rm Not available T-2EE

a. Where +/–Rm is shown, you can use –Rm, +Rm, or Rm. Where +Rm is shown, you cannot use –Rm.
b. For word loads, Rt can be the PC. A load to the PC causes a branch to the address loaded. In ARMv4, bits[1:0] of the address

loaded must be 0b00. In ARMv5T and above, bits[1:0] must not be 0b10, and if bit[0] is 1, execution continues in Thumb
state, otherwise execution continues in ARM state.

c. Rt, Rn, and Rm must all be in the range R0-R7.

Table 3-3 Options and architectures, LDR/STR (register offsets) (continued)

Instruction +/–Rm a shift Arch.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-15
ID061811 Non-Confidential

ARM and Thumb Instructions
In ARM, you can use SP for Rt in word instructions. You can use SP for Rt in non-word ARM
instructions but this is deprecated in ARMv6T2 and above.

You can use SP for Rm in ARM instructions but this is deprecated in ARMv6T2 and above.

In Thumb, you can use SP for Rt in word instructions only. All other use of SP for Rt in these
instructions are not permitted in Thumb code.

Use of SP for Rm is not permitted in Thumb state.

See also

Reference:
• Memory access instructions on page 3-9
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-16
ID061811 Non-Confidential

ARM and Thumb Instructions
3.3.3 LDR and STR, unprivileged

Unprivileged load and Store, byte, halfword, or word.

When these instructions are executed by privileged software, they access memory with the same
restrictions as they would have if they were executed by unprivileged software.

When executed by unprivileged software these instructions behave in exactly the same way as
the corresponding load or store instruction, for example LDRSBT behaves in the same way as
LDRSB.

Syntax

op{type}T{cond} Rt, [Rn {, #offset}] ; immediate offset (Thumb-2 only)

op{type}T{cond} Rt, [Rn] {, #offset} ; post-indexed (ARM only)

op{type}T{cond} Rt, [Rn], +/-Rm {, shift} ; post-indexed (register) (ARM only)

where:

op can be either:
LDR Load Register
STR Store Register.

type can be any one of:
B unsigned Byte (Zero extend to 32 bits on loads.)
SB signed Byte (LDR only. Sign extend to 32 bits.)
H unsigned Halfword (Zero extend to 32 bits on loads.)
SH signed Halfword (LDR only. Sign extend to 32 bits.)
- omitted, for Word.

cond is an optional condition code.

Rt is the register to load or store.

Rn is the register on which the memory address is based.

offset is an offset. If offset is omitted, the address is the value in Rn.

Rm is a register containing a value to be used as the offset. Rm must not be PC.

shift is an optional shift.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-17
ID061811 Non-Confidential

ARM and Thumb Instructions
Offset ranges and architectures

Table 3-2 on page 3-12 shows the ranges of offsets and availability of these instructions.

See also

Reference:
• Memory access instructions on page 3-9
• Condition codes on page 3-162.

Table 3-4 Offsets and architectures, LDR/STR (User mode)

Instruction Immediate offset Post-indexed +/–Rm a shift Arch.

ARM, word or byte Not available –4095 to 4095 +/–Rm LSL #0-31 All

LSR #1-32

ASR #1-32

ROR #1-31

RRX

ARM, signed byte, halfword, or
signed halfword

Not available –255 to 255 +/–Rm Not
available

v6T2, v7

32-bit Thumb, word, halfword,
signed halfword, byte, or signed byte

0 to 255 Not available Not available v6T2, v7

a. You can use –Rm, +Rm, or Rm.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-18
ID061811 Non-Confidential

ARM and Thumb Instructions
3.3.4 LDR (PC-relative)

Load register. The address is an offset from the PC.

Syntax

LDR{type}{cond}{.W} Rt, label

LDRD{cond} Rt, Rt2, label ; Doubleword

where:

type can be any one of:
B unsigned Byte (Zero extend to 32 bits on loads.)
SB signed Byte (LDR only. Sign extend to 32 bits.)
H unsigned Halfword (Zero extend to 32 bits on loads.)
SH signed Halfword (LDR only. Sign extend to 32 bits.)
- omitted, for Word.

cond is an optional condition code.

.W is an optional instruction width specifier.

Rt is the register to load or store.

Rt2 is the second register to load or store.

label is a PC-relative expression.
label must be within a limited distance of the current instruction.

Note
 Equivalent syntaxes are available for the STR instruction in ARM code but they are deprecated
in ARMv6T2 and above.

Offset range and architectures

The assembler calculates the offset from the PC for you. The assembler generates an error if
label is out of range.

Table 3-5 shows the possible offsets between label and the current instruction.

Table 3-5 PC-relative offsets

Instruction Offset range Architectures

ARM LDR, LDRB, LDRSB, LDRH, LDRSH a

a. For word loads, Rt can be the PC. A load to the PC causes a branch to the address loaded. In
ARMv4, bits[1:0] of the address loaded must be 0b00. In ARMv5T and above, bits[1:0] must
not be 0b10, and if bit[0] is 1, execution continues in Thumb state, otherwise execution
continues in ARM state.

+/– 4095 All

ARM LDRD +/– 255 v5TE +

32-bit Thumb LDR, LDRB, LDRSB, LDRH, LDRSH a +/– 4095 v6T2, v7

32-bit Thumb LDRD +/– 1020 b v6T2, v7

16-bit Thumb LDR c 0-1020 b All T
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-19
ID061811 Non-Confidential

ARM and Thumb Instructions
Note
 In ARMv7-M, LDRD (PC-relative) instructions must be on a word-aligned address.

LDR (PC-relative) in Thumb-2

You can use the .W width specifier to force LDR to generate a 32-bit instruction in Thumb-2 code.
LDR.W always generates a 32-bit instruction, even if the target could be reached using a 16-bit
LDR.

For forward references, LDR without .W always generates a 16-bit instruction in Thumb code,
even if that results in failure for a target that could be reached using a 32-bit Thumb-2 LDR
instruction.

Doubleword register restrictions

For Thumb-2 instructions, you must not specify SP or PC for either Rt or Rt2.

For ARM instructions:
• Rt must be an even-numbered register
• Rt must not be LR
• it is strongly recommended that you do not use R12 for Rt
• Rt2 must be R(t + 1).

Use of SP

In ARM, you can use SP for Rt in LDR word instructions. You can use SP for Rt in LDR non-word
ARM instructions but this is deprecated in ARMv6T2 and above.

In Thumb, you can use SP for Rt in LDR word instructions only. All other uses of SP in these
instructions are not permitted in Thumb code.

See also

Concepts:
Using the Assembler:
• Register-relative and PC-relative expressions on page 8-7.

Reference:
• Pseudo-instructions on page 3-154
• LDR (PC-relative) in Thumb-2
• Memory access instructions on page 3-9
• Condition codes on page 3-162.

b. Must be a multiple of 4.
c. Rt must be in the range R0-R7. There are no byte, halfword, or doubleword 16-bit instructions.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-20
ID061811 Non-Confidential

ARM and Thumb Instructions
3.3.5 LDR (register-relative)

Load register. The address is an offset from a base register.

Syntax

LDR{type}{cond}{.W} Rt, label

LDRD{cond} Rt, Rt2, label ; Doubleword

where:

type can be any one of:
B unsigned Byte (Zero extend to 32 bits on loads.)
SB signed Byte (LDR only. Sign extend to 32 bits.)
H unsigned Halfword (Zero extend to 32 bits on loads.)
SH signed Halfword (LDR only. Sign extend to 32 bits.)
- omitted, for Word.

cond is an optional condition code.

.W is an optional instruction width specifier.

Rt is the register to load or store.

Rt2 is the second register to load or store.

label is a symbol defined by the FIELD directive. label specifies an offset from the
base register which is defined using the MAP directive.
label must be within a limited distance of the value in the base register.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-21
ID061811 Non-Confidential

ARM and Thumb Instructions
Offset range and architectures

The assembler calculates the offset from the base register for you. The assembler generates an
error if label is out of range.

Table 3-5 on page 3-19 shows the possible offsets between label and the current instruction.

LDR (register-relative) in Thumb-2

You can use the .W width specifier to force LDR to generate a 32-bit instruction in Thumb-2 code.
LDR.W always generates a 32-bit instruction, even if the target could be reached using a 16-bit
LDR.

For forward references, LDR without .W always generates a 16-bit instruction in Thumb code,
even if that results in failure for a target that could be reached using a 32-bit Thumb-2 LDR
instruction.

Doubleword register restrictions

For Thumb-2 instructions, you must not specify SP or PC for either Rt or Rt2.

For ARM instructions:
• Rt must be an even-numbered register
• Rt must not be LR

Table 3-6 register-relative offsets

Instruction Offset range Architectures

ARM LDR, LDRBa

a. For word loads, Rt can be the PC. A load to the PC causes a branch to the address loaded. In
ARMv4, bits[1:0] of the address loaded must be 0b00. In ARMv5T and above, bits[1:0] must
not be 0b10, and if bit[0] is 1, execution continues in Thumb state, otherwise execution
continues in ARM state.

+/– 4095 All

ARM LDRSB, LDRH, LDRSH +/– 255 All

ARM LDRD +/– 255 v5TE +

32-bit Thumb LDR, LDRB, LDRSB, LDRH, LDRSH a –255 to 4095 v6T2, v7

32-bit Thumb LDRD +/– 1020 b

b. Must be a multiple of 4.

v6T2, v7

16-bit Thumb LDR c

c. Rt and base register must be in the range R0-R7.

0 to 124 b All T

16-bit Thumb LDRH c 0 to 62 d

d. Must be a multiple of 2.

All T

16-bit Thumb LDRB c 0 to 31 All T

16-bit Thumb LDR, base register is SPe

e. Rt must be in the range R0-R7.

0 to 1020 b All T

16-bit ThumbEE LDR c –28 to 124 b T-2EE

16-bit Thumb LDR, base register is R9 e 0 to 252 b T-2EE

16-bit ThumbEE LDR, base register is R10 e 0 to 124 b T-2EE
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-22
ID061811 Non-Confidential

ARM and Thumb Instructions
• it is strongly recommended that you do not use R12 for Rt
• Rt2 must be R(t + 1).

Use of PC

You can use PC for Rt in word instructions. Other uses of PC are not permitted in these
instructions.

Use of SP

In ARM, you can use SP for Rt in word instructions. You can use SP for Rt in non-word ARM
instructions but this is deprecated in ARMv6T2 and above.

In Thumb, you can use SP for Rt in word instructions only. All other use of SP for Rt in these
instructions are not permitted in Thumb code.

See also

Concepts
Using the Assembler:
• Register-relative and PC-relative expressions on page 8-7.

Reference:
• Memory access instructions on page 3-9
• Pseudo-instructions on page 3-154
• LDR (register-relative) in Thumb-2 on page 3-22
• FIELD on page 5-18
• MAP on page 5-17
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-23
ID061811 Non-Confidential

ARM and Thumb Instructions
3.3.6 ADR (PC-relative)

ADR generates a PC-relative address in the destination register, for a label in the current area.

Syntax

ADR{cond}{.W} Rd,label

where:

cond is an optional condition code.

.W is an optional instruction width specifier.

Rd is the destination register to load.

label is a PC-relative expression.
label must be within a limited distance of the current instruction.

Usage

ADR produces position-independent code, because the assembler generates an instruction that
adds or subtracts a value to the PC.

Use the ADRL pseudo-instruction to assemble a wider range of effective addresses.

label must evaluate to an address in the same assembler area as the ADR instruction.

If you use ADR to generate a target for a BX or BLX instruction, it is your responsibility to set the
Thumb bit (bit 0) of the address if the target contains Thumb instructions.

Offset range and architectures

The assembler calculates the offset from the PC for you. The assembler generates an error if
label is out of range.

Table 3-5 on page 3-19 shows the possible offsets between label and the current instruction.

ADR in Thumb-2

You can use the .W width specifier to force ADR to generate a 32-bit instruction in Thumb-2 code.
ADR with .W always generates a 32-bit instruction, even if the address can be generated in a 16-bit
instruction.

For forward references, ADR without .W always generates a 16-bit instruction in Thumb code,
even if that results in failure for an address that could be generated in a 32-bit Thumb-2 ADD
instruction.

Table 3-7 PC-relative offsets

Instruction Offset range Architectures

ARM ADR See Operand 2 as a constant on page 3-45 All

32-bit Thumb ADR +/– 4095 v6T2, v7

16-bit Thumb ADR a

a. Rd must be in the range R0-R7.

0-1020 b

b. Must be a multiple of 4.

All T
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-24
ID061811 Non-Confidential

ARM and Thumb Instructions
Restrictions

In Thumb code, Rd cannot be PC or SP.

In ARM code, Rd can be PC or SP but use of SP is deprecated in ARMv6T2 and above.

See also

Concepts
Using the Assembler:
• Register-relative and PC-relative expressions on page 8-7.

Reference:
• Memory access instructions on page 3-9
• ADRL pseudo-instruction on page 3-155
• AREA on page 5-61
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-25
ID061811 Non-Confidential

ARM and Thumb Instructions
3.3.7 ADR (register-relative)

ADR generates a register-relative address in the destination register, for a label defined in a
storage map.

Syntax

ADR{cond}{.W} Rd,label

where:

cond is an optional condition code.

.W is an optional instruction width specifier.

Rd is the destination register to load.

label is a symbol defined by the FIELD directive. label specifies an offset from the
base register which is defined using the MAP directive.
label must be within a limited distance from the base register.

Usage

ADR generates code to easily access named fields inside a storage map.

Use the ADRL pseudo-instruction to assemble a wider range of effective addresses.

Restrictions

In Thumb code:
• Rd cannot be PC
• Rd can be SP only if the base register is SP.

Offset range and architectures

The assembler calculates the offset from the base register for you. The assembler generates an
error if label is out of range.

Table 3-5 on page 3-19 shows the possible offsets between label and the current instruction.

Table 3-8 register-relative offsets

Instruction Offset range Architectures

ARM ADR See Operand 2 as a constant on page 3-45 All

32-bit Thumb ADR +/– 4095 v6T2, v7

16-bit Thumb ADR,
base register is SP a

a. Rd must be in the range R0-R7 or SP. If Rd is SP, the offset range is –508 to 508 and must be
a multiple of 4

0-1020 b

b. Must be a multiple of 4.

All T
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-26
ID061811 Non-Confidential

ARM and Thumb Instructions
ADR in Thumb-2

You can use the .W width specifier to force ADR to generate a 32-bit instruction in Thumb-2 code.
ADR with .W always generates a 32-bit instruction, even if the address can be generated in a 16-bit
instruction.

For forward references, ADR without .W, with base register SP, always generates a 16-bit
instruction in Thumb code, even if that results in failure for an address that could be generated
in a 32-bit Thumb-2 ADD instruction.

See also

Concepts
Using the Assembler:
• Register-relative and PC-relative expressions on page 8-7.

Reference:
• Memory access instructions on page 3-9
• MAP on page 5-17
• FIELD on page 5-18
• ADRL pseudo-instruction on page 3-155
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-27
ID061811 Non-Confidential

ARM and Thumb Instructions
3.3.8 PLD, PLDW, and PLI

Preload Data and Preload Instruction. The processor can signal the memory system that a data
or instruction load from an address is likely in the near future.

Syntax

PLtype{cond} [Rn {, #offset}]

PLtype{cond} [Rn, +/-Rm {, shift}]

PLtype{cond} label

where:

type can be one of:
D Data address
DW Data address with intention to write
I Instruction address.
type cannot be DW if the syntax specifies label.

cond is an optional condition code.

Note
 cond is permitted only in Thumb-2 code, using a preceding IT instruction. This is

an unconditional instruction in ARM and you must not use cond.

Rn is the register on which the memory address is based.

offset is an immediate offset. If offset is omitted, the address is the value in Rn.

Rm is a register containing a value to be used as the offset.

shift is an optional shift.

label is a PC-relative expression.

Range of offset

The offset is applied to the value in Rn before the preload takes place. The result is used as the
memory address for the preload. The range of offsets permitted is:
• –4095 to +4095 for ARM instructions
• –255 to +4095 for Thumb-2 instructions, when Rn is not PC.
• –4095 to +4095 for Thumb-2 instructions, when Rn is PC.

The assembler calculates the offset from the PC for you. The assembler generates an error if
label is out of range.

Register or shifted register offset

In ARM, the value in Rm is added to or subtracted from the value in Rn. In Thumb-2, the value in
Rm can only be added to the value in Rn. The result used as the memory address for the preload.

The range of shifts permitted is:

• LSL #0 to #3 for Thumb-2 instructions
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-28
ID061811 Non-Confidential

ARM and Thumb Instructions
• Any one of the following for ARM instructions:
— LSL #0 to #31
— LSR #1 to #32
— ASR #1 to #32
— ROR #1 to #31
— RRX

Address alignment for preloads

No alignment checking is performed for preload instructions.

Register restrictions

Rm must not be PC. For Thumb instructions Rm must also not be SP.

Rn must not be PC for Thumb instructions of the syntaxPLtype{cond} [Rn, +/-Rm{, #shift}].

Architectures

ARM PLD is available in ARMv5TE and above.

32-bit Thumb PLD is available in ARMv6T2 and above.

PLDW is available only in ARMv7 and above that implement the Multiprocessing Extensions.

PLI is available only in ARMv7 and above.

There are no 16-bit Thumb PLD, PLDW, or PLI instructions.

These are hint instructions, and their implementation is optional. If they are not implemented,
they execute as NOPs.

See also

Concepts
Using the Assembler:
• Register-relative and PC-relative expressions on page 8-7.

Reference:
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-29
ID061811 Non-Confidential

ARM and Thumb Instructions
3.3.9 LDM and STM

Load and Store Multiple registers. Any combination of registers R0 to R15 (PC) can be
transferred in ARM state, but there are some restrictions in Thumb state.

Syntax

op{addr_mode}{cond} Rn{!}, reglist{^}

where:

op can be either:
LDM Load Multiple registers
STM Store Multiple registers.

addr_mode is any one of the following:
IA Increment address After each transfer. This is the default, and can be

omitted.
IB Increment address Before each transfer (ARM only).
DA Decrement address After each transfer (ARM only).
DB Decrement address Before each transfer.
You can also use the stack oriented addressing mode suffixes, for example, when
implementing stacks.

cond is an optional condition code.

Rn is the base register, the ARM register holding the initial address for the transfer.
Rn must not be PC.

! is an optional suffix. If ! is present, the final address is written back into Rn.

reglist is a list of one or more registers to be loaded or stored, enclosed in braces. It can
contain register ranges. It must be comma separated if it contains more than one
register or register range.

^ is an optional suffix, available in ARM state only. You must not use it in User
mode or System mode. It has the following purposes:
• If the instruction is LDM (with any addressing mode) and reglist contains the

PC (R15), in addition to the normal multiple register transfer, the SPSR is
copied into the CPSR. This is for returning from exception handlers. Use this
only from exception modes.

• Otherwise, data is transferred into or out of the User mode registers instead
of the current mode registers.

Restrictions on reglist in 32-bit Thumb instructions

In 32-bit Thumb instructions:
• the SP cannot be in the list
• the PC cannot be in the list in an STM instruction
• the PC and LR cannot both be in the list in an LDM instruction
• there must be two or more registers in the list.

If you write an STM or LDM instruction with only one register in reglist, the assembler
automatically substitutes the equivalent STR or LDR instruction. Be aware of this when comparing
disassembly listings with source code.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-30
ID061811 Non-Confidential

ARM and Thumb Instructions
You can use the --diag_warning 1645 assembler command line option to check when an
instruction substitution occurs.

Restrictions on reglist in ARM instructions

ARM store instructions can have SP and PC in the reglist but these instructions that include SP
or PC in the reglist are deprecated in ARMv6T2 and above.

ARM load instructions can have SP and PC in the reglist but these instructions that include SP
in the reglist or both PC and LR in the reglist are deprecated in ARMv6T2 and above.

16-bit instructions

16-bit versions of a subset of these instructions are available in Thumb code.

The following restrictions apply to the 16-bit instructions:
• all registers in reglist must be Lo registers
• Rn must be a Lo register
• addr_mode must be omitted (or IA), meaning increment address after each transfer
• writeback must be specified for STM instructions
• writeback must be specified for LDM instructions where Rn is not in the reglist.

Note
 16-bit Thumb STM instructions with writeback that specify Rn as the lowest register in the reglist
are deprecated in ARMv6T2 and above.

In addition, the PUSH and POP instructions are subsets of the STM and LDM instructions and can
therefore be expressed using the STM and LDM instructions. Some forms of PUSH and POP are also
16-bit instructions.

Note
 These 16-bit instructions are not available in Thumb-2EE.

Loading to the PC

A load to the PC causes a branch to the instruction at the address loaded.

In ARMv4, bits[1:0] of the address loaded must be 0b00.

In ARMv5T and above:
• bits[1:0] must not be 0b10
• if bit[0] is 1, execution continues in Thumb state
• if bit[0] is 0, execution continues in ARM state.

Loading or storing the base register, with writeback

In ARM or 16-bit Thumb instructions, if Rn is in reglist, and writeback is specified with the !
suffix:

• If the instruction is STM{addr_mode}{cond} and Rn is the lowest-numbered register in
reglist, the initial value of Rn is stored. These instructions are deprecated in ARMv6T2
and above.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-31
ID061811 Non-Confidential

ARM and Thumb Instructions
• Otherwise, the loaded or stored value of Rn cannot be relied upon, so these instructions are
not permitted.

32-bit Thumb instructions are not permitted if Rn is in reglist, and writeback is specified with
the ! suffix.

Examples

 LDM r8,{r0,r2,r9} ; LDMIA is a synonym for LDM
 STMDB r1!,{r3-r6,r11,r12}

Incorrect examples

 STM r5!,{r5,r4,r9} ; value stored for R5 unpredictable
 LDMDA r2, {} ; must be at least one register in list

See also

Concepts
Using the Assembler:
• Stack implementation using LDM and STM on page 5-22.

Reference:
• Memory access instructions on page 3-9
• PUSH and POP on page 3-33
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-32
ID061811 Non-Confidential

ARM and Thumb Instructions
3.3.10 PUSH and POP

Push registers onto, and pop registers off a full descending stack.

Syntax

PUSH{cond} reglist

POP{cond} reglist

where:

cond is an optional condition code.

reglist is a non-empty list of registers, enclosed in braces.It can contain register ranges.
It must be comma separated if it contains more than one register or register range.

Usage

PUSH is a synonym for STMDB sp!, reglist and POP is a synonym for LDMIA sp! reglist. PUSH and
POP are the preferred mnemonics in these cases.

Note
 LDM and LDMFD are synonyms of LDMIA. STMFD is a synonym of STMDB.

Registers are stored on the stack in numerical order, with the lowest numbered register at the
lowest address.

POP, with reglist including the PC

This instruction causes a branch to the address popped off the stack into the PC. This is usually
a return from a subroutine, where the LR was pushed onto the stack at the start of the subroutine.

In ARMv5T and above:
• bits[1:0] must not be 0b10
• if bit[0] is 1, execution continues in Thumb state
• if bit[0] is 0, execution continues in ARM state.

In ARMv4, bits[1:0] of the address loaded must be 0b00.

Thumb instructions

A subset of these instructions are available in the Thumb instruction set.

The following restrictions apply to the 16-bit instructions:
• For PUSH, reglist can only include the Lo registers and the LR
• For POP, reglist can only include the Lo registers and the PC.

The following restrictions apply to the 32-bit instructions:
• reglist must not include the SP
• For PUSH, reglist must not include the PC
• For POP, reglist can include either the LR or the PC, but not both.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-33
ID061811 Non-Confidential

ARM and Thumb Instructions
Restrictions on reglist in ARM instructions

ARM PUSH instructions can have SP and PC in the reglist but these instructions that include
SP or PC in the reglist are deprecated in ARMv6T2 and above.

ARM POP instructions cannot have SP but can have PC in the reglist. These instructions that
include both PC and LR in the reglist are deprecated in ARMv6T2 and above.

Examples

 PUSH {r0,r4-r7}
 PUSH {r2,lr}
 POP {r0,r10,pc} ; no 16-bit version available

See also

Reference:
• Memory access instructions on page 3-9
• LDM and STM on page 3-30
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-34
ID061811 Non-Confidential

ARM and Thumb Instructions
3.3.11 RFE

Return From Exception.

Syntax

RFE{addr_mode}{cond} Rn{!}

where:

addr_mode is any one of the following:
IA Increment address After each transfer (Full Descending stack)
IB Increment address Before each transfer (ARM only)
DA Decrement address After each transfer (ARM only)
DB Decrement address Before each transfer.
If addr_mode is omitted, it defaults to Increment After.

cond is an optional condition code.

Note
 cond is permitted only in Thumb code, using a preceding IT instruction. This is an

unconditional instruction in ARM.

Rn specifies the base register. Rn must not be PC.

! is an optional suffix. If ! is present, the final address is written back into Rn.

Usage

You can use RFE to return from an exception if you previously saved the return state using the
SRS instruction. Rn is usually the SP where the return state information was saved.

Operation

Loads the PC and the CPSR from the address contained in Rn, and the following address.
Optionally updates Rn.

Notes

RFE writes an address to the PC. The alignment of this address must be correct for the instruction
set in use after the exception return:

• For a return to ARM, the address written to the PC must be word-aligned.

• For a return to Thumb, the address written to the PC must be halfword-aligned.

• For a return to Jazelle®, there are no alignment restrictions on the address written to the
PC.

The results of breaking these rules are unpredictable. However, no special precautions are
required in software, if the instructions are used to return after a valid exception entry
mechanism.

Where addresses are not word-aligned, RFE ignores the least significant two bits of Rn.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-35
ID061811 Non-Confidential

ARM and Thumb Instructions
The time order of the accesses to individual words of memory generated by RFE is not
architecturally defined. Do not use this instruction on memory-mapped I/O locations where
access order matters.

Do not use RFE in unprivileged software execution.

Do not use RFE in Thumb-2EE.

Architectures

This ARM instruction is available in ARMv6 and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above, except the ARMv7-M
architecture.

There is no 16-bit version of this instruction.

Example

 RFE sp!

See also

Concepts
Using the Assembler:
• Processor modes, and privileged and unprivileged software execution on page 3-5.

Reference:
• SRS on page 3-37
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-36
ID061811 Non-Confidential

ARM and Thumb Instructions
3.3.12 SRS

Store Return State onto a stack.

Syntax

SRS{addr_mode}{cond} sp{!}, #modenum

SRS{addr_mode}{cond} #modenum{!} ; This is a pre-UAL syntax

where:

addr_mode is any one of the following:
IA Increment address After each transfer
IB Increment address Before each transfer (ARM only)
DA Decrement address After each transfer (ARM only)
DB Decrement address Before each transfer (Full Descending stack).
If addr_mode is omitted, it defaults to Increment After. You can also use stack
oriented addressing mode suffixes, for example, when implementing stacks.

cond is an optional condition code.

Note
 cond is permitted only in Thumb code, using a preceding IT instruction. This is an

unconditional instruction in ARM.

! is an optional suffix. If ! is present, the final address is written back into the SP
of the mode specified by modenum.

modenum specifies the number of the mode whose banked SP is used as the base register.
You must use only the defined mode numbers.

Operation

SRS stores the LR and the SPSR of the current mode, at the address contained in SP of the mode
specified by modenum, and the following word respectively. Optionally updates SP of the mode
specified by modenum. This is compatible with the normal use of the STM instruction for stack
accesses.

Note
 For full descending stack, you must use SRSFD or SRSDB.

Usage

You can use SRS to store return state for an exception handler on a different stack from the one
automatically selected.

Notes

Where addresses are not word-aligned, SRS ignores the least significant two bits of the specified
address.

The time order of the accesses to individual words of memory generated by SRS is not
architecturally defined. Do not use this instruction on memory-mapped I/O locations where
access order matters.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-37
ID061811 Non-Confidential

ARM and Thumb Instructions
Do not use SRS in User and System modes because these modes do not have a SPSR.

Do not use SRS in Thumb-2EE.

SRS is not permitted in a non-secure state if modenum specifies monitor mode.

Architectures

This ARM instruction is available in ARMv6 and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above, except the ARMv7-M
architecture.

There is no 16-bit version of this instruction.

Example

R13_usr EQU 16
 SRSFD sp,#R13_usr

See also

Concepts
Using the Assembler:
• Stack implementation using LDM and STM on page 5-22
• Processor modes, and privileged and unprivileged software execution on page 3-5.

Reference:
• LDM and STM on page 3-30
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-38
ID061811 Non-Confidential

ARM and Thumb Instructions
3.3.13 LDREX and STREX

Load and Store Register Exclusive.

Syntax

LDREX{cond} Rt, [Rn {, #offset}]

STREX{cond} Rd, Rt, [Rn {, #offset}]

LDREXB{cond} Rt, [Rn]

STREXB{cond} Rd, Rt, [Rn]

LDREXH{cond} Rt, [Rn]

STREXH{cond} Rd, Rt, [Rn]

LDREXD{cond} Rt, Rt2, [Rn]

STREXD{cond} Rd, Rt, Rt2, [Rn]

where:

cond is an optional condition code.

Rd is the destination register for the returned status.

Rt is the register to load or store.

Rt2 is the second register for doubleword loads or stores.

Rn is the register on which the memory address is based.

offset is an optional offset applied to the value in Rn. offset is permitted only in
Thumb-2 instructions. If offset is omitted, an offset of 0 is assumed.

LDREX

LDREX loads data from memory.

• If the physical address has the Shared TLB attribute, LDREX tags the physical address as
exclusive access for the current processor, and clears any exclusive access tag for this
processor for any other physical address.

• Otherwise, it tags the fact that the executing processor has an outstanding tagged physical
address.

STREX

STREX performs a conditional store to memory. The conditions are as follows:

• If the physical address does not have the Shared TLB attribute, and the executing
processor has an outstanding tagged physical address, the store takes place, the tag is
cleared, and the value 0 is returned in Rd.

• If the physical address does not have the Shared TLB attribute, and the executing
processor does not have an outstanding tagged physical address, the store does not take
place, and the value 1 is returned in Rd.

• If the physical address has the Shared TLB attribute, and the physical address is tagged as
exclusive access for the executing processor, the store takes place, the tag is cleared, and
the value 0 is returned in Rd.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-39
ID061811 Non-Confidential

ARM and Thumb Instructions
• If the physical address has the Shared TLB attribute, and the physical address is not tagged
as exclusive access for the executing processor, the store does not take place, and the value
1 is returned in Rd.

Restrictions

PC must not be used for any of Rd, Rt, Rt2, or Rn.

For STREX, Rd must not be the same register as Rt, Rt2, or Rn.

For ARM instructions:

• SP can be used but use of SP for any of Rd, Rt, or Rt2 is deprecated in ARMv6T2 and above

• For LDREXD and STREXD, Rt must be an even numbered register, and not LR

• Rt2 must be R(t+1)

• offset is not permitted.

For Thumb instructions:
• SP can be used for Rn, but must not be used for any of Rd, Rt, or Rt2
• for LDREXD, Rt and Rt2 must not be the same register
• the value of offset can be any multiple of four in the range 0-1020.

Usage

Use LDREX and STREX to implement interprocess communication in multiple-processor and
shared-memory systems.

For reasons of performance, keep the number of instructions between corresponding LDREX and
STREX instruction to a minimum.

Note
 The address used in a STREX instruction must be the same as the address in the most recently
executed LDREX instruction. The result of executing a STREX instruction to a different address is
unpredictable.

Architectures

ARM LDREX and STREX are available in ARMv6 and above.

ARM LDREXB, LDREXH, LDREXD, STREXB, STREXD, and STREXH are available in ARMv6K and above.

All these 32-bit Thumb instructions are available in ARMv6T2 and above, except that LDREXD
and STREXD are not available in the ARMv7-M architecture.

There are no 16-bit versions of these instructions.

Examples

 MOV r1, #0x1 ; load the ‘lock taken’ value
try
 LDREX r0, [LockAddr] ; load the lock value
 CMP r0, #0 ; is the lock free?
 STREXEQ r0, r1, [LockAddr] ; try and claim the lock
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-40
ID061811 Non-Confidential

ARM and Thumb Instructions
 CMPEQ r0, #0 ; did this succeed?
 BNE try ; no – try again
 ; yes – we have the lock

See also

Reference:
• Memory access instructions on page 3-9
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-41
ID061811 Non-Confidential

ARM and Thumb Instructions
3.3.14 CLREX

Clear Exclusive. Clears the local record of the executing processor that an address has had a
request for an exclusive access.

Syntax

CLREX{cond}

where:

cond is an optional condition code.

Note
 cond is permitted only in Thumb code, using a preceding IT instruction. This is an

unconditional instruction in ARM.

Usage

Use the CLREX instruction to return a closely-coupled exclusive access monitor to its open-access
state. This removes the requirement for a dummy store to memory.

It is implementation defined whether CLREX also clears the global record of the executing
processor that an address has had a request for an exclusive access.

Architectures

This ARM instruction is available in ARMv6K and above.

This 32-bit Thumb instruction is available in ARMv7 and above.

There is no 16-bit Thumb CLREX instruction.

See also

Reference:
• Memory access instructions on page 3-9
• Condition codes on page 3-162
• ARM Architecture Reference Manual,

http://infocenter.arm.com/help/topic/com.arm.doc.subset.arch.reference/index.html.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-42
ID061811 Non-Confidential

ARM and Thumb Instructions
3.3.15 SWP and SWPB

Swap data between registers and memory.

Syntax

SWP{B}{cond} Rt, Rt2, [Rn]

where:

cond is an optional condition code.

B is an optional suffix. If B is present, a byte is swapped. Otherwise, a 32-bit word
is swapped.

Rt is the destination register. Rt must not be PC.

Rt2 is the source register. Rt2 can be the same register as Rt. Rt2 must not be PC.

Rn contains the address in memory. Rn must be a different register from both Rt and
Rt2. Rn must not be PC.

Usage

You can use SWP and SWPB to implement semaphores:

• Data from memory is loaded into Rt.

• The contents of Rt2 is saved to memory.

• If Rt2 is the same register as Rt, the contents of the register is swapped with the contents
of the memory location.

Note

The use of SWP and SWPB is deprecated in ARMv6 and above. You can use LDREX and STREX
instructions to implement more sophisticated semaphores in ARMv6 and above.

Architectures

These ARM instructions are available in all versions of the ARM architecture.

There are no Thumb SWP or SWPB instructions.

See also

Reference:
• Memory access instructions on page 3-9
• LDREX and STREX on page 3-39
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-43
ID061811 Non-Confidential

ARM and Thumb Instructions
3.4 General data processing instructions
This section contains the following subsections:

• Flexible second operand (Operand2) on page 3-45

• Operand 2 as a constant on page 3-45

• Operand2 as a register with optional shift on page 3-46

• Shift Operations on page 3-46

• ADD, SUB, RSB, ADC, SBC, and RSC on page 3-50
Add, Subtract, and Reverse Subtract, each with or without Carry.

• SUBS pc, lr on page 3-54
Return from exception without popping the stack.

• AND, ORR, EOR, BIC, and ORN on page 3-56
Logical AND, OR, Exclusive OR, OR NOT, and Bit Clear.

• CLZ on page 3-58
Count Leading Zeros.

• CMP and CMN on page 3-59
Compare and Compare Negative.

• MOV and MVN on page 3-61
Move and Move Not.

• MOVT on page 3-64
Move Top, Wide.

• TST and TEQ on page 3-65
Test and Test Equivalence.

• SEL on page 3-67
Select bytes from each operand according to the state of the APSR GE flags.

• REV, REV16, REVSH, and RBIT on page 3-69
Reverse bytes or Bits.

• ASR, LSL, LSR, ROR, and RRX on page 3-71
Arithmetic Shift Right.

• SDIV and UDIV on page 3-74
Signed Divide and Unsigned Divide.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-44
ID061811 Non-Confidential

ARM and Thumb Instructions
3.4.1 Flexible second operand (Operand2)

Many ARM and Thumb general data processing instructions have a flexible second operand.
This is shown as Operand2 in the descriptions of the syntax of each instruction.

Operand2 can be a:
• constant
• register with optional shift.

3.4.2 Operand 2 as a constant

You specify an Operand2 constant in the form:

#constant

where constant is an expression evaluating to a numeric value.

In ARM instructions, constant can have any value that can be produced by rotating an 8-bit
value right by any even number of bits within a 32-bit word.

In Thumb instructions, constant can be:

• any constant that can be produced by shifting an 8-bit value left by any number of bits
within a 32-bit word

• any constant of the form 0x00XY00XY

• any constant of the form 0xXY00XY00

• any constant of the form 0xXYXYXYXY.

Note
 In the constants shown above, X and Y are hexadecimal digits.

In addition, in a small number of instructions, constant can take a wider range of values. These
are detailed in the individual instruction descriptions.

When an Operand2 constant is used with the instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS,
TEQ or TST, the carry flag is updated to bit[31] of the constant, if the constant is greater than 255
and can be produced by shifting an 8-bit value. These instructions do not affect the carry flag if
Operand2 is any other constant.

Instruction substitution

If a value of constant is not available, but its logical inverse or negation is available, then the
assembler produces an equivalent instruction and inverts or negates constant.

For example, an assembler might assemble the instruction CMP Rd, #0xFFFFFFFE as the equivalent
instruction CMN Rd, #0x2.

Be aware of this when comparing disassembly listings with source code.

You can use the --diag_warning 1645 assembler command line option to check when an
instruction substitution occurs.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-45
ID061811 Non-Confidential

ARM and Thumb Instructions
3.4.3 Operand2 as a register with optional shift

You specify an Operand2 register in the form:

Rm {, shift}

where:

Rm is the register holding the data for the second operand.

shift is an optional constant or register-controlled shift to be applied to Rm. It can be one
of:
ASR #n arithmetic shift right n bits, 1 ≤ n ≤ 32.
LSL #n logical shift left n bits, 1 ≤ n ≤ 31.
LSR #n logical shift right n bits, 1 ≤ n ≤ 32.
ROR #n rotate right n bits, 1 ≤ n ≤ 31.
RRX rotate right one bit, with extend.
type Rs register-controlled shift is available in ARM code only, where:

type is one of ASR, LSL, LSR, ROR.
Rs is a register supplying the shift amount, and only the least

significant byte is used.
- if omitted, no shift occurs, equivalent to LSL #0.

If you omit the shift, or specify LSL #0, the instruction uses the value in Rm.

If you specify a shift, the shift is applied to the value in Rm, and the resulting 32-bit value is used
by the instruction. However, the contents in the register Rm remains unchanged. Specifying a
register with shift also updates the carry flag when used with certain instructions.

3.4.4 Shift Operations

Register shift operations move the bits in a register left or right by a specified number of bits,
the shift length. Register shift can be performed:

• directly by the instructions ASR, LSR, LSL, ROR, and RRX, and the result is written to a
destination register

• during the calculation of Operand2 by the instructions that specify the second operand as a
register with shift. The result is used by the instruction.

The permitted shift lengths depend on the shift type and the instruction, see the individual
instruction description or the flexible second operand description. If the shift length is 0, no shift
occurs. Register shift operations update the carry flag except when the specified shift length is
0. The following sub-sections describe the various shift operations and how they affect the carry
flag. In these descriptions, Rm is the register containing the value to be shifted, and n is the shift
length.

ASR

Arithmetic shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n
places, into the right-hand 32-n bits of the result. And it copies the original bit[31] of the register
into the left-hand n bits of the result. See Figure 3-1 on page 3-47.

You can use the ASR #n operation to divide the value in the register Rm by 2n, with the result being
rounded towards negative-infinity.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-46
ID061811 Non-Confidential

ARM and Thumb Instructions
When the instruction is ASRS or when ASR #n is used in Operand2 with the instructions MOVS, MVNS,
ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1],
of the register Rm.

Note
 • If n is 32 or more, then all the bits in the result are set to the value of bit[31] of Rm.

• If n is 32 or more and the carry flag is updated, it is updated to the value of bit[31] of Rm.

Figure 3-1 ASR #3

LSR

Logical shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n
places, into the right-hand 32-n bits of the result. And it sets the left-hand n bits of the result to
0. See Figure 3-2.

You can use the LSR #n operation to divide the value in the register Rm by 2n, if the value is
regarded as an unsigned integer.

When the instruction is LSRS or when LSR #n is used in Operand2 with the instructions MOVS, MVNS,
ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1],
of the register Rm.

Note
 • If n is 32 or more, then all the bits in the result are cleared to 0.

• If n is 33 or more and the carry flag is updated, it is updated to 0.

Figure 3-2 LSR #3

LSL

Logical shift left by n bits moves the right-hand 32-n bits of the register Rm, to the left by n places,
into the left-hand 32-n bits of the result. And it sets the right-hand n bits of the result to 0. See
Figure 3-3 on page 3-48.

You can use he LSL #n operation to multiply the value in the register Rm by 2n, if the value is
regarded as an unsigned integer or a two’s complement signed integer. Overflow can occur
without warning.

31 1 0

Carry
Flag

...
2345

31 1 0

Carry
Flag

...

000

2345
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-47
ID061811 Non-Confidential

ARM and Thumb Instructions
When the instruction is LSLS or when LSL #n, with non-zero n, is used in Operand2 with the
instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the
last bit shifted out, bit[32-n], of the register Rm. These instructions do not affect the carry flag
when used with LSL #0.

Note
 • If n is 32 or more, then all the bits in the result are cleared to 0.

• If n is 33 or more and the carry flag is updated, it is updated to 0.

Figure 3-3 LSL #3

ROR

Rotate right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into
the right-hand 32-n bits of the result. And it moves the right-hand n bits of the register into the
left-hand n bits of the result. See Figure 3-4.

When the instruction is RORS or when ROR #n is used in Operand2 with the instructions MOVS, MVNS,
ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit rotation, bit[n-1],
of the register Rm.

Note
 • If n is 32, then the value of the result is same as the value in Rm, and if the carry flag is

updated, it is updated to bit[31] of Rm.

• ROR with shift length, n, more than 32 is the same as ROR with shift length n-32.

Figure 3-4 ROR #3

RRX

Rotate right with extend moves the bits of the register Rm to the right by one bit. And it copies
the carry flag into bit[31] of the result. See Figure 3-5 on page 3-49.

When the instruction is RRXS or when RRX is used in Operand2 with the instructions MOVS, MVNS,
ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to bit[0] of the register Rm.

31 1 0
Carry
Flag ...

000

2345

31 1 0

Carry
Flag

...
2345
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-48
ID061811 Non-Confidential

ARM and Thumb Instructions
Figure 3-5 RRX

See also

Concepts
• Flexible second operand (Operand2) on page 3-45.

31 1 0

Carry
Flag

... ...
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-49
ID061811 Non-Confidential

ARM and Thumb Instructions
3.4.5 ADD, SUB, RSB, ADC, SBC, and RSC

Add, Subtract, and Reverse Subtract, each with or without Carry.

Syntax

op{S}{cond} {Rd}, Rn, Operand2

op{cond} {Rd}, Rn, #imm12 ; Thumb-2 ADD and SUB only

where:

op is one of:
ADD Add.
ADC Add with Carry.
SUB Subtract.
RSB Reverse Subtract.
SBC Subtract with Carry.
RSC Reverse Subtract with Carry (ARM only).

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation.

cond is an optional condition code.

Rd is the destination register.

Rn is the register holding the first operand.

Operand2 is a flexible second operand.

imm12 is any value in the range 0-4095.

Usage

The ADD instruction adds the values in Rn and Operand2 or imm12.

The SUB instruction subtracts the value of Operand2 or imm12 from the value in Rn.

The RSB (Reverse Subtract) instruction subtracts the value in Rn from the value of Operand2. This
is useful because of the wide range of options for Operand2.

You can use ADC, SBC, and RSC to synthesize multiword arithmetic.

The ADC (Add with Carry) instruction adds the values in Rn and Operand2, together with the carry
flag.

The SBC (Subtract with Carry) instruction subtracts the value of Operand2 from the value in Rn. If
the carry flag is clear, the result is reduced by one.

The RSC (Reverse Subtract with Carry) instruction subtracts the value in Rn from the value of
Operand2. If the carry flag is clear, the result is reduced by one.

In certain circumstances, the assembler can substitute one instruction for another. Be aware of
this when reading disassembly listings.

Use of PC and SP in Thumb instructions

In most of these instructions, you cannot use PC (R15) for Rd, or any operand.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-50
ID061811 Non-Confidential

ARM and Thumb Instructions
The exceptions are:

• you can use PC for Rn in 32-bit Thumb ADD and SUB instructions, with a constant Operand2
value in the range 0-4095, and no S suffix. These instructions are useful for generating
PC-relative addresses. Bit[1] of the PC value reads as 0 in this case, so that the base
address for the calculation is always word-aligned.

• you can use PC in 16-bit Thumb ADD{cond} Rd, Rd, Rm instructions, where both registers
cannot be PC. However, the following 16-bit Thumb instructions are deprecated in
ARMv6T2 and above:
— ADD{cond} PC, SP, PC

— ADD{cond} SP, SP, PC.

In most of these instructions, you cannot use SP (R13) for Rd, or any operand. Except that:

• You can use SP for Rn in ADD and SUB instructions

• ADD{cond} SP, SP, SP is permitted but is deprecated in ARMv6T2 and above

• ADD{S}{cond} SP, SP, Rm{,shift} and SUB{S}{cond} SP, SP, Rm{,shift} are permitted if
shift is omitted or LSL #1, LSL #2, or LSL #3.

Use of PC and SP in ARM instructions

You cannot use PC for Rd or any operand in any data processing instruction that has a
register-controlled shift.

With the exception of ADD and SUB, use of PC for any operand, in instructions without
register-controlled shift, is deprecated.

In SUB instructions without register-controlled shift, use of PC is deprecated except for the
following cases:
• Use of PC for Rd
• Use of PC for Rn in the instruction SUB{cond} Rd, Rn, #Constant.

In ADD instructions without register-controlled shift, use of PC is deprecated except for the
following cases:
• Use of PC for Rd in instructions that do not add SP to a register
• Use of PC for Rn and use of PC for Rm in instructions that add two registers other than SP
• Use of PC for Rn in the instruction ADD{cond} Rd, Rn, #Constant.

If you use PC (R15) as Rn or Rm, the value used is the address of the instruction plus 8.

If you use PC as Rd:
• Execution branches to the address corresponding to the result.
• If you use the S suffix, see the SUBS pc,lr instruction.

You can use SP for Rn in ADD and SUB instructions, however, ADDS PC, SP, #Constant and SUBS
PC, SP, #Constant are deprecated.

You can use SP in ADD (register) and SUB (register) if Rn is SP and shift is omitted or LSL #1, LSL
#2, or LSL #3.

Other uses of SP in these ARM instructions are deprecated.

Note
 The deprecation of SP and PC in ARM instructions is only in ARMv6T2 and above.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-51
ID061811 Non-Confidential

ARM and Thumb Instructions
Condition flags

If S is specified, these instructions update the N, Z, C and V flags according to the result.

16-bit instructions

The following forms of these instructions are available in Thumb code, and are 16-bit
instructions:

ADDS Rd, Rn, #imm imm range 0-7. Rd and Rn must both be Lo registers.

ADDS Rd, Rn, Rm Rd, Rn and Rm must all be Lo registers.

ADD Rd, Rd, Rm ARMv6 and earlier: either Rd or Rm, or both, must be a Hi register.
ARMv6T2 and above: this restriction does not apply.

ADDS Rd, Rd, #imm imm range 0-255. Rd must be a Lo register.

ADCS Rd, Rd, Rm Rd, Rn and Rm must all be Lo registers.

ADD SP, SP, #imm imm range 0-508, word aligned.

ADD Rd, SP, #imm imm range 0-1020, word aligned. Rd must be a Lo register.

ADD Rd, pc, #imm imm range 0-1020, word aligned. Rd must be a Lo register. Bits[1:0] of the
PC are read as 0 in this instruction.

SUBS Rd, Rn, Rm Rd, Rn and Rm must all be Lo registers.

SUBS Rd, Rn, #imm imm range 0-7. Rd and Rn both Lo registers.

SUBS Rd, Rd, #imm imm range 0-255. Rd must be a Lo register.

SBCS Rd, Rd, Rm Rd, Rn and Rm must all be Lo registers.

SUB SP, SP, #imm imm range 0-508, word aligned.

RSBS Rd, Rn, #0 Rd and Rn both Lo registers.

Examples

 ADD r2, r1, r3
 SUBS r8, r6, #240 ; sets the flags on the result
 RSB r4, r4, #1280 ; subtracts contents of R4 from 1280
 ADCHI r11, r0, r3 ; only executed if C flag set and Z
 ; flag clear
 RSCSLE r0,r5,r0,LSL r4 ; conditional, flags set

Incorrect example

 RSCSLE r0,pc,r0,LSL r4 ; PC not permitted with register
 ; controlled shift

Multiword arithmetic examples

These two instructions add a 64-bit integer contained in R2 and R3 to another 64-bit integer
contained in R0 and R1, and place the result in R4 and R5.

 ADDS r4, r0, r2 ; adding the least significant words
 ADC r5, r1, r3 ; adding the most significant words

These instructions subtract one 96-bit integer from another:
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-52
ID061811 Non-Confidential

ARM and Thumb Instructions
 SUBS r3, r6, r9
 SBCS r4, r7, r10
 SBC r5, r8, r11

For clarity, the above examples use consecutive registers for multiword values. There is no
requirement to do this. The following, for example, is perfectly valid:

 SUBS r6, r6, r9
 SBCS r9, r2, r1
 SBC r2, r8, r11

See also

Concepts:
• Flexible second operand (Operand2) on page 3-45
• Instruction substitution on page 3-45.

Reference:
• Parallel add and subtract on page 3-102
• SUBS pc, lr on page 3-54
• ADR (PC-relative) on page 3-24
• ADR (register-relative) on page 3-26
• ADRL pseudo-instruction on page 3-155
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-53
ID061811 Non-Confidential

ARM and Thumb Instructions
3.4.6 SUBS pc, lr

Exception return, without popping anything from the stack.

Syntax

SUBS{cond} pc, lr, #imm ; ARM and Thumb code

MOVS{cond} pc, lr ; ARM and Thumb code

op1S{cond} pc, Rn, #imm ; ARM code only and is deprecated

op1S{cond} pc, Rn, Rm {, shift} ; ARM code only and is deprecated

op2S{cond} pc, #imm ; ARM code only and is deprecated

op2S{cond} pc, Rm {, shift} ; ARM code only and is deprecated

where:

op1 is one of ADC, ADD, AND, BIC, EOR, ORN, ORR, RSB, RSC, SBC, and SUB.

op2 is one of MOV and MVN.

cond is an optional condition code.

imm is an immediate value. In Thumb code, it is limited to the range 0-255. In ARM
code, it is a flexible second operand.

Rn is the first operand register. ARM deprecates the use of any register except LR.

Rm is the optionally shifted second or only operand register.

shift is an optional condition code.

Usage

SUBS pc, lr, #imm subtracts a value from the link register and loads the PC with the result, then
copies the SPSR to the CPSR.

You can use SUBS pc, lr, #imm to return from an exception if there is no return state on the stack.
The value of #imm depends on the exception to return from.

Notes

SUBS pc, lr, #imm writes an address to the PC. The alignment of this address must be correct
for the instruction set in use after the exception return:

• For a return to ARM, the address written to the PC must be word-aligned.

• For a return to Thumb, the address written to the PC must be halfword-aligned.

• For a return to Jazelle, there are no alignment restrictions on the address written to the PC.

The results of breaking these rules are unpredictable. However, no special precautions are
required in software, if the instructions are used to return after a valid exception entry
mechanism.

In Thumb, only SUBS{cond} pc, lr, #imm is a valid instruction. MOVS pc, lr is a synonym of SUBS
pc, lr, #0. Other instructions are undefined.

In ARM, only SUBS{cond} pc, lr, #imm and MOVS{cond} pc, lr are valid instructions. Other
instructions are deprecated in ARMv6T2 and above.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-54
ID061811 Non-Confidential

ARM and Thumb Instructions
Caution
 Do not use these instructions in User mode or System mode. The effect of such an instruction is
unpredictable, but the assembler cannot warn you at assembly time.

Architectures

This ARM instruction is available in all versions of the ARM architecture.

This 32-bit Thumb instruction is available in ARMv6T2 and above, except the ARMv7-M
architecture.

There is no 16-bit Thumb version of this instruction.

See also

Concepts:
• Flexible second operand (Operand2) on page 3-45.

Reference:
• ADD, SUB, RSB, ADC, SBC, and RSC on page 3-50
• AND, ORR, EOR, BIC, and ORN on page 3-56
• MOV and MVN on page 3-61
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-55
ID061811 Non-Confidential

ARM and Thumb Instructions
3.4.7 AND, ORR, EOR, BIC, and ORN

Logical AND, OR, Exclusive OR, Bit Clear, and OR NOT.

Syntax

op{S}{cond} Rd, Rn, Operand2

where:

op is one of:
AND logical AND.
ORR logical OR.
EOR logical Exclusive OR.
BIC logical AND NOT.
ORN logical OR NOT (Thumb only).

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation.

cond is an optional condition code.

Rd is the destination register.

Rn is the register holding the first operand.

Operand2 is a flexible second operand.

Usage

The AND, EOR, and ORR instructions perform bitwise AND, Exclusive OR, and OR operations on
the values in Rn and Operand2.

The BIC (Bit Clear) instruction performs an AND operation on the bits in Rn with the
complements of the corresponding bits in the value of Operand2.

The ORN Thumb instruction performs an OR operation on the bits in Rn with the complements of
the corresponding bits in the value of Operand2.

In certain circumstances, the assembler can substitute BIC for AND, AND for BIC, ORN for ORR, or ORR
for ORN. Be aware of this when reading disassembly listings.

Use of PC in Thumb-2 instructions

You cannot use PC (R15) for Rd or any operand in any of these instructions.

Use of PC and SP in ARM instructions

You can use PC and SP in these ARM instructions but they are deprecated in ARMv6T2 and
above.

If you use PC as Rn, the value used is the address of the instruction plus 8.

If you use PC as Rd:
• Execution branches to the address corresponding to the result.
• If you use the S suffix, see the SUBS pc,lr instruction.

You cannot use PC for any operand in any data processing instruction that has a
register-controlled shift.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-56
ID061811 Non-Confidential

ARM and Thumb Instructions
Condition flags

If S is specified, these instructions:
• update the N and Z flags according to the result
• can update the C flag during the calculation of Operand2
• do not affect the V flag.

16-bit instructions

The following forms of these instructions are available in Thumb code, and are 16-bit
instructions:

ANDS Rd, Rd, Rm Rd and Rm must both be Lo registers.

EORS Rd, Rd, Rm Rd and Rm must both be Lo registers.

ORRS Rd, Rd, Rm Rd and Rm must both be Lo registers.

BICS Rd, Rd, Rm Rd and Rm must both be Lo registers.

In the first three cases, it does not matter if you specify OPS Rd, Rm, Rd. The instruction is the
same.

Examples

 AND r9,r2,#0xFF00
 ORREQ r2,r0,r5
 EORS r0,r0,r3,ROR r6
 ANDS r9, r8, #0x19
 EORS r7, r11, #0x18181818
 BIC r0, r1, #0xab
 ORN r7, r11, lr, ROR #4
 ORNS r7, r11, lr, ASR #32

Incorrect example

 EORS r0,pc,r3,ROR r6 ; PC not permitted with register
 ; controlled shift

See also

Concepts:
• Flexible second operand (Operand2) on page 3-45
• Instruction substitution on page 3-45.

Reference:
• SUBS pc, lr on page 3-54
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-57
ID061811 Non-Confidential

ARM and Thumb Instructions
3.4.8 CLZ

Count Leading Zeros.

Syntax

CLZ{cond} Rd, Rm

where:
cond is an optional condition code.
Rd is the destination register.
Rm is the operand register.

Usage

The CLZ instruction counts the number of leading zeros in the value in Rm and returns the result
in Rd. The result value is 32 if no bits are set in the source register, and zero if bit 31 is set.

Register restrictions

You cannot use PC for any operand.

You can use SP in these ARM instructions but this is deprecated in ARMv6T2 and above.

You cannot use SP in Thumb instructions.

Condition flags

This instruction does not change the flags.

Architectures

This ARM instruction is available in ARMv5T and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above.

There is no 16-bit Thumb version of this instruction.

Examples

 CLZ r4,r9
 CLZNE r2,r3

Use the CLZ Thumb instruction followed by a left shift of Rm by the resulting Rd value to
normalize the value of register Rm. Use MOVS, rather than MOV, to flag the case where Rm is zero:

CLZ r5, r9
MOVS r9, r9, LSL r5

See also

Reference:
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-58
ID061811 Non-Confidential

ARM and Thumb Instructions
3.4.9 CMP and CMN

Compare and Compare Negative.

Syntax

CMP{cond} Rn, Operand2

CMN{cond} Rn, Operand2

where:

cond is an optional condition code.

Rn is the ARM register holding the first operand.

Operand2 is a flexible second operand.

Usage

These instructions compare the value in a register with Operand2. They update the condition
flags on the result, but do not place the result in any register.

The CMP instruction subtracts the value of Operand2 from the value in Rn. This is the same as a
SUBS instruction, except that the result is discarded.

The CMN instruction adds the value of Operand2 to the value in Rn. This is the same as an ADDS
instruction, except that the result is discarded.

In certain circumstances, the assembler can substitute CMN for CMP, or CMP for CMN. Be aware of
this when reading disassembly listings.

Use of PC in ARM and Thumb instructions

You cannot use PC for any operand in any data processing instruction that has a
register-controlled shift.

You can use PC (R15) in these ARM instructions without register controlled shift but this is
deprecated in ARMv6T2 and above.

If you use PC as Rn in ARM instructions, the value used is the address of the instruction plus 8.

You cannot use PC for any operand in these Thumb instructions.

Use of SP in ARM and Thumb instructions

You can use SP for Rn in ARM and Thumb instructions.

You can use SP for Rm in ARM instructions but this is deprecated in ARMv6T2 and above.

You can use SP for Rm in a 16-bit Thumb CMP Rn, Rm instruction but this is deprecated in
ARMv6T2 and above. Other use of SP for Rm is not permitted in Thumb.

Condition flags

These instructions update the N, Z, C and V flags according to the result.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-59
ID061811 Non-Confidential

ARM and Thumb Instructions
16-bit instructions

The following forms of these instructions are available in Thumb code, and are 16-bit
instructions:

CMP Rn, Rm Lo register restriction does not apply.

CMN Rn, Rm Rn and Rm must both be Lo registers.

CMP Rn, #imm Rn must be a Lo register. imm range 0-255.

Examples

 CMP r2, r9
 CMN r0, #6400
 CMPGT sp, r7, LSL #2

Incorrect example

 CMP r2, pc, ASR r0 ; PC not permitted with register-controlled shift

See also

Concepts:
• Flexible second operand (Operand2) on page 3-45
• Instruction substitution on page 3-45.

Reference:
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-60
ID061811 Non-Confidential

ARM and Thumb Instructions
3.4.10 MOV and MVN

Move and Move Not.

Syntax

MOV{S}{cond} Rd, Operand2

MOV{cond} Rd, #imm16

MVN{S}{cond} Rd, Operand2

where:

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation.

cond is an optional condition code.

Rd is the destination register.

Operand2 is a flexible second operand.

imm16 is any value in the range 0-65535.

Usage

The MOV instruction copies the value of Operand2 into Rd.

The MVN instruction takes the value of Operand2, performs a bitwise logical NOT operation on the
value, and places the result into Rd.

In certain circumstances, the assembler can substitute MVN for MOV, or MOV for MVN. Be aware of
this when reading disassembly listings.

Use of PC and SP in 32-bit Thumb MOV and MVN

You cannot use PC (R15) for Rd, or in Operand2, in 32-bit Thumb MOV or MVN instructions. With the
following exceptions, you cannot use SP (R13) for Rd, or in Operand2:
• MOV{cond}.W Rd, SP, where Rd is not SP
• MOV{cond}.W SP, Rm, where Rm is not SP.

Use of PC and SP in 16-bit Thumb

You can use PC or SP in 16-bit Thumb MOV{cond} Rd, Rm instructions but these instructions in
which both Rd and Rm are SP or PC are deprecated in ARMv6T2 and above.

You cannot use PC or SP in any other MOV{S} or MVN{S} 16-bit Thumb instructions.

Use of PC and SP in ARM MOV and MVN

You cannot use PC for Rd or any operand in any data processing instruction that has a
register-controlled shift.

In instructions without register-controlled shift, use of PC is deprecated except the following
cases:
• MOVS PC, LR

• MOV PC, Rm when Rm is not PC or SP
• MOV Rd, PC when Rd is not PC or SP.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-61
ID061811 Non-Confidential

ARM and Thumb Instructions
You can use SP for Rd or Rm. But these are deprecated except the following cases:
• MOV SP, Rm when Rm is not PC or SP
• MOV Rd, SP when Rd is not PC or SP.

Note
 • You cannot use PC for Rd in MOV Rd, #imm16 if the #imm16 value is not a permitted Operand2

value. You can use PC in forms with Operand2 without register-controlled shift.

• The deprecation of PC and SP in ARM instructions only apply to ARMv6T2 and above.

If you use PC as Rm, the value used is the address of the instruction plus 8.

If you use PC as Rd:

• Execution branches to the address corresponding to the result.

• If you use the S suffix, see the SUBS pc,lr instruction.

Condition flags

If S is specified, these instructions:
• update the N and Z flags according to the result
• can update the C flag during the calculation of Operand2
• do not affect the V flag.

16-bit instructions

The following forms of these instructions are available in Thumb code, and are 16-bit
instructions:

MOVS Rd, #imm Rd must be a Lo register. imm range 0-255.

MOVS Rd, Rm Rd and Rm must both be Lo registers.

MOV Rd, Rm In architectures before ARMv6, either Rd or Rm, or both, must be a Hi
register. In ARMv6 and above, this restriction does not apply.

Architectures

The #imm16 form of the ARM instruction is available in ARMv6T2 and above. The other forms
of the ARM instruction are available in all versions of the ARM architecture.

These 32-bit Thumb instructions are available in ARMv6T2 and above.

These 16-bit Thumb instructions are available in all T variants of the ARM architecture.

Example

 MVNNE r11, #0xF000000B ; ARM only. This immediate value is not
; available in T2.

Incorrect example

 MVN pc,r3,ASR r0 ; PC not permitted with register-controlled shift
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-62
ID061811 Non-Confidential

ARM and Thumb Instructions
See also

Concepts:
• Flexible second operand (Operand2) on page 3-45
• Instruction substitution on page 3-45.

Reference:
• Condition codes on page 3-162
• SUBS pc, lr on page 3-54.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-63
ID061811 Non-Confidential

ARM and Thumb Instructions
3.4.11 MOVT

Move Top. Writes a 16-bit immediate value to the top halfword of a register, without affecting
the bottom halfword.

Syntax

MOVT{cond} Rd, #imm16

where:
cond is an optional condition code.
Rd is the destination register.
imm16 is a 16-bit immediate value.

Usage

MOVT writes imm16 to Rd[31:16]. The write does not affect Rd[15:0].

You can generate any 32-bit immediate with a MOV, MOVT instruction pair. The assembler
implements the MOV32 pseudo-instruction for convenient generation of this instruction pair.

Register restrictions

You cannot use PC in ARM or Thumb instructions.

You can use SP for Rd in ARM instructions but this is deprecated.

You cannot use SP in Thumb instructions.

Condition flags

This instruction does not change the flags.

Architectures

This ARM instruction is available in ARMv6T2 and above.

This 32-bit Thumb instruction is available in ARMv6T2 and above.

There is no 16-bit Thumb version of this instruction.

See also

Reference:
• MOV32 pseudo--instruction on page 3-157
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-64
ID061811 Non-Confidential

ARM and Thumb Instructions
3.4.12 TST and TEQ

Test bits and Test Equivalence.

Syntax

TST{cond} Rn, Operand2

TEQ{cond} Rn, Operand2

where:

cond is an optional condition code.

Rn is the ARM register holding the first operand.

Operand2 is a flexible second operand.

Usage

These instructions test the value in a register against Operand2. They update the condition flags
on the result, but do not place the result in any register.

The TST instruction performs a bitwise AND operation on the value in Rn and the value of
Operand2. This is the same as an ANDS instruction, except that the result is discarded.

The TEQ instruction performs a bitwise Exclusive OR operation on the value in Rn and the value
of Operand2. This is the same as a EORS instruction, except that the result is discarded.

Use the TEQ instruction to test if two values are equal, without affecting the V or C flags (as CMP
does).

TEQ is also useful for testing the sign of a value. After the comparison, the N flag is the logical
Exclusive OR of the sign bits of the two operands.

Register restrictions

In these Thumb instructions, you cannot use SP or PC for Rn or Operand2.

In these ARM instructions, use of SP or PC is deprecated in ARMv6T2 and above.

For ARM instructions:

• if you use PC (R15) as Rn, the value used is the address of the instruction plus 8

• you cannot use PC for any operand in any data processing instruction that has a
register-controlled shift.

Condition flags

These instructions:
• update the N and Z flags according to the result
• can update the C flag during the calculation of Operand2
• do not affect the V flag.

16-bit instructions

The following form of the TST instruction is available in Thumb code, and is a 16-bit instruction:

TST Rn, Rm Rn and Rm must both be Lo registers.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-65
ID061811 Non-Confidential

ARM and Thumb Instructions
Architectures

These ARM instructions are available in all architectures with ARM.

The TST Thumb instruction is available in all architectures with Thumb.

The TEQ Thumb instruction is available in ARMv6T2 and above.

Examples

 TST r0, #0x3F8
 TEQEQ r10, r9
 TSTNE r1, r5, ASR r1

Incorrect example

 TEQ pc, r1, ROR r0 ; PC not permitted with register
 ; controlled shift

See also

Concepts:
• Flexible second operand (Operand2) on page 3-45.

Reference:
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-66
ID061811 Non-Confidential

ARM and Thumb Instructions
3.4.13 SEL

Select bytes from each operand according to the state of the APSR GE flags.

Syntax

SEL{cond} {Rd}, Rn, Rm

where:
cond is an optional condition code.
Rd is the destination register.
Rn is the register holding the first operand.
Rm is the register holding the second operand.

Operation

The SEL instruction selects bytes from Rn or Rm according to the APSR GE flags:
• if GE[0] is set, Rd[7:0] come from Rn[7:0], otherwise from Rm[7:0]
• if GE[1] is set, Rd[15:8] come from Rn[15:8], otherwise from Rm[15:8]
• if GE[2] is set, Rd[23:16] come from Rn[23:16], otherwise from Rm[23:16]
• if GE[3] is set, Rd[31:24] come from Rn[31:24], otherwise from Rm[31:24].

Usage

Use the SEL instruction after one of the signed parallel instructions. You can use this to select
maximum or minimum values in multiple byte or halfword data.

Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but these are deprecated in ARMv6T2 and above. You
cannot use SP in Thumb instructions.

Condition flags

This instruction does not change the flags.

Architectures

This ARM instruction is available in ARMv6 and above.

These 32-bit Thumb instructions are available in ARMv6T2 and above. For the ARMv7-M
architecture, they are only available in an ARMv7E-M implementation.

There is no 16-bit Thumb version of this instruction.

Examples

 SEL r0, r4, r5
 SELLT r4, r0, r4

The following instruction sequence sets each byte in R4 equal to the unsigned minimum of the
corresponding bytes of R1 and R2:

 USUB8 r4, r1, r2
 SEL r4, r2, r1
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-67
ID061811 Non-Confidential

ARM and Thumb Instructions
See also

Reference:
• Parallel add and subtract on page 3-102
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-68
ID061811 Non-Confidential

ARM and Thumb Instructions
3.4.14 REV, REV16, REVSH, and RBIT

Reverse bytes or bits within words or halfwords.

Syntax

op{cond} Rd, Rn

where:

op is any one of the following:
REV Reverse byte order in a word.
REV16 Reverse byte order in each halfword independently.
REVSH Reverse byte order in the bottom halfword, and sign extend to 32 bits.
RBIT Reverse the bit order in a 32-bit word.

cond is an optional condition code.

Rd is the destination register.

Rn is the register holding the operand.

Usage

You can use these instructions to change endianness:

REV converts 32-bit big-endian data into little-endian data or 32-bit little-endian data
into big-endian data.

REV16 converts 16-bit big-endian data into little-endian data or 16-bit little-endian data
into big-endian data.

REVSH converts either:
• 16-bit signed big-endian data into 32-bit signed little-endian data
• 16-bit signed little-endian data into 32-bit signed big-endian data.

Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but these are deprecated in ARMv6T2 and above. You
cannot use SP in Thumb instructions.

Condition flags

These instructions do not change the flags.

16-bit instructions

The following forms of these instructions are available in Thumb code, and are 16-bit
instructions:

REV Rd, Rm Rd and Rm must both be Lo registers.

REV16 Rd, Rm Rd and Rm must both be Lo registers.

REVSH Rd, Rm Rd and Rm must both be Lo registers.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-69
ID061811 Non-Confidential

ARM and Thumb Instructions
Architectures

Other than RBIT, these ARM instructions are available in ARMv6 and above.

The RBIT ARM instruction is available in ARMv6T2 and above.

These 32-bit Thumb instructions are available in ARMv6T2 and above.

These 16-bit Thumb instructions are available in ARMv6 and above.

Examples

 REV r3, r7
 REV16 r0, r0
 REVSH r0, r5 ; Reverse Signed Halfword
 REVHS r3, r7 ; Reverse with Higher or Same condition
 RBIT r7, r8

See also

Reference:
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-70
ID061811 Non-Confidential

ARM and Thumb Instructions
3.4.15 ASR, LSL, LSR, ROR, and RRX

Arithmetic Shift Right, Logical Shift Left, Logical Shift Right, Rotate Right, and Rotate Right
with Extend.

These instructions are the preferred synonyms for MOV instructions with shifted register
operands.

Syntax

op{S}{cond} Rd, Rm, Rs

op{S}{cond} Rd, Rm, #sh

RRX{S}{cond} Rd, Rm

where:

op is one of ASR, LSL, LSR, or ROR.

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation.

Rd is the destination register.

Rm is the register holding the first operand. This operand is shifted right.

Rs is a register holding a shift value to apply to the value in Rm. Only the least
significant byte is used.

sh is a constant shift. The range of values permitted depends on the instruction:
ASR permitted shifts 1-32
LSL permitted shifts 0-31
LSR permitted shifts 1-32
ROR permitted shifts 1-31.

Usage

ASR provides the signed value of the contents of a register divided by a power of two. It copies
the sign bit into vacated bit positions on the left.

LSL provides the value of a register multiplied by a power of two. LSR provides the unsigned
value of a register divided by a variable power of two. Both instructions insert zeros into the
vacated bit positions.

ROR provides the value of the contents of a register rotated by a value. The bits that are rotated
off the right end are inserted into the vacated bit positions on the left.

RRX provides the value of the contents of a register shifted right one bit. The old carry flag is
shifted into bit[31]. If the S suffix is present, the old bit[0] is placed in the carry flag.

Restrictions in Thumb code

Thumb instructions must not use PC or SP.

Use of SP and PC in ARM ASR, LSL, LSR, ROR, and RRX instructions

You can use SP in these ARM instructions but these are deprecated in ARMv6T2 and above.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-71
ID061811 Non-Confidential

ARM and Thumb Instructions
You cannot use PC in instructions with the op{S}{cond} Rd, Rm, Rs syntax. You can use PC for
Rd and Rm in the other syntaxes, but these are deprecated in ARMv6T2 and above.

If you use PC as Rm, the value used is the address of the instruction plus 8.

If you use PC as Rd:

• Execution branches to the address corresponding to the result.

• If you use the S suffix, the SPSR of the current mode is copied to the CPSR. You can use
this to return from exceptions.

Note
 The ARM instructions opS{cond} pc,Rm,#sh and RRXS{cond} pc,Rm always disassemble to

the preferred form MOVS{cond} pc,Rm{,shift}.

Caution
 Do not use the S suffix when using PC as Rd in User mode or System mode. The effect of such
an instruction is unpredictable, but the assembler cannot warn you at assembly time.

You cannot use PC for Rd or any operand in any of these instructions if they have a
register-controlled shift.

Condition flags

If S is specified, these instructions update the N and Z flags according to the result.

The C flag is unaffected if the shift value is 0. Otherwise, the C flag is updated to the last bit
shifted out.

16-bit instructions

The following forms of these instructions are available in Thumb code, and are 16-bit
instructions:

ASRS Rd, Rm, #sh Rd and Rm must both be Lo registers.

ASRS Rd, Rd, Rs Rd and Rs must both be Lo registers.

LSLS Rd, Rm, #sh Rd and Rm must both be Lo registers.

LSLS Rd, Rd, Rs Rd and Rs must both be Lo registers.

LSRS Rd, Rm, #sh Rd and Rm must both be Lo registers.

LSRS Rd, Rd, Rs Rd and Rs must both be Lo registers.

RORS Rd, Rd, Rs Rd and Rs must both be Lo registers.

Architectures

These ARM instructions are available in all architectures.

These 32-bit Thumb instructions are available in ARMv6T2 and above.

These 16-bit Thumb instructions are available in ARMv4T and above.

There is no 16-bit Thumb RRX instruction.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-72
ID061811 Non-Confidential

ARM and Thumb Instructions
Examples

 ASR r7, r8, r9
LSLS r1, r2, r3

 LSR r4, r5, r6
 ROR r4, r5, r6

See also

Reference:
• MOV and MVN on page 3-61
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-73
ID061811 Non-Confidential

ARM and Thumb Instructions
3.4.16 SDIV and UDIV

Signed and Unsigned Divide.

Syntax

SDIV{cond} {Rd}, Rn, Rm

UDIV{cond} {Rd}, Rn, Rm

where:

cond is an optional condition code.

Rd is the destination register.

Rn is the register holding the value to be divided.

Rm is a register holding the divisor.

Register restrictions

PC or SP cannot be used for Rd, Rn or Rm.

Architectures

These 32-bit Thumb instructions are available in ARMv7-R and ARMv7-M only.

There are no ARM or 16-bit Thumb SDIV and UDIV instructions.

See also

Reference:
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-74
ID061811 Non-Confidential

ARM and Thumb Instructions
3.5 Multiply instructions
This section contains the following subsections:

• MUL, MLA, and MLS on page 3-76
Multiply, Multiply Accumulate, and Multiply Subtract (32-bit by 32-bit, bottom 32-bit
result).

• UMULL, UMLAL, SMULL, and SMLAL on page 3-78
Unsigned and signed Long Multiply and Multiply Accumulate (32-bit by 32-bit, 64-bit
result or 64-bit accumulator).

• SMULxy and SMLAxy on page 3-80
Signed Multiply and Signed Multiply Accumulate (16-bit by 16-bit, 32-bit result).

• SMULWy and SMLAWy on page 3-82
Signed Multiply and Signed Multiply Accumulate(32-bit by 16-bit, top 32-bit result).

• SMLALxy on page 3-83
Signed Multiply Accumulate (16-bit by 16-bit, 64-bit accumulate).

• SMUAD{X} and SMUSD{X} on page 3-85
Dual 16-bit Signed Multiply with Addition or Subtraction of products.

• SMMUL, SMMLA, and SMMLS on page 3-87
Multiply, Multiply Accumulate, and Multiply Subtract (32-bit by 32-bit, top 32-bit result).

• SMLAD and SMLSD on page 3-89
Dual 16-bit Signed Multiply, 32-bit Accumulation of Sum or Difference of 32-bit
products.

• SMLALD and SMLSLD on page 3-91
Dual 16-bit Signed Multiply, 64-bit Accumulation of Sum or Difference of 32-bit
products.

• UMAAL on page 3-93
Unsigned Multiply Accumulate Accumulate Long.

• MIA, MIAPH, and MIAxy on page 3-94
Multiplies with Internal Accumulate (XScale coprocessor 0 instructions).
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-75
ID061811 Non-Confidential

ARM and Thumb Instructions
3.5.1 MUL, MLA, and MLS

Multiply, Multiply-Accumulate, and Multiply-Subtract, with signed or unsigned 32-bit
operands, giving the least significant 32 bits of the result.

Syntax

MUL{S}{cond} {Rd}, Rn, Rm

MLA{S}{cond} Rd, Rn, Rm, Ra

MLS{cond} Rd, Rn, Rm, Ra

where:

cond is an optional condition code.

S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation.

Rd is the destination register.

Rn, Rm are registers holding the values to be multiplied.

Ra is a register holding the value to be added or subtracted from.

Usage

The MUL instruction multiplies the values from Rn and Rm, and places the least significant 32 bits
of the result in Rd.

The MLA instruction multiplies the values from Rn and Rm, adds the value from Ra, and places the
least significant 32 bits of the result in Rd.

The MLS instruction multiplies the values from Rn and Rm, subtracts the result from the value from
Ra, and places the least significant 32 bits of the final result in Rd.

Register restrictions

For the MUL and MLA instructions, Rn must be different from Rd in architectures before ARMv6.

You cannot use PC for any register.

You can use SP in ARM instructions but these are deprecated in ARMv6T2 and above. You
cannot use SP in Thumb instructions.

Condition flags

If S is specified, the MUL and MLA instructions:
• update the N and Z flags according to the result
• corrupt the C and V flag in ARMv4
• do not affect the C or V flag in ARMv5T and above.

Thumb instructions

The following form of the MUL instruction is available in Thumb code, and is a 16-bit instruction:

MULS Rd, Rn, Rd Rd and Rn must both be Lo registers.

There are no other Thumb multiply instructions that can update the condition code flags.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-76
ID061811 Non-Confidential

ARM and Thumb Instructions
Architectures

The MUL and MLA ARM instructions are available in all versions of the ARM architecture.

The MLS ARM instruction is available in ARMv6T2 and above.

These 32-bit Thumb instructions are available in ARMv6T2 and above.

The MULS 16-bit Thumb instruction is available in all T variants of the ARM architecture.

Examples

 MUL r10, r2, r5
 MLA r10, r2, r1, r5
 MULS r0, r2, r2
 MULLT r2, r3, r2
 MLS r4, r5, r6, r7

See also

Reference:
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-77
ID061811 Non-Confidential

ARM and Thumb Instructions
3.5.2 UMULL, UMLAL, SMULL, and SMLAL

Signed and Unsigned Long Multiply, with optional Accumulate, with 32-bit operands, and
64-bit result and accumulator.

Syntax

Op{S}{cond} RdLo, RdHi, Rn, Rm

where:

Op is one of UMULL, UMLAL, SMULL, or SMLAL.

S is an optional suffix available in ARM state only. If S is specified, the condition
code flags are updated on the result of the operation.

cond is an optional condition code.

RdLo, RdHi are the destination registers. For UMLAL and SMLAL they also hold the accumulating
value. RdLo and RdHi must be different registers

Rn, Rm are ARM registers holding the operands.

Usage

The UMULL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies
these integers and places the least significant 32 bits of the result in RdLo, and the most
significant 32 bits of the result in RdHi.

The UMLAL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies
these integers, and adds the 64-bit result to the 64-bit unsigned integer contained in RdHi and
RdLo.

The SMULL instruction interprets the values from Rn and Rm as two’s complement signed integers.
It multiplies these integers and places the least significant 32 bits of the result in RdLo, and the
most significant 32 bits of the result in RdHi.

The SMLAL instruction interprets the values from Rn and Rm as two’s complement signed integers.
It multiplies these integers, and adds the 64-bit result to the 64-bit signed integer contained in
RdHi and RdLo.

Register restrictions

Rn must be different from RdLo and RdHi in architectures before ARMv6.

You cannot use PC for any register.

You can use SP in ARM instructions but these are deprecated in ARMv6T2 and above. You
cannot use SP in Thumb instructions.

Condition flags

If S is specified, these instructions:
• update the N and Z flags according to the result
• do not affect the C or V flags.

Architectures

These ARM instructions are available in all versions of the ARM architecture.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-78
ID061811 Non-Confidential

ARM and Thumb Instructions
These 32-bit Thumb instructions are available in ARMv6T2 and above.

There are no 16-bit Thumb versions of these instructions.

Examples

 UMULL r0, r4, r5, r6
 UMLALS r4, r5, r3, r8

See also

Reference:
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-79
ID061811 Non-Confidential

ARM and Thumb Instructions
3.5.3 SMULxy and SMLAxy

Signed Multiply and Multiply Accumulate, with 16-bit operands and a 32-bit result and
accumulator.

Syntax

SMUL<x><y>{cond} {Rd}, Rn, Rm

SMLA<x><y>{cond} Rd, Rn, Rm, Ra

where:

<x> is either B or T. B means use the bottom half (bits [15:0]) of Rn, T means use the top
half (bits [31:16]) of Rn.

<y> is either B or T. B means use the bottom half (bits [15:0]) of Rm, T means use the top
half (bits [31:16]) of Rm.

cond is an optional condition code.

Rd is the destination register.

Rn, Rm are the registers holding the values to be multiplied.

Ra is the register holding the value to be added.

Usage

SMULxy multiplies the 16-bit signed integers from the selected halves of Rn and Rm, and places the
32-bit result in Rd.

SMLAxy multiplies the 16-bit signed integers from the selected halves of Rn and Rm, adds the 32-bit
result to the 32-bit value in Ra, and places the result in Rd.

Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but these are deprecated in ARMv6T2 and above. You
cannot use SP in Thumb instructions.

Condition flags

These instructions do not affect the N, Z, C, or V flags.

If overflow occurs in the accumulation, SMLAxy sets the Q flag. To read the state of the Q flag,
use an MRS instruction.

Note
 SMLAxy never clears the Q flag. To clear the Q flag, use an MSR instruction.

Architectures

These ARM instructions are available in ARMv6 and above, and E variants of ARMv5T.

These 32-bit Thumb instructions are available in ARMv6T2 and above. For the ARMv7-M
architecture, they are only available in an ARMv7E-M implementation.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-80
ID061811 Non-Confidential

ARM and Thumb Instructions
There are no 16-bit Thumb versions of these instructions.

Examples

 SMULTBEQ r8, r7, r9
 SMLABBNE r0, r2, r1, r10
 SMLABT r0, r0, r3, r5

See also

Reference:
• MRS on page 3-136
• MSR on page 3-138
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-81
ID061811 Non-Confidential

ARM and Thumb Instructions
3.5.4 SMULWy and SMLAWy

Signed Multiply Wide and Signed Multiply-Accumulate Wide, with one 32-bit and one 16-bit
operand, providing the top 32-bits of the result.

Syntax

SMULW<y>{cond} {Rd}, Rn, Rm

SMLAW<y>{cond} Rd, Rn, Rm, Ra

where:

<y> is either B or T. B means use the bottom half (bits [15:0]) of Rm, T means use the top
half (bits [31:16]) of Rm.

cond is an optional condition code.

Rd is the destination register.

Rn, Rm are the registers holding the values to be multiplied.

Ra is the register holding the value to be added.

Usage

SMULWy multiplies the signed integer from the selected half of Rm by the signed integer from Rn,
and places the upper 32-bits of the 48-bit result in Rd.

SMLAWy multiplies the signed integer from the selected half of Rm by the signed integer from Rn,
adds the 32-bit result to the 32-bit value in Ra, and places the result in Rd.

Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but these are deprecated in ARMv6T2 and above. You
cannot use SP in Thumb instructions.

Condition flags

These instructions do not affect the N, Z, C, or V flags.

If overflow occurs in the accumulation, SMLAWy sets the Q flag.

Architectures

These ARM instructions are available in ARMv6 and above, and E variants of ARMv5T.

These 32-bit Thumb instructions are available in ARMv6T2 and above. For the ARMv7-M
architecture, they are only available in an ARMv7E-M implementation.

There are no 16-bit Thumb versions of these instructions.

See also

Reference:
• MRS on page 3-136
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-82
ID061811 Non-Confidential

ARM and Thumb Instructions
3.5.5 SMLALxy

Signed Multiply-Accumulate with 16-bit operands and a 64-bit accumulator.

Syntax

SMLAL<x><y>{cond} RdLo, RdHi, Rn, Rm

where:

<x> is either B or T. B means use the bottom half (bits [15:0]) of Rn, T means use the top
half (bits [31:16]) of Rn.

<y> is either B or T. B means use the bottom half (bits [15:0]) of Rm, T means use the top
half (bits [31:16]) of Rm.

cond is an optional condition code.

RdLo, RdHi are the destination registers. They also hold the accumulate value. RdHi and RdLo
must be different registers.

Rn, Rm are the registers holding the values to be multiplied.

Usage

SMLALxy multiplies the signed integer from the selected half of Rm by the signed integer from the
selected half of Rn, and adds the 32-bit result to the 64-bit value in RdHi and RdLo.

Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but these are deprecated in ARMv6T2 and above. You
cannot use SP in Thumb instructions.

Condition flags

This instruction does not change the flags.

Note
 SMLALxy cannot raise an exception. If overflow occurs on this instruction, the result wraps round
without any warning.

Architectures

This ARM instruction is available in ARMv6 and above, and E variants of ARMv5T.

These 32-bit Thumb instructions are available in ARMv6T2 and above. For the ARMv7-M
architecture, they are only available in an ARMv7E-M implementation.

There is no 16-bit Thumb version of this instruction.

Examples

 SMLALTB r2, r3, r7, r1
 SMLALBTVS r0, r1, r9, r2
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-83
ID061811 Non-Confidential

ARM and Thumb Instructions
See also

Reference:
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-84
ID061811 Non-Confidential

ARM and Thumb Instructions
3.5.6 SMUAD{X} and SMUSD{X}

Dual 16-bit Signed Multiply with Addition or Subtraction of products, and optional exchange
of operand halves.

Syntax

op{X}{cond} {Rd}, Rn, Rm

where:

op is one of:
SMUAD Dual multiply, add products.
SMUSD Dual multiply, subtract products.

X is an optional parameter. If X is present, the most and least significant halfwords
of the second operand are exchanged before the multiplications occur.

cond is an optional condition code.

Rd is the destination register.

Rn, Rm are the registers holding the operands.

Usage

SMUAD multiplies the bottom halfword of Rn with the bottom halfword of Rm, and the top halfword
of Rn with the top halfword of Rm. It then adds the products and stores the sum to Rd.

SMUSD multiplies the bottom halfword of Rn with the bottom halfword of Rm, and the top halfword
of Rn with the top halfword of Rm. It then subtracts the second product from the first, and stores
the difference to Rd.

Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but these are deprecated in ARMv6T2 and above. You
cannot use SP in Thumb instructions.

Condition flags

The SMUAD instruction sets the Q flag if the addition overflows.

Architectures

These ARM instructions are available in ARMv6 and above.

These 32-bit Thumb instructions are available in ARMv6T2 and above. For the ARMv7-M
architecture, they are only available in an ARMv7E-M implementation.

There are no 16-bit Thumb versions of these instructions.

Examples

 SMUAD r2, r3, r2
 SMUSDXNE r0, r1, r2
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-85
ID061811 Non-Confidential

ARM and Thumb Instructions
See also

Reference:
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-86
ID061811 Non-Confidential

ARM and Thumb Instructions
3.5.7 SMMUL, SMMLA, and SMMLS

Signed Most significant word Multiply, Signed Most significant word Multiply with
Accumulation, and Signed Most significant word Multiply with Subtraction. These instructions
have 32-bit operands and produce only the most significant 32-bits of the result.

Syntax

SMMUL{R}{cond} {Rd}, Rn, Rm

SMMLA{R}{cond} Rd, Rn, Rm, Ra

SMMLS{R}{cond} Rd, Rn, Rm, Ra

where:

R is an optional parameter. If R is present, the result is rounded, otherwise it is
truncated.

cond is an optional condition code.

Rd is the destination register.

Rn, Rm are the registers holding the operands.

Ra is a register holding the value to be added or subtracted from.

Operation

SMMUL multiplies the values from Rn and Rm, and stores the most significant 32 bits of the 64-bit
result to Rd.

SMMLA multiplies the values from Rn and Rm, adds the value in Ra to the most significant 32 bits of
the product, and stores the result in Rd.

SMMLS multiplies the values from Rn and Rm, subtracts the product from the value in Ra shifted left
by 32 bits, and stores the most significant 32 bits of the result in Rd.

If the optional R parameter is specified, 0x80000000 is added before extracting the most
significant 32 bits. This has the effect of rounding the result.

Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but these are deprecated in ARMv6T2 and above. You
cannot use SP in Thumb instructions.

Condition flags

These instructions do not change the flags.

Architectures

These ARM instructions are available in ARMv6 and above.

These 32-bit Thumb instructions are available in ARMv6T2 and above. For the ARMv7-M
architecture, they are only available in an ARMv7E-M implementation.

There are no 16-bit Thumb versions of these instructions.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-87
ID061811 Non-Confidential

ARM and Thumb Instructions
Examples

 SMMULGE r6, r4, r3
 SMMULR r2, r2, r2

See also

Reference:
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-88
ID061811 Non-Confidential

ARM and Thumb Instructions
3.5.8 SMLAD and SMLSD

Dual 16-bit Signed Multiply with Addition or Subtraction of products and 32-bit accumulation.

Syntax

op{X}{cond} Rd, Rn, Rm, Ra

where:

op is one of:
SMLAD Dual multiply, accumulate sum of products.
SMLSD Dual multiply, accumulate difference of products.

cond is an optional condition code.

X is an optional parameter. If X is present, the most and least significant halfwords
of the second operand are exchanged before the multiplications occur.

Rd is the destination register.

Rn, Rm are the registers holding the operands.

Ra is the register holding the accumulate operand.

Operation

SMLAD multiplies the bottom halfword of Rn with the bottom halfword of Rm, and the top halfword
of Rn with the top halfword of Rm. It then adds both products to the value in Ra and stores the sum
to Rd.

SMLSD multiplies the bottom halfword of Rn with the bottom halfword of Rm, and the top halfword
of Rn with the top halfword of Rm. It then subtracts the second product from the first, adds the
difference to the value in Ra, and stores the result to Rd.

Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but these are deprecated in ARMv6T2 and above. You
cannot use SP in Thumb instructions.

Condition flags

These instructions do not change the flags.

Architectures

These ARM instructions are available in ARMv6 and above.

These 32-bit Thumb instructions are available in ARMv6T2 and above. For the ARMv7-M
architecture, they are only available in an ARMv7E-M implementation.

There are no 16-bit Thumb versions of these instructions.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-89
ID061811 Non-Confidential

ARM and Thumb Instructions
Examples

 SMLSD r1, r2, r0, r7
 SMLSDX r11, r10, r2, r3
 SMLADLT r1, r2, r4, r1

See also

Reference:
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-90
ID061811 Non-Confidential

ARM and Thumb Instructions
3.5.9 SMLALD and SMLSLD

Dual 16-bit Signed Multiply with Addition or Subtraction of products and 64-bit Accumulation.

Syntax

op{X}{cond} RdLo, RdHi, Rn, Rm

where:

op is one of:
SMLALD Dual multiply, accumulate sum of products.
SMLSLD Dual multiply, accumulate difference of products.

X is an optional parameter. If X is present, the most and least significant halfwords
of the second operand are exchanged before the multiplications occur.

cond is an optional condition code.

RdLo, RdHi are the destination registers for the 64-bit result. They also hold the 64-bit
accumulate operand. RdHi and RdLo must be different registers.

Rn, Rm are the registers holding the operands.

Operation

SMLALD multiplies the bottom halfword of Rn with the bottom halfword of Rm, and the top
halfword of Rn with the top halfword of Rm. It then adds both products to the value in RdLo, RdHi
and stores the sum to RdLo, RdHi.

SMLSLD multiplies the bottom halfword of Rn with the bottom halfword of Rm, and the top
halfword of Rn with the top halfword of Rm. It then subtracts the second product from the first,
adds the difference to the value in RdLo, RdHi, and stores the result to RdLo, RdHi.

Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but these are deprecated in ARMv6T2 and above. You
cannot use SP in Thumb instructions.

Condition flags

These instructions do not change the flags.

Architectures

These ARM instructions are available in ARMv6 and above.

These 32-bit Thumb instructions are available in ARMv6T2 and above. For the ARMv7-M
architecture, they are only available in an ARMv7E-M implementation.

There are no 16-bit Thumb versions of these instructions.

Examples

 SMLALD r10, r11, r5, r1
 SMLSLD r3, r0, r5, r1
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-91
ID061811 Non-Confidential

ARM and Thumb Instructions
See also

Reference:
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-92
ID061811 Non-Confidential

ARM and Thumb Instructions
3.5.10 UMAAL

Unsigned Multiply Accumulate Accumulate Long.

Syntax

UMAAL{cond} RdLo, RdHi, Rn, Rm

where:

cond is an optional condition code.

RdLo, RdHi are the destination registers for the 64-bit result. They also hold the two 32-bit
accumulate operands. RdLo and RdHi must be different registers.

Rn, Rm are the registers holding the multiply operands.

Operation

The UMAAL instruction multiplies the 32-bit values in Rn and Rm, adds the two 32-bit values in RdHi
and RdLo, and stores the 64-bit result to RdLo, RdHi.

Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but these are deprecated in ARMv6T2 and above. You
cannot use SP in Thumb instructions.

Condition flags

This instruction does not change the flags.

Architectures

This ARM instruction is available in ARMv6 and above.

These 32-bit Thumb instructions are available in ARMv6T2 and above. For the ARMv7-M
architecture, they are only available in an ARMv7E-M implementation.

There is no 16-bit Thumb version of this instruction.

Examples

 UMAAL r8, r9, r2, r3
 UMAALGE r2, r0, r5, r3

See also

Reference:
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-93
ID061811 Non-Confidential

ARM and Thumb Instructions
3.5.11 MIA, MIAPH, and MIAxy

Multiply with internal accumulate (32-bit by 32-bit, 40-bit accumulate).

Multiply with internal accumulate, packed halfwords (16-bit by 16-bit twice, 40-bit
accumulate).

Multiply with internal accumulate (16-bit by 16-bit, 40-bit accumulate).

Syntax

MIA{cond} Acc, Rn, Rm

MIAPH{cond} Acc, Rn, Rm

MIA<x><y>{cond} Acc, Rn, Rm

where:

cond is an optional condition code.

Acc is the internal accumulator. The standard name is accx, where x is an integer in the
range 0 to n. The value of n depends on the processor. It is 0 in current processors.

Rn, Rm are the ARM registers holding the values to be multiplied.
Rn and Rm must not be PC.

<x><y> is one of: BB, BT, TB, TT.

Usage

The MIA instruction multiplies the signed integers from Rn and Rm, and adds the result to the 40-bit
value in Acc.

The MIAPH instruction multiplies the signed integers from the bottom halves of Rn and Rm,
multiplies the signed integers from the upper halves of Rn and Rm, and adds the two 32-bit results
to the 40-bit value in Acc.

The MIAxy instruction multiplies the signed integer from the selected half of Rs by the signed
integer from the selected half of Rm, and adds the 32-bit result to the 40-bit value in Acc. <x> ==
B means use the bottom half (bits [15:0]) of Rn, <x> == T means use the top half (bits [31:16]) of
Rn. <y> == B means use the bottom half (bits [15:0]) of Rm, <y> == T means use the top half (bits
[31:16]) of Rm.

Condition flags

These instructions do not change the flags.

Note
 These instructions cannot raise an exception. If overflow occurs on these instructions, the result
wraps round without any warning.

Architectures

These ARM coprocessor 0 instructions are only available in XScale processors.

There are no Thumb versions of these instructions.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-94
ID061811 Non-Confidential

ARM and Thumb Instructions
Examples

 MIA acc0,r5,r0
 MIALE acc0,r1,r9
 MIAPH acc0,r0,r7
 MIAPHNE acc0,r11,r10
 MIABB acc0,r8,r9
 MIABT acc0,r8,r8
 MIATB acc0,r5,r3
 MIATT acc0,r0,r6
 MIABTGT acc0,r2,r5

See also

Reference:
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-95
ID061811 Non-Confidential

ARM and Thumb Instructions
3.6 Saturating instructions
This section contains:
• Saturating arithmetic
• QADD, QSUB, QDADD, and QDSUB on page 3-97
• SSAT and USAT on page 3-99.

Some of the parallel instructions are also saturating.

3.6.1 Saturating arithmetic

These operations are saturating (SAT). This means that, for some value of 2n that depends on the
instruction:

• for a signed saturating operation, if the full result would be less than –2n, the result
returned is –2n

• for an unsigned saturating operation, if the full result would be negative, the result
returned is zero

• if the full result would be greater than 2n – 1, the result returned is 2n – 1.

When any of these things occurs, it is called saturation. Some instructions set the Q flag when
saturation occurs.

Note
 Saturating instructions do not clear the Q flag when saturation does not occur. To clear the Q
flag, use an MSR instruction.

The Q flag can also be set by two other instructions, but these instructions do not saturate.

See also

Reference:
• MSR on page 3-138
• SMULxy and SMLAxy on page 3-80
• SMULWy and SMLAWy on page 3-82
• Parallel instructions on page 3-101.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-96
ID061811 Non-Confidential

ARM and Thumb Instructions
3.6.2 QADD, QSUB, QDADD, and QDSUB

Signed Add, Subtract, Double and Add, Double and Subtract, saturating the result to the signed
range –231 ≤ x ≤ 231–1.

Syntax

op{cond} {Rd}, Rm, Rn

where:

op is one of QADD, QSUB, QDADD, or QDSUB.

cond is an optional condition code.

Rd is the destination register.

Rm, Rn are the registers holding the operands.

Usage

The QADD instruction adds the values in Rm and Rn.

The QSUB instruction subtracts the value in Rn from the value in Rm.

The QDADD instruction calculates SAT(Rm + SAT(Rn * 2)). Saturation can occur on the doubling
operation, on the addition, or on both. If saturation occurs on the doubling but not on the
addition, the Q flag is set but the final result is unsaturated.

The QDSUB instruction calculates SAT(Rm - SAT(Rn * 2)). Saturation can occur on the doubling
operation, on the subtraction, or on both. If saturation occurs on the doubling but not on the
subtraction, the Q flag is set but the final result is unsaturated.

Note
 All values are treated as two’s complement signed integers by these instructions.

Register restrictions

You cannot use PC for any operand.

You can use SP in ARM instructions but these are deprecated in ARMv6T2 and above. You
cannot use SP in Thumb instructions.

Condition flags

If saturation occurs, these instructions set the Q flag. To read the state of the Q flag, use an MRS
instruction.

Architectures

These ARM instructions are available in ARMv6 and above, and E variants of ARMv5T.

These 32-bit Thumb instructions are available in ARMv6T2 and above. For the ARMv7-M
architecture, they are only available in an ARMv7E-M implementation.

There are no 16-bit Thumb versions of these instructions.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-97
ID061811 Non-Confidential

ARM and Thumb Instructions
Examples

 QADD r0, r1, r9
 QDSUBLT r9, r0, r1

See also

Reference:
• Parallel add and subtract on page 3-102
• MRS on page 3-136
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-98
ID061811 Non-Confidential

ARM and Thumb Instructions
3.6.3 SSAT and USAT

Signed Saturate and Unsigned Saturate to any bit position, with optional shift before saturating.

SSAT saturates a signed value to a signed range.

USAT saturates a signed value to an unsigned range.

Syntax

op{cond} Rd, #sat, Rm{, shift}

where:

op is either SSAT or USAT.

cond is an optional condition code.

Rd is the destination register.

sat specifies the bit position to saturate to, in the range 1 to 32 for SSAT, and 0 to 31
for USAT.

Rm is the register containing the operand.

shift is an optional shift. It must be one of the following:
ASR #n where n is in the range 1-32 (ARM) or 1-31 (Thumb)
LSL #n where n is in the range 0-31.

Operation

The SSAT instruction applies the specified shift, then saturates to the signed range –2sat–1 ≤ x ≤
2sat–1 –1.

The USAT instruction applies the specified shift, then saturates to the unsigned range 0 ≤ x ≤ 2sat
– 1.

Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but these are deprecated in ARMv6T2 and above. You
cannot use SP in Thumb instructions.

Condition flags

If saturation occurs, these instructions set the Q flag. To read the state of the Q flag, use an MRS
instruction.

Architectures

These ARM instructions are available in ARMv6 and above.

These 32-bit Thumb instructions are available in ARMv6T2 and above.

There are no 16-bit Thumb versions of these instructions.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-99
ID061811 Non-Confidential

ARM and Thumb Instructions
Examples

 SSAT r7, #16, r7, LSL #4
 USATNE r0, #7, r5

See also

Reference:
• SSAT16 and USAT16 on page 3-106
• MRS on page 3-136
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-100
ID061811 Non-Confidential

ARM and Thumb Instructions
3.7 Parallel instructions
This section contains:

• Parallel add and subtract on page 3-102
Various byte-wise and halfword-wise additions and subtractions.

• USAD8 and USADA8 on page 3-104
Unsigned sum of absolute differences, and accumulate unsigned sum of absolute
differences.

• SSAT16 and USAT16 on page 3-106
Parallel halfword saturating instructions.

There are also parallel unpacking instructions such as SXT, SXTA, UXT, and UXTA.

See also

Reference:
• SXT, SXTA, UXT, and UXTA on page 3-111
• Packing and unpacking instructions on page 3-108.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-101
ID061811 Non-Confidential

ARM and Thumb Instructions
3.7.1 Parallel add and subtract

Various byte-wise and halfword-wise additions and subtractions.

Syntax

<prefix>op{cond} {Rd}, Rn, Rm

where:

<prefix> is one of:
S Signed arithmetic modulo 28 or 216. Sets APSR GE flags.
Q Signed saturating arithmetic.
SH Signed arithmetic, halving the results.
U Unsigned arithmetic modulo 28 or 216. Sets APSR GE flags.
UQ Unsigned saturating arithmetic.
UH Unsigned arithmetic, halving the results.

op is one of:
ADD8 Byte-wise Addition
ADD16 Halfword-wise Addition.
SUB8 Byte-wise Subtraction.
SUB16 Halfword-wise Subtraction.
ASX Exchange halfwords of Rm, then Add top halfwords and Subtract

bottom halfwords.
SAX Exchange halfwords of Rm, then Subtract top halfwords and Add

bottom halfwords.

cond is an optional condition code.

Rd is the destination register.

Rm, Rn are the ARM registers holding the operands.

Operation

These instructions perform arithmetic operations separately on the bytes or halfwords of the
operands. They perform two or four additions or subtractions, or one addition and one
subtraction.

You can choose various kinds of arithmetic:

• Signed or unsigned arithmetic modulo 28 or 216. This sets the APSR GE flags.

• Signed saturating arithmetic to one of the signed ranges –215 ≤ x ≤ 215 –1 or –27 ≤ x ≤ 27
–1. The Q flag is not affected even if these operations saturate.

• Unsigned saturating arithmetic to one of the unsigned ranges 0 ≤ x ≤ 216 –1 or 0 ≤ x ≤ 28
–1. The Q flag is not affected even if these operations saturate.

• Signed or unsigned arithmetic, halving the results. This cannot cause overflow.

Register restrictions

You cannot use PC for any register.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-102
ID061811 Non-Confidential

ARM and Thumb Instructions
You can use SP in ARM instructions but these are deprecated in ARMv6T2 and above. You
cannot use SP in Thumb instructions.

Condition flags

These instructions do not affect the N, Z, C, V, or Q flags.

The Q, SH, UQ and UH prefix variants of these instructions do not change the flags.

The S and U prefix variants of these instructions set the GE flags in the APSR as follows:

• For byte-wise operations, the GE flags are used in the same way as the C (Carry) flag for
32-bit SUB and ADD instructions:
GE[0] for bits[7:0] of the result
GE[1] for bits[15:8] of the result
GE[2] for bits[23:16] of the result
GE[3] for bits[31:24] of the result.

• For halfword-wise operations, the GE flags are used in the same way as the C (Carry) flag
for normal word-wise SUB and ADD instructions:
GE[1:0] for bits[15:0] of the result
GE[3:2] for bits[31:16] of the result.

You can use these flags to control a following SEL instruction.

Note
 For halfword-wise operations, GE[1:0] are set or cleared together, and GE[3:2] are set or cleared
together.

Architectures

These ARM instructions are available in ARMv6 and above.

These 32-bit Thumb instructions are available in ARMv6T2 and above. For the ARMv7-M
architecture, they are only available in an ARMv7E-M implementation.

There are no 16-bit Thumb versions of these instructions.

Examples

 SHADD8 r4, r3, r9
 USAXNE r0, r0, r2

Incorrect examples

 QHADD r2, r9, r3 ; No such instruction, should be QHADD8 or QHADD16
 SAX r10, r8, r5 ; Must have a prefix.

See also

Reference:
• SEL on page 3-67
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-103
ID061811 Non-Confidential

ARM and Thumb Instructions
3.7.2 USAD8 and USADA8

Unsigned Sum of Absolute Differences, and Accumulate unsigned sum of absolute differences.

Syntax

USAD8{cond} {Rd}, Rn, Rm

USADA8{cond} Rd, Rn, Rm, Ra

where:

cond is an optional condition code.

Rd is the destination register.

Rn is the register holding the first operand.

Rm is the register holding the second operand.

Ra is the register holding the accumulate operand.

Operation

The USAD8 instruction finds the four differences between the unsigned values in corresponding
bytes of Rn and Rm. It adds the absolute values of the four differences, and saves the result to Rd.

The USADA8 instruction adds the absolute values of the four differences to the value in Ra, and
saves the result to Rd.

Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but these are deprecated in ARMv6T2 and above. You
cannot use SP in Thumb instructions.

Condition flags

These instructions do not alter any flags.

Architectures

These ARM instructions are available in ARMv6 and above.

These 32-bit Thumb instructions are available in ARMv6T2 and above. For the ARMv7-M
architecture, they are only available in an ARMv7E-M implementation.

There are no 16-bit Thumb versions of these instructions.

Examples

 USAD8 r2, r4, r6
 USADA8 r0, r3, r5, r2
 USADA8VS r0, r4, r0, r1

Incorrect examples

 USADA8 r2, r4, r6 ; USADA8 requires four registers
 USADA16 r0, r4, r0, r1 ; no such instruction
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-104
ID061811 Non-Confidential

ARM and Thumb Instructions
See also

Reference:
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-105
ID061811 Non-Confidential

ARM and Thumb Instructions
3.7.3 SSAT16 and USAT16

Parallel halfword Saturating instructions.

SSAT16 saturates a signed value to a signed range.

USAT16 saturates a signed value to an unsigned range.

Syntax

op{cond} Rd, #sat, Rn

where:

op is one of:
SSAT16 Signed saturation.
USAT16 Unsigned saturation.

cond is an optional condition code.

Rd is the destination register.

sat specifies the bit position to saturate to, and is in the range 1 to 16 for SSAT16, or 0
to 15 for USAT16.

Rn is the register holding the operand.

Operation

Halfword-wise signed and unsigned saturation to any bit position.

The SSAT16 instruction saturates each signed halfword to the signed range –2sat–1 ≤ x ≤ 2sat–1 –1.

The USAT16 instruction saturates each signed halfword to the unsigned range 0 ≤ x ≤ 2sat –1.

Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but these are deprecated in ARMv6T2 and above. You
cannot use SP in Thumb instructions.

Condition flags

If saturation occurs on either halfword, these instructions set the Q flag. To read the state of the
Q flag, use an MRS instruction.

Architectures

These ARM instructions are available in ARMv6 and above.

These 32-bit Thumb instructions are available in ARMv6T2 and above. For the ARMv7-M
architecture, they are only available in an ARMv7E-M implementation.

There are no 16-bit Thumb versions of these instructions.

Examples

 SSAT16 r7, #12, r7
 USAT16 r0, #7, r5
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-106
ID061811 Non-Confidential

ARM and Thumb Instructions
Incorrect examples

 SSAT16 r1, #16, r2, LSL #4 ; shifts not permitted with halfword saturations

See also

Reference:
• MRS on page 3-136
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-107
ID061811 Non-Confidential

ARM and Thumb Instructions
3.8 Packing and unpacking instructions
This section contains the following subsections:

• BFC and BFI on page 3-109
Bit Field Clear and Bit Field Insert.

• SBFX and UBFX on page 3-110
Signed or Unsigned Bit Field extract.

• SXT, SXTA, UXT, and UXTA on page 3-111
Sign Extend or Zero Extend instructions, with optional Add.

• PKHBT and PKHTB on page 3-113
Halfword Packing instructions.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-108
ID061811 Non-Confidential

ARM and Thumb Instructions
3.8.1 BFC and BFI

Bit Field Clear and Bit Field Insert. Clear adjacent bits in a register, or Insert adjacent bits from
one register into another.

Syntax

BFC{cond} Rd, #lsb, #width

BFI{cond} Rd, Rn, #lsb, #width

where:

cond is an optional condition code.

Rd is the destination register.

Rn is the source register.

lsb is the least significant bit that is to be cleared or copied.

width is the number of bits to be cleared or copied. width must not be 0, and (width+lsb)
must be less than 32.

BFC

width bits in Rd are cleared, starting at lsb. Other bits in Rd are unchanged.

BFI

width bits in Rd, starting at lsb, are replaced by width bits from Rn, starting at bit[0]. Other bits
in Rd are unchanged.

Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but these are deprecated in ARMv6T2 and above. You
cannot use SP in Thumb instructions.

Condition flags

These instructions do not change the flags.

Architectures

These ARM instructions are available in ARMv6T2 and above.

These 32-bit Thumb instructions are available in ARMv6T2 and above.

There are no 16-bit Thumb versions of these instructions.

See also

Reference:
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-109
ID061811 Non-Confidential

ARM and Thumb Instructions
3.8.2 SBFX and UBFX

Signed and Unsigned Bit Field Extract. Copies adjacent bits from one register into the least
significant bits of a second register, and sign extends or zero extends to 32 bits.

Syntax

op{cond} Rd, Rn, #lsb, #width

where:

op is either SBFX or UBFX.

cond is an optional condition code.

Rd is the destination register.

Rn is the source register.

lsb is the bit number of least significant bit in the bitfield, in the range 0 to 31.

width is the width of the bitfield, in the range 1 to (32–lsb).

Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but these are deprecated in ARMv6T2 and above. You
cannot use SP in Thumb instructions.

Condition flags

These instructions do not alter any flags.

Architectures

These ARM instructions are available in ARMv6T2 and above.

These 32-bit Thumb instructions are available in ARMv6T2 and above.

There are no 16-bit Thumb versions of these instructions.

See also

Reference:
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-110
ID061811 Non-Confidential

ARM and Thumb Instructions
3.8.3 SXT, SXTA, UXT, and UXTA

Sign extend, Sign extend with Add, Zero extend, and Zero extend with Add.

Syntax

SXT<extend>{cond} {Rd}, Rm {,rotation}

SXTA<extend>{cond} {Rd}, Rn, Rm {,rotation}

UXT<extend>{cond} {Rd}, Rm {,rotation}

UXTA<extend>{cond} {Rd}, Rn, Rm {,rotation}

where:

<extend> is one of:
B16 Extends two 8-bit values to two 16-bit values.
B Extends an 8-bit value to a 32-bit value.
H Extends a 16-bit value to a 32-bit value.

cond is an optional condition code.

Rd is the destination register.

Rn is the register holding the number to add (SXTA and UXTA only).

Rm is the register holding the value to extend.

rotation is one of:
ROR #8 Value from Rm is rotated right 8 bits.
ROR #16 Value from Rm is rotated right 16 bits.
ROR #24 Value from Rm is rotated right 24 bits.
If rotation is omitted, no rotation is performed.

Operation

These instructions do the following:

1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.

2. Do one of the following to the value obtained:
• Extract bits[7:0], sign or zero extend to 32 bits. If the instruction is extend and add,

add the value from Rn.
• Extract bits[15:0], sign or zero extend to 32 bits. If the instruction is extend and add,

add the value from Rn.
• Extract bits[23:16] and bits[7:0] and sign or zero extend them to 16 bits. If the

instruction is extend and add, add them to bits[31:16] and bits[15:0] respectively of
Rn to form bits[31:16] and bits[15:0] of the result.

Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but these are deprecated in ARMv6T2 and above. You
cannot use SP in Thumb instructions.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-111
ID061811 Non-Confidential

ARM and Thumb Instructions
Condition flags

These instructions do not change the flags.

16-bit instructions

The following forms of these instructions are available in Thumb code, and are 16-bit
instructions:

SXTB Rd, Rm Rd and Rm must both be Lo registers.

SXTH Rd, Rm Rd and Rm must both be Lo registers.

UXTB Rd, Rm Rd and Rm must both be Lo registers.

UXTH Rd, Rm Rd and Rm must both be Lo registers.

Architectures

These ARM instructions are available in ARMv6 and above.

These 32-bit Thumb instructions are available in ARMv6T2 and above. For the ARMv7-M
architecture, they are only available in an ARMv7E-M implementation.

These 16-bit Thumb instructions are available in ARMv6 and above.

Examples

 SXTH r3, r9, r4
 UXTAB16EQ r0, r0, r4, ROR #16

Incorrect examples

 SXTH r9, r3, r2, ROR #12 ; rotation must be by 0, 8, 16, or 24.

See also

Reference:
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-112
ID061811 Non-Confidential

ARM and Thumb Instructions
3.8.4 PKHBT and PKHTB

Halfword Packing instructions.

Combine a halfword from one register with a halfword from another register. One of the
operands can be shifted before extraction of the halfword.

Syntax

PKHBT{cond} {Rd}, Rn, Rm{, LSL #leftshift}

PKHTB{cond} {Rd}, Rn, Rm{, ASR #rightshift}

where:

PKHBT Combines bits[15:0] of Rn with bits[31:16] of the shifted value from Rm.

PKHTB Combines bits[31:16] of Rn with bits[15:0] of the shifted value from Rm.

cond is an optional condition code.

Rd is the destination register.

Rn is the register holding the first operand.

Rm is the register holding the first operand.

leftshift is in the range 0 to 31.

rightshift is in the range 1 to 32.

Register restrictions

You cannot use PC for any register.

You can use SP in ARM instructions but these are deprecated in ARMv6T2 and above. You
cannot use SP in Thumb instructions.

Condition flags

These instructions do not change the flags.

Architectures

These ARM instructions are available in ARMv6 and above.

These 32-bit Thumb instructions are available in ARMv6T2 and above. For the ARMv7-M
architecture, they are only available in an ARMv7E-M implementation.

There are no 16-bit Thumb versions of these instructions.

Examples

 PKHBT r0, r3, r5 ; combine the bottom halfword of R3 with
; the top halfword of R5

 PKHBT r0, r3, r5, LSL #16 ; combine the bottom halfword of R3 with
; the bottom halfword of R5

 PKHTB r0, r3, r5, ASR #16 ; combine the top halfword of R3 with
; the top halfword of R5

You can also scale the second operand by using different values of shift.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-113
ID061811 Non-Confidential

ARM and Thumb Instructions
Incorrect examples

 PKHBTEQ r4, r5, r1, ASR #8 ; ASR not permitted with PKHBT

See also

Reference:
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-114
ID061811 Non-Confidential

ARM and Thumb Instructions
3.9 Branch and control instructions
This section contains the following subsections:

• B, BL, BX, BLX, and BXJ on page 3-116
Branch, Branch with Link, Branch and exchange instruction set, Branch with Link and
exchange instruction set, Branch and change instruction set to Jazelle.

• IT on page 3-119
If-Then. IT makes up to four following instructions conditional, with either the same
condition, or some with one condition and others with the inverse condition. IT is
available only in Thumb-2.

• CBZ and CBNZ on page 3-122
Compare against zero and branch. These instructions are available only in Thumb-2.

• TBB and TBH on page 3-123
Table Branch Byte or Halfword. These instructions are available only in Thumb-2.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-115
ID061811 Non-Confidential

ARM and Thumb Instructions
3.9.1 B, BL, BX, BLX, and BXJ

Branch, Branch with Link, Branch and exchange instruction set, Branch with Link and
exchange instruction set, Branch and change to Jazelle state.

Syntax

op1{cond}{.W} label

op2{cond} Rm

where:

op1 is one of:
B Branch.
BL Branch with link.
BLX Branch with link, and exchange instruction set.

op2 is one of:
BX Branch and exchange instruction set.
BLX Branch with link, and exchange instruction set.
BXJ Branch, and change to Jazelle execution.

cond is an optional condition code. cond is not available on all forms of this instruction.

.W is an optional instruction width specifier to force the use of a 32-bit B instruction
in Thumb-2.

label is a PC-relative expression.

Rm is a register containing an address to branch to.

Operation

All these instructions cause a branch to label, or to the address contained in Rm. In addition:

• The BL and BLX instructions copy the address of the next instruction into LR (R14, the link
register).

• The BX and BLX instructions can change the processor state from ARM to Thumb, or from
Thumb to ARM.
BLX label always changes the state.
BX Rm and BLX Rm derive the target state from bit[0] of Rm:
— if bit[0] of Rm is 0, the processor changes to, or remains in, ARM state
— if bit[0] of Rm is 1, the processor changes to, or remains in, Thumb state.

• The BXJ instruction changes the processor state to Jazelle.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-116
ID061811 Non-Confidential

ARM and Thumb Instructions
Instruction availability and branch ranges

Table 3-9 shows the instructions that are available in ARM and Thumb state. Instructions that
are not shown in this table are not available. Notes in brackets show the first architecture version
where the instruction is available.

Extending branch ranges

Machine-level B and BL instructions have restricted ranges from the address of the current
instruction. However, you can use these instructions even if label is out of range. Often you do
not know where the linker places label. When necessary, the linker adds code to enable longer
branches. The added code is called a veneer.

B in Thumb

You can use the .W width specifier to force B to generate a 32-bit instruction in Thumb code.

B.W always generates a 32-bit instruction, even if the target could be reached using a 16-bit
instruction.

For forward references, B without .W always generates a 16-bit instruction in Thumb code, even
if that results in failure for a target that could be reached using a 32-bit Thumb instruction.

Table 3-9 Branch instruction availability and range

Instruction ARM 16-bit Thumb 32-bit Thumb

B label ±32MB (All) ±2KB (All T) ±16MBa (All T2)

B{cond} label ±32MB (All) –252 to +258 (All T) ±1MBa (All T2)

BL label ±32MB (All) ±4MB b (All T) ±16MB (All T2)

BL{cond} label ±32MB (All) - - -

BX Rm c Available (4T, 5) Available (All T) Use 16-bit (All T2)

BX{cond} Rm c Available (4T, 5) - - -

BLX label ±32MB (5) ±4MB b (5T) ±16MB (All T2 except
ARMv7-M)

BLX Rm Available (5) Available (5T) Use 16-bit (All T2)

BLX{cond} Rm Available (5) - - -

BXJ Rm Available (5J, 6) - Available (All T2 except
ARMv7-M)

BXJ{cond} Rm Available (5J, 6) - - -

a. Use .W to instruct the assembler to use this 32-bit instruction.
b. This is an instruction pair.
c. The assembler accepts BX{cond} Rm for code assembled for ARMv4 and converts it to MOV{cond} PC, Rm at link time, unless

objects targeted for ARMv4T are present.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-117
ID061811 Non-Confidential

ARM and Thumb Instructions
BX, BLX, and BXJ in Thumb-2EE

These instructions can be used as branches in Thumb-2EE code, but cannot be used to change
state. You cannot use the op{cond} label form of these instructions in Thumb-2EE. In the
register form, bit[0] of Rm must be 1, and execution continues at the target address in ThumbEE
state.

Note
 BXJ behaves like BX in Thumb-2EE.

Register restrictions

You can use PC for Rm in the ARM BX instruction, but this is deprecated in ARMv6T2 and above.
You cannot use PC in other ARM instructions.

You can use PC for Rm in the Thumb BX instruction. You cannot use PC in other Thumb
instructions.

You can use SP for Rm in these ARM instructions but these are deprecated in ARMv6T2 and
above.

You can use SP for Rm in the Thumb BX and BLX instructions, but these are deprecated. You cannot
use SP in the other Thumb instructions.

Condition flags

These instructions do not change the flags.

Architectures

See Table 3-9 on page 3-117 for details of availability of these instructions in each architecture.

Examples

 B loopA
 BLE ng+8
 BL subC
 BLLT rtX
 BEQ {PC}+4 ; #0x8004

See also

Concepts:
Using the Assembler:
• Register-relative and PC-relative expressions on page 8-7.
Using the Linker:
• Chapter 4 Image structure and generation.

Reference:
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-118
ID061811 Non-Confidential

ARM and Thumb Instructions
3.9.2 IT

The IT (If-Then) instruction makes up to four following instructions (the IT block) conditional.
The conditions can be all the same, or some of them can be the logical inverse of the others.

Syntax

IT{x{y{z}}} {cond}

where:
x specifies the condition switch for the second instruction in the IT block.
y specifies the condition switch for the third instruction in the IT block.
z specifies the condition switch for the fourth instruction in the IT block.
cond specifies the condition for the first instruction in the IT block.

The condition switch for the second, third and fourth instruction in the IT block can be either:
T Then. Applies the condition cond to the instruction.
E Else. Applies the inverse condition of cond to the instruction.

Usage

The instructions (including branches) in the IT block, except the BKPT instruction, must specify
the condition in the {cond} part of their syntax.

You do not need to write IT instructions in your code, because the assembler generates them for
you automatically according to the conditions specified on the following instructions. However,
if you do write IT instructions, the assembler validates the conditions specified in the IT
instructions against the conditions specified in the following instructions.

Writing the IT instructions ensures that you consider the placing of conditional instructions, and
the choice of conditions, in the design of your code.

When assembling to ARM code, the assembler performs the same checks, but does not generate
any IT instructions.

With the exception of CMP, CMN, and TST, the 16-bit instructions that normally affect the condition
code flags, do not affect them when used inside an IT block.

A BKPT instruction in an IT block is always executed, so it does not need a condition in the {cond}
part of its syntax. The IT block continues from the next instruction.

Note
 You can use an IT block for unconditional instructions by using the AL condition.

Conditional branches inside an IT block have a longer branch range than those outside the IT
block.

Restrictions

The following instructions are not permitted in an IT block:
• IT

• CBZ and CBNZ
• TBB and TBH
• CPS, CPSID and CPSIE
• SETEND.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-119
ID061811 Non-Confidential

ARM and Thumb Instructions
Other restrictions when using an IT block are:

• A branch or any instruction that modifies the PC is only permitted in an IT block if it is
the last instruction in the block.

• You cannot branch to any instruction in an IT block, unless when returning from an
exception handler.

• You cannot use any assembler directives in an IT block.

Note
 The assembler shows a diagnostic message when any of these instructions are used in an IT
block.

Condition flags

This instruction does not change the flags.

Exceptions

Exceptions can occur between an IT instruction and the corresponding IT block, or within an IT
block. This exception results in entry to the appropriate exception handler, with suitable return
information in LR and SPSR.

Instructions designed for use as exception returns can be used as normal to return from the
exception, and execution of the IT block resumes correctly. This is the only way that a
PC-modifying instruction can branch to an instruction in an IT block.

Architectures

This 16-bit Thumb instruction is available in ARMv6T2 and above.

In ARM code, IT is a pseudo-instruction that does not generate any code.

There is no 32-bit version of this instruction.

Example

 ITTE NE ; IT can be omitted
 ANDNE r0,r0,r1 ; 16-bit AND, not ANDS
 ADDSNE r2,r2,#1 ; 32-bit ADDS (16-bit ADDS does not set flags in IT block)
 MOVEQ r2,r3 ; 16-bit MOV

 ITT AL ; emit 2 non-flag setting 16-bit instructions
 ADDAL r0,r0,r1 ; 16-bit ADD, not ADDS
 SUBAL r2,r2,#1 ; 16-bit SUB, not SUB
 ADD r0,r0,r1 ; expands into 32-bit ADD, and is not in IT block

ITT EQ
MOVEQ r0,r1
BEQ dloop ; branch at end of IT block is permitted

ITT EQ
MOVEQ r0,r1
BKPT #1 ; BKPT always executes
ADDEQ r0,r0,#1
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-120
ID061811 Non-Confidential

ARM and Thumb Instructions
Incorrect example

 IT NE
 ADD r0,r0,r1 ; syntax error: no condition code used in IT block
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-121
ID061811 Non-Confidential

ARM and Thumb Instructions
3.9.3 CBZ and CBNZ

Compare and Branch on Zero, Compare and Branch on Non-Zero.

Syntax

CBZ Rn, label

CBNZ Rn, label

where:
Rn is the register holding the operand.
label is the branch destination.

Usage

You can use the CBZ or CBNZ instructions to avoid changing the condition code flags and to reduce
the number of instructions.

Except that it does not change the condition code flags, CBZ Rn, label is equivalent to:

 CMP Rn, #0
 BEQ label

Except that it does not change the condition code flags, CBNZ Rn, label is equivalent to:

 CMP Rn, #0
 BNE label

Restrictions

The branch destination must be within 4 to 130 bytes after the instruction and in the same
execution state.

These instructions must not be used inside an IT block.

Condition flags

These instructions do not change the flags.

Architectures

These 16-bit Thumb instructions are available in ARMv6T2 and above.

There are no ARM or 32-bit Thumb versions of these instructions.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-122
ID061811 Non-Confidential

ARM and Thumb Instructions
3.9.4 TBB and TBH

Table Branch Byte and Table Branch Halfword.

Syntax

TBB [Rn, Rm]

TBH [Rn, Rm, LSL #1]

where:

Rn is the base register. This contains the address of the table of branch lengths. Rn
must not be SP.
If PC is specified for Rn, the value used is the address of the instruction plus 4.

Rm is the index register. This contains an index into the table.
Rm must not be PC or SP.

Operation

These instructions cause a PC-relative forward branch using a table of single byte offsets (TBB)
or halfword offsets (TBH). Rn provides a pointer to the table, and Rm supplies an index into the
table. The branch length is twice the value of the byte (TBB) or the halfword (TBH) returned from
the table. The target of the branch table must be in the same execution state.

Notes

In Thumb-2EE, if the value in the base register is zero, execution branches to the NullCheck
handler at HandlerBase - 4.

Architectures

These 32-bit Thumb instructions are available in ARMv6T2 and above.

There are no ARM, or 16-bit Thumb, versions of these instructions.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-123
ID061811 Non-Confidential

ARM and Thumb Instructions
3.10 Coprocessor instructions
This section contains the following subsections:

• CDP and CDP2 on page 3-125
Coprocessor Data oPerations.

• MCR, MCR2, MCRR, and MCRR2 on page 3-126
Move to Coprocessor from ARM Register or Registers, possibly with coprocessor
operations.

• MRC, MRC2, MRRC and MRRC2 on page 3-127
Move to ARM Register or Registers from Coprocessor, possibly with coprocessor
operations.

• MSR on page 3-128
Move to system coprocessor from ARM register.

• MRS on page 3-129
Move to ARM register from system coprocessor.

• SYS on page 3-130
Execute system coprocessor instruction.

• LDC, LDC2, STC, and STC2 on page 3-131
Transfer data between memory and Coprocessor.

Note
 A coprocessor instruction causes an Undefined Instruction exception if the specified
coprocessor is not present, or if it is not enabled.

See also

Reference
• Chapter 4 VFP Programming
• Miscellaneous instructions on page 3-133.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-124
ID061811 Non-Confidential

ARM and Thumb Instructions
3.10.1 CDP and CDP2

Coprocessor data operations.

Syntax

op{cond} coproc, #opcode1, CRd, CRn, CRm{, #opcode2}

where:

op is either CDP or CDP2.

cond is an optional condition code. In ARM code, cond is not permitted for CDP2.

coproc is the name of the coprocessor the instruction is for. The standard name is
pn, where n is an integer in the range 0 to 15.

opcode1 is a 4-bit coprocessor-specific opcode.

opcode2 is an optional 3-bit coprocessor-specific opcode.

CRd, CRn, CRm are coprocessor registers.

Usage

The use of these instructions depends on the coprocessor. See the coprocessor documentation
for details.

Architectures

The CDP ARM instruction is available in all versions of the ARM architecture.

The CDP2 ARM instruction is available in ARMv5T and above.

These 32-bit Thumb instructions are available in ARMv6T2 and above.

There are no 16-bit Thumb versions of these instructions.

See also

Reference:
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-125
ID061811 Non-Confidential

ARM and Thumb Instructions
3.10.2 MCR, MCR2, MCRR, and MCRR2

Move to Coprocessor from ARM Register or Registers. Depending on the coprocessor, you
might be able to specify various operations in addition.

Syntax

op1{cond} coproc, #opcode1, Rt, CRn, CRm{, #opcode2}

op2{cond} coproc, #opcode3, Rt, Rt2, CRm

where:

op1 is either MCR or MCR2.

op2 is either MCRR or MCRR2.

cond is an optional condition code. In ARM code, cond is not permitted for MCR2 or
MCRR2.

coproc is the name of the coprocessor the instruction is for. The standard name is pn,
where n is an integer in the range 0 to 15.

opcode1 is a 3-bit coprocessor-specific opcode.

opcode2 is an optional 3-bit coprocessor-specific opcode.

opcode3 is a 4-bit coprocessor-specific opcode.

Rt, Rt2 are ARM source registers. Rt and Rt2 must not be PC.

CRn, CRm are coprocessor registers.

Usage

The use of these instructions depends on the coprocessor. See the coprocessor documentation
for details.

Architectures

The MCR ARM instruction is available in all versions of the ARM architecture.

The MCR2 ARM instruction is available in ARMv5T and above.

The MCRR ARM instruction is available in ARMv6 and above, and E variants of ARMv5T.

The MCRR2 ARM instruction is available in ARMv6 and above.

These 32-bit Thumb instructions are available in ARMv6T2 and above.

There are no 16-bit Thumb versions of these instructions.

See also

Reference:
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-126
ID061811 Non-Confidential

ARM and Thumb Instructions
3.10.3 MRC, MRC2, MRRC and MRRC2

Move to ARM Register or Registers from Coprocessor.

Depending on the coprocessor, you might be able to specify various operations in addition.

Syntax

op1{cond} coproc, #opcode1, Rt, CRn, CRm{, #opcode2}

op2{cond} coproc, #opcode3, Rt, Rt2, CRm

where:

op1 is either MRC or MRC2.

op2 is either MRRC or MRRC2.

cond is an optional condition code. In ARM code, cond is not permitted for MRC2 or
MRRC2.

coproc is the name of the coprocessor the instruction is for. The standard name is pn,
where n is an integer in the range 0 to 15.

opcode1 is a 3-bit coprocessor-specific opcode.

opcode2 is an optional 3-bit coprocessor-specific opcode.

opcode3 is a 4-bit coprocessor-specific opcode.

Rt, Rt2 are ARM destination registers. Rt and Rt2 must not be PC.
In MRC and MRC2, Rt can be APSR_nzcv. This means that the coprocessor executes an
instruction that changes the value of the condition code flags in the APSR.

CRn, CRm are coprocessor registers.

Usage

The use of these instructions depends on the coprocessor. See the coprocessor documentation
for details.

Architectures

The MRC ARM instruction is available in all versions of the ARM architecture.

The MRC2 ARM instruction is available in ARMv5T and above.

The MRRC ARM instruction is available in ARMv6 and above, and E variants of ARMv5T.

The MRRC2 ARM instruction is available in ARMv6 and above.

These 32-bit Thumb instructions are available in ARMv6T2 and above.

There are no 16-bit Thumb versions of these instructions.

See also

Reference:
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-127
ID061811 Non-Confidential

ARM and Thumb Instructions
3.10.4 MSR

Move to system coprocessor register from ARM register.

Syntax

MSR{cond} coproc_register, Rn

where:

cond is an optional condition code.

coproc_register

is the name of the coprocessor register.

Rn is the ARM source register. Rn must not be PC.

Usage

You can use this instruction to write to any CP14 or CP15 coprocessor writable register. A
complete list of the applicable coprocessor register names is in the ARMv7-AR Architecture
Reference Manual. For example:

MSR SCTLR, R1 ; writes the contents of R1 into the CP15 coprocessor register
; SCTLR

Architectures

This MSR ARM instruction is available in ARMv7-A and ARMv7-R.

This MSR 32-bit Thumb instruction is available in ARMv7-A and ARMv7-R.

There are no 16-bit Thumb versions of these instructions.

See also

Reference:
• SYS on page 3-130
• MRS on page 3-129
• MRS on page 3-136
• MSR on page 3-138
• Condition codes on page 3-162
• ARM Architecture Reference Manual,

http://infocenter.arm.com/help/topic/com.arm.doc.subset.arch.reference/index.html.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-128
ID061811 Non-Confidential

ARM and Thumb Instructions
3.10.5 MRS

Move to ARM register from system coprocessor register.

Syntax

MRS{cond} Rn, coproc_register

MRS{cond} APSR_nzcv, special_register

where:

cond is an optional condition code.

coproc_register

is the name of the coprocessor register.

special_register

is the name of the coprocessor register that can be written to APSR_nzcv. This is
only possible for the coprocessor register DBGDSCRint.

Rn is the ARM destination register. Rn must not be PC.

Usage

You can use this instruction to read CP14 or CP15 coprocessor registers, with the exception of
write-only registers. A complete list of the applicable coprocessor register names is in the
ARMv7-AR Architecture Reference Manual. For example:

MRS R1, SCTLR ; writes the contents of the CP15 coprocessor register SCTLR
; into R1

Architectures

This MRS ARM instruction is available in ARMv7-A and ARMv7-R.

This MRS 32-bit Thumb instruction is available in ARMv7-A and ARMv7-R.

There are no 16-bit Thumb versions of these instructions.

See also

Reference:
• Condition codes on page 3-162
• MSR on page 3-128
• MSR on page 3-138
• MRS on page 3-136
• ARM Architecture Reference Manual,

http://infocenter.arm.com/help/topic/com.arm.doc.subset.arch.reference/index.html.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-129
ID061811 Non-Confidential

ARM and Thumb Instructions
3.10.6 SYS

Execute system coprocessor instruction.

Syntax

SYS{cond} instruction{, Rn}

where:

cond is an optional condition code.

instruction

is the coprocessor instruction to execute.

Rn is an operand to the instruction. For instructions that take an argument, Rn is
compulsory. For instructions that do not take an argument, Rn is optional and if it
is not specified, R0 is used. Rn must not be PC.

Usage

You can use this instruction to execute special coprocessor instructions such as cache, branch
predictor, and TLB operations. The instructions operate by writing to special write-only
coprocessor registers. The instruction names are the same as the write-only coprocessor register
names and are listed in the ARMv7-AR Architecture Reference Manual. For example:

SYS ICIALLUIS ; invalidates all instruction caches Inner Shareable to Point
; of Unification and also flushes branch target cache.

Architectures

The SYS ARM instruction is available in ARMv7-A and ARMv7-R.

The SYS 32-bit Thumb instruction is available in ARMv7-A and ARMv7-R.

There are no 16-bit Thumb versions of these instructions.

See also

Reference:
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-130
ID061811 Non-Confidential

ARM and Thumb Instructions
3.10.7 LDC, LDC2, STC, and STC2

Transfer Data between memory and Coprocessor.

Syntax

op{L}{cond} coproc, CRd, [Rn]

op{L}{cond} coproc, CRd, [Rn, #{-}offset] ; offset addressing

op{L}{cond} coproc, CRd, [Rn, #{-}offset]! ; pre-index addressing

op{L}{cond} coproc, CRd, [Rn], #{-}offset ; post-index addressing

op{L}{cond} coproc, CRd, label

where:

op is one of LDC, LDC2, STC, or STC2.

cond is an optional condition code.
In ARM code, cond is not permitted for LDC2 or STC2.

L is an optional suffix specifying a long transfer.

coproc is the name of the coprocessor the instruction is for. The standard name is pn,
where n is an integer in the range 0 to 15.

CRd is the coprocessor register to load or store.

Rn is the register on which the memory address is based. If PC is specified, the value
used is the address of the current instruction plus eight.

- is an optional minus sign. If - is present, the offset is subtracted from Rn.
Otherwise, the offset is added to Rn.

offset is an expression evaluating to a multiple of 4, in the range 0 to 1020.

! is an optional suffix. If ! is present, the address including the offset is written back
into Rn.

label is a word-aligned PC-relative expression.
label must be within 1020 bytes of the current instruction.

Usage

The use of these instructions depends on the coprocessor. See the coprocessor documentation
for details.

In Thumb-2EE, if the value in the base register is zero, execution branches to the NullCheck
handler at HandlerBase - 4.

Architectures

LDC and STC are available in all versions of the ARM architecture.

LDC2 and STC2 are available in ARMv5T and above.

These 32-bit Thumb instructions are available in ARMv6T2 and above.

There are no 16-bit Thumb versions of these instructions.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-131
ID061811 Non-Confidential

ARM and Thumb Instructions
Register restrictions

You cannot use PC for Rn in the pre-index and post-index instructions. These are the forms that
write back to Rn.

You cannot use PC for Rn in Thumb STC and STC2 instructions.

ARM STC and STC2 instructions that use the label syntax, or where Rn is PC, are deprecated in
ARMv6T2 and above.

See also

Concepts:
Using the Assembler:
• Register-relative and PC-relative expressions on page 8-7.

Reference:
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-132
ID061811 Non-Confidential

ARM and Thumb Instructions
3.11 Miscellaneous instructions
This section contains the following subsections:

• BKPT on page 3-134
Breakpoint.

• SVC on page 3-135
Supervisor Call (formerly SWI).

• MRS on page 3-136
Move the contents of the CPSR or SPSR to a general-purpose register.

• MSR on page 3-138
Load specified fields of the CPSR or SPSR with an immediate value, or from the contents
of a general-purpose register.

• CPS on page 3-140
Change Processor State.

• SMC on page 3-141
Secure Monitor Call (formerly SMI).

• SETEND on page 3-142
Set the Endianness bit in the CPSR.

• NOP on page 3-143
No Operation.

• SEV, WFE, WFI, and YIELD on page 3-144
Set Event, Wait For Event, Wait for Interrupt, and Yield hint instructions.

• DBG on page 3-146
Debug.

• DMB, DSB, and ISB on page 3-147
Data Memory Barrier, Data Synchronization Barrier, and Instruction Synchronization
Barrier hint instructions.

• MAR and MRA on page 3-149
Transfer between two general-purpose registers and a 40-bit internal accumulator (XScale
coprocessor 0 instructions).
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-133
ID061811 Non-Confidential

ARM and Thumb Instructions
3.11.1 BKPT

Breakpoint.

Syntax

BKPT #imm

where:

imm is an expression evaluating to an integer in the range:
• 0-65535 (a 16-bit value) in an ARM instruction
• 0-255 (an 8-bit value) in a 16-bit Thumb instruction.

Usage

The BKPT instruction causes the processor to enter Debug state. Debug tools can use this to
investigate system state when the instruction at a particular address is reached.

In both ARM state and Thumb state, imm is ignored by the ARM hardware. However, a debugger
can use it to store additional information about the breakpoint.

BKPT is an unconditional instruction. It must not have a condition code in ARM code. In Thumb
code, the BKPT instruction does not need a condition code suffix because BKPT always executes
irrespective of its condition code suffix.

Architectures

This ARM instruction is available in ARMv5T and above.

This 16-bit Thumb instruction is available in ARMv5T and above.

There is no 32-bit Thumb version of this instruction.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-134
ID061811 Non-Confidential

ARM and Thumb Instructions
3.11.2 SVC

SuperVisor Call.

Syntax

SVC{cond} #imm

where:

cond is an optional condition code.

imm is an expression evaluating to an integer in the range:

• 0 to 224–1 (a 24-bit value) in an ARM instruction
• 0-255 (an 8-bit value) in a 16-bit Thumb instruction.

Usage

The SVC instruction causes an exception. This means that the processor mode changes to
Supervisor, the CPSR is saved to the Supervisor mode SPSR, and execution branches to the
SVC vector.

imm is ignored by the processor. However, it can be retrieved by the exception handler to
determine what service is being requested.

Note
 SVC was called SWI in earlier versions of the ARM assembly language. SWI instructions
disassemble to SVC, with a comment to say that this was formerly SWI.

Condition flags

This instruction does not change the flags.

Architectures

This ARM instruction is available in all versions of the ARM architecture.

This 16-bit Thumb instruction is available in all T variants of the ARM architecture.

There is no 32-bit Thumb version of this instruction.

See also

Reference:
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-135
ID061811 Non-Confidential

ARM and Thumb Instructions
3.11.3 MRS

Move the contents of a PSR to a general-purpose register.

Syntax

MRS{cond} Rd, psr

where:

cond is an optional condition code.

Rd is the destination register.

psr is one of:
APSR on any processor, in any mode.
CPSR deprecated synonym for APSR and for use in Debug state, on any

processor except ARMv7-M and ARMv6-M.
SPSR on any processor except ARMv7-M and ARMv6-M, in privileged

software execution only.
Mpsr on ARMv7-M and ARMv6-M processors only.

Mpsr can be any of: IPSR, EPSR, IEPSR, IAPSR, EAPSR, MSP, PSP, XPSR, PRIMASK, BASEPRI,
BASEPRI_MAX, FAULTMASK, or CONTROL.

Usage

Use MRS in combination with MSR as part of a read-modify-write sequence for updating a PSR,
for example to change processor mode, or to clear the Q flag.

In process swap code, the programmers’ model state of the process being swapped out must be
saved, including relevant PSR contents. Similarly, the state of the process being swapped in
must also be restored. These operations make use of MRS/store and load/MSR instruction
sequences.

SPSR

You must not attempt to access the SPSR when the processor is in User or System mode. This
is your responsibility. The assembler cannot warn you about this, because it has no information
about the processor mode at execution time.

If you attempt to access the SPSR when the processor is in User or System mode, the result is
unpredictable.

CPSR

The CPSR endianness bit (E) can be read in any privileged software execution.

The CPSR execution state bits, other than the E bit, can only be read when the processor is in
Debug state, halting debug-mode. Otherwise, the execution state bits in the CPSR read as zero.

The condition flags can be read in any mode on any processor. Use APSR if you are only
interested in accessing the condition code flags in User mode.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-136
ID061811 Non-Confidential

ARM and Thumb Instructions
Register restrictions

You cannot use PC in ARM instructions. You can use SP for Rd in ARM instructions but this is
deprecated in ARMv6T2 and above.

You cannot use PC or SP in Thumb instructions.

Condition flags

This instruction does not change the flags.

Architectures

This ARM instruction is available in all versions of the ARM architecture.

These 32-bit Thumb instructions are available in ARMv6T2 and above.

There is no 16-bit Thumb version of this instruction.

See also

Concepts
Using the Assembler:
• Current Program Status Register on page 3-18.

Reference:
• MSR on page 3-138
• MSR on page 3-128
• MRS on page 3-129
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-137
ID061811 Non-Confidential

ARM and Thumb Instructions
3.11.4 MSR

Load an immediate value, or the contents of a general-purpose register, into specified fields of
a Program Status Register (PSR).

Syntax

MSR{cond} APSR_flags, Rm

where:

cond is an optional condition code.

flags specifies the APSR flags to be moved. flags can be one or more of:
nzcvq ALU flags field mask, PSR[31:27] (User mode)
g SIMD GE flags field mask, PSR[19:16] (User mode).

Rm is the source register. Rm must not be PC.

Syntax (except ARMv7-M and ARMv6-M)

You can also use the following syntax on architectures other than ARMv7 and ARMv6M.

MSR{cond} APSR_flags, #constant

MSR{cond} psr_fields, #constant

MSR{cond} psr_fields, Rm

where:

cond is an optional condition code.

flags specifies the APSR flags to be moved. flags can be one or more of:
nzcvq ALU flags field mask, PSR[31:27] (User mode)
g SIMD GE flags field mask, PSR[19:16] (User mode).

constant is an expression evaluating to a numeric value. The value must correspond to an
8-bit pattern rotated by an even number of bits within a 32-bit word. Not available
in Thumb.

Rm is the source register. Rm must not be PC.

psr is one of:
CPSR for use in Debug state, also deprecated synonym for APSR
SPSR on any processor, in privileged software execution only.

fields specifies the SPSR or CPSR fields to be moved. fields can be one or more of:
c control field mask byte, PSR[7:0] (privileged software execution)
x extension field mask byte, PSR[15:8] (privileged software execution)
s status field mask byte, PSR[23:16] (privileged software execution)
f flags field mask byte, PSR[31:24] (privileged software execution).

Syntax (ARMv7-M and ARMv6-M only)

You can also use the following syntax on ARMv7 and ARMv6M.

MSR{cond} psr, Rm
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-138
ID061811 Non-Confidential

ARM and Thumb Instructions
where:

cond is an optional condition code.

Rm is the source register. Rm must not be PC.

psr can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, XPSR, MSP, PSP, PRIMASK,
BASEPRI, BASEPRI_MAX, FAULTMASK, or CONTROL.

Usage

In User mode:

• Use APSR to access condition flags, Q, or GE bits.

• Writes to unallocated, privileged or execution state bits in the CPSR are ignored. This
ensures that User mode programs cannot change to privileged software execution.

If you access the SPSR when in User or System mode, the result is unpredictable.

Register restrictions

You cannot use PC in ARM instructions. You can use SP for Rm in ARM instructions but these
are deprecated in ARMv6T2 and above.

You cannot use PC or SP in Thumb instructions.

Condition flags

This instruction updates the flags explicitly if the APSR_nzcvq or CPSR_f field is specified.

Architectures

This ARM instruction is available in all versions of the ARM architecture.

This 32-bit Thumb instruction is available in ARMv6T2 and above.

There is no 16-bit Thumb version of this instruction.

See also

Reference:
• MRS on page 3-136
• MRS on page 3-129
• MSR on page 3-128
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-139
ID061811 Non-Confidential

ARM and Thumb Instructions
3.11.5 CPS

CPS (Change Processor State) changes one or more of the mode, A, I, and F bits in the CPSR,
without changing the other CPSR bits.

CPS is only permitted in privileged software execution, and has no effect in User mode.

CPS cannot be conditional, and is not permitted in an IT block.

Syntax

CPSeffect iflags{, #mode}

CPS #mode

where:

effect is one of:
IE Interrupt or abort enable.
ID Interrupt or abort disable.

iflags is a sequence of one or more of:
a Enables or disables imprecise aborts.
i Enables or disables IRQ interrupts.
f Enables or disables FIQ interrupts.

mode specifies the number of the mode to change to.

Condition flags

This instruction does not change the condition flags.

16-bit instructions

The following forms of these instructions are available in Thumb code, and are 16-bit
instructions:
• CPSIE iflags
• CPSID iflags

You cannot specify a mode change in a 16-bit Thumb instruction.

Architectures

This ARM instruction is available in ARMv6 and above.

This 32-bit Thumb instruction are available in ARMv6T2 and above.

This 16-bit Thumb instruction is available in T variants of ARMv6 and above.

Examples

 CPSIE if ; enable interrupts and fast interrupts
 CPSID A ; disable imprecise aborts
 CPSID ai, #17 ; disable imprecise aborts and interrupts, and enter FIQ mode
 CPS #16 ; enter User mode
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-140
ID061811 Non-Confidential

ARM and Thumb Instructions
3.11.6 SMC

Secure Monitor Call.

Syntax

SMC{cond} #imm4

where:

cond is an optional condition code.

imm4 is a 4-bit immediate value. This is ignored by the ARM processor, but can be used
by the SMC exception handler to determine what service is being requested.

Note

SMC was called SMI in earlier versions of the ARM assembly language. SMI instructions
disassemble to SMC, with a comment to say that this was formerly SMI.

Architectures

This ARM instruction is available in implementations of ARMv6 and above, if they have the
Security Extensions.

This 32-bit Thumb instruction is available in implementations of ARMv6T2 and above, if they
have the Security Extensions.

There is no 16-bit Thumb version of this instruction.

See also

Reference:
• Condition codes on page 3-162
• ARM Architecture Reference Manual,

http://infocenter.arm.com/help/topic/com.arm.doc.subset.arch.reference/index.html.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-141
ID061811 Non-Confidential

ARM and Thumb Instructions
3.11.7 SETEND

Set the endianness bit in the CPSR, without affecting any other bits in the CPSR.

SETEND cannot be conditional, and is not permitted in an IT block.

Syntax

SETEND specifier

where:

specifier is one of:
BE Big-endian.
LE Little-endian.

Usage

Use SETEND to access data of different endianness, for example, to access several big-endian
DMA-formatted data fields from an otherwise little-endian application.

Architectures

This ARM instruction is available in ARMv6 and above.

This 16-bit Thumb instruction is available in T variants of ARMv6 and above, except the
ARMv6-M and ARMv7-M architectures.

There is no 32-bit Thumb version of this instruction.

Example

 SETEND BE ; Set the CPSR E bit for big-endian accesses
 LDR r0, [r2, #header]
 LDR r1, [r2, #CRC32]
 SETEND le ; Set the CPSR E bit for little-endian accesses for the
 ; rest of the application
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-142
ID061811 Non-Confidential

ARM and Thumb Instructions
3.11.8 NOP

No Operation.

Syntax

NOP{cond}

where:

cond is an optional condition code.

Usage

NOP does nothing. If NOP is not implemented as a specific instruction on your target architecture,
the assembler treats it as a pseudo-instruction and generates an alternative instruction that does
nothing, such as MOV r0, r0 (ARM) or MOV r8, r8 (Thumb).

NOP is not necessarily a time-consuming NOP. The processor might remove it from the pipeline
before it reaches the execution stage.

You can use NOP for padding, for example to place the following instruction on a 64-bit boundary
in ARM, or a 32-bit boundary in Thumb.

Architectures

This ARM instructions are available in ARMv6K and above.

This 32-bit Thumb instructions are available in ARMv6T2 and above.

This 16-bit Thumb instructions are available in ARMv6T2 and above.

NOP is available on all other ARM and Thumb architectures as a pseudo-instruction.

See also

Reference:
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-143
ID061811 Non-Confidential

ARM and Thumb Instructions
3.11.9 SEV, WFE, WFI, and YIELD

Set Event, Wait For Event, Wait for Interrupt, and Yield.

Syntax

SEV{cond}

WFE{cond}

WFI{cond}

YIELD{cond}

where:

cond is an optional condition code.

Usage

These are hint instructions. It is optional whether they are implemented or not. If any one of
them is not implemented, it executes as a NOP. The assembler produces a diagnostic message if
the instruction executes as a NOP on the target.

SEV, WFE, WFI, and YIELD execute as NOP instructions in ARMv6T2.

SEV

SEV causes an event to be signaled to all cores within a multiprocessor system. If SEV is
implemented, WFE must also be implemented.

WFE

If the Event Register is not set, WFE suspends execution until one of the following events occurs:
• an IRQ interrupt, unless masked by the CPSR I-bit
• an FIQ interrupt, unless masked by the CPSR F-bit
• an Imprecise Data abort, unless masked by the CPSR A-bit
• a Debug Entry request, if Debug is enabled
• an Event signaled by another processor using the SEV instruction.

If the Event Register is set, WFE clears it and returns immediately.

If WFE is implemented, SEV must also be implemented.

WFI

WFI suspends execution until one of the following events occurs:
• an IRQ interrupt, regardless of the CPSR I-bit
• an FIQ interrupt, regardless of the CPSR F-bit
• an Imprecise Data abort, unless masked by the CPSR A-bit
• a Debug Entry request, regardless of whether Debug is enabled.

YIELD

YIELD indicates to the hardware that the current thread is performing a task, for example a
spinlock, that can be swapped out. Hardware can use this hint to suspend and resume threads in
a multithreading system.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-144
ID061811 Non-Confidential

ARM and Thumb Instructions
Architectures

These ARM instructions are available in ARMv6K and above.

These 32-bit Thumb instructions are available in ARMv6T2 and above.

These 16-bit Thumb instructions are available in ARMv6T2 and above.

See also

Reference:
• NOP on page 3-143
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-145
ID061811 Non-Confidential

ARM and Thumb Instructions
3.11.10 DBG

Debug.

Syntax

DBG{cond} {option}

where:

cond is an optional condition code.

option is an optional limitation on the operation of the hint. The range is 0-15.

Usage

DBG is a hint instruction. It is optional whether they are implemented or not. If it is not
implemented, it behaves as a NOP. The assembler produces a diagnostic message if the
instruction executes as NOP on the target.

DBG executes as a NOP instruction in ARMv6K and ARMv6T2.

Debug hint provides a hint to debug and related systems. See their documentation for what use
(if any) they make of this instruction.

Architectures

These ARM instructions are available in ARMv6K and above.

These 32-bit Thumb instructions are available in ARMv6T2 and above.

There are no 16-bit Thumb versions of this instruction.

See also

Reference:
• NOP on page 3-143
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-146
ID061811 Non-Confidential

ARM and Thumb Instructions
3.11.11 DMB, DSB, and ISB

Data Memory Barrier, Data Synchronization Barrier, and Instruction Synchronization Barrier.

Syntax

DMB{cond} {option}

DSB{cond} {option}

ISB{cond} {option}

where:

cond is an optional condition code.

option is an optional limitation on the operation of the hint.

DMB

Data Memory Barrier acts as a memory barrier. It ensures that all explicit memory accesses that
appear in program order before the DMB instruction are observed before any explicit memory
accesses that appear in program order after the DMB instruction. It does not affect the ordering of
any other instructions executing on the processor.

Permitted values of option are:

SY Full system DMB operation. This is the default and can be omitted.

ST DMB operation that waits only for stores to complete.

ISH DMB operation only to the inner shareable domain.

ISHST DMB operation that waits only for stores to complete, and only to the inner
shareable domain.

NSH DMB operation only out to the point of unification.

NSHST DMB operation that waits only for stores to complete and only out to the point of
unification.

OSH DMB operation only to the outer shareable domain.

OSHST DMB operation that waits only for stores to complete, and only to the outer
shareable domain.

DSB

Data Synchronization Barrier acts as a special kind of memory barrier. No instruction in
program order after this instruction executes until this instruction completes. This instruction
completes when:
• All explicit memory accesses before this instruction complete.
• All Cache, Branch predictor and TLB maintenance operations before this instruction

complete.

Permitted values of option are:

SY Full system DSB operation. This is the default and can be omitted.

ST DSB operation that waits only for stores to complete.

ISH DSB operation only to the inner shareable domain.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-147
ID061811 Non-Confidential

ARM and Thumb Instructions
ISHST DSB operation that waits only for stores to complete, and only to the inner
shareable domain.

NSH DSB operation only out to the point of unification.

NSHST DSB operation that waits only for stores to complete and only out to the point of
unification.

OSH DSB operation only to the outer shareable domain.

OSHST DSB operation that waits only for stores to complete, and only to the outer
shareable domain.

ISB

Instruction Synchronization Barrier flushes the pipeline in the processor, so that all instructions
following the ISB are fetched from cache or memory, after the instruction has been completed.
It ensures that the effects of context altering operations, such as changing the ASID, or
completed TLB maintenance operations, or branch predictor maintenance operations, as well as
all changes to the CP15 registers, executed before the ISB instruction are visible to the
instructions fetched after the ISB.

In addition, the ISB instruction ensures that any branches that appear in program order after it
are always written into the branch prediction logic with the context that is visible after the ISB
instruction. This is required to ensure correct execution of the instruction stream.

Permitted values of option are:

SY Full system ISB operation. This is the default, and can be omitted.

Alias

The following alternative values of option are supported for DMB and DSB, but ARM recommends
that you do not use them:
• SH is an alias for ISH
• SHST is an alias for ISHST
• UN is an alias for NSH
• UNST is an alias for NSHST

Architectures

These ARM and 32-bit Thumb instructions are available in ARMv7.

There are no 16-bit Thumb versions of these instructions.

See also

Reference:
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-148
ID061811 Non-Confidential

ARM and Thumb Instructions
3.11.12 MAR and MRA

Transfer between two general-purpose registers and a 40-bit internal accumulator.

Syntax

MAR{cond} Acc, RdLo, RdHi

MRA{cond} RdLo, RdHi, Acc

where:

cond is an optional condition code.

Acc is the internal accumulator. The standard name is accx,where x is an integer in the
range 0 to n. The value of n depends on the processor. It is 0 for current processors.

RdLo, RdHi are general-purpose registers. RdLo and RdHi must not be the PC, and for MRA they
must be different registers.

Usage

The MAR instruction copies the contents of RdLo to bits[31:0] of Acc, and the least significant byte
of RdHi to bits[39:32] of Acc.

The MRA instruction:
• copies bits[31:0] of Acc to RdLo
• copies bits[39:32] of Acc to RdHi bits[7:0]
• sign extends the value by copying bit[39] of Acc to bits[31:8] of RdHi.

Architectures

These ARM coprocessor 0 instructions are only available in XScale processors.

There are no Thumb versions of these instructions.

Examples

 MAR acc0, r0, r1
 MRA r4, r5, acc0
 MARNE acc0, r9, r2
 MRAGT r4, r8, acc0

See also

Reference:
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-149
ID061811 Non-Confidential

ARM and Thumb Instructions
3.12 ThumbEE instructions
Apart from ENTERX and LEAVEX, these ThumbEE instructions are only accepted when the
assembler has been switched into the ThumbEE state using the --thumbx command line option
or the THUMBX directive.

This section contains the following subsections:

• ENTERX and LEAVEX on page 3-151
Switch between Thumb state and ThumbEE state.

• CHKA on page 3-152
Check array.

• HB, HBL, HBLP, and HBP on page 3-153
Handler Branch, branches to a specified handler.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-150
ID061811 Non-Confidential

ARM and Thumb Instructions
3.12.1 ENTERX and LEAVEX

Switch between Thumb state and ThumbEE state.

Syntax

ENTERX

LEAVEX

Usage

ENTERX causes a change from Thumb state to ThumbEE state, or has no effect in ThumbEE state.

LEAVEX causes a change from ThumbEE state to Thumb state, or has no effect in Thumb state.

Do not use ENTERX or LEAVEX in an IT block.

Architectures

These instructions are not available in the ARM instruction set.

These 32-bit Thumb and Thumb-2EE instructions are available in ARMv7, with Thumb-2EE
support.

There are no 16-bit Thumb versions of these instructions.

See also

Reference:
• ARM Architecture Reference Manual,

http://infocenter.arm.com/help/topic/com.arm.doc.subset.arch.reference/index.html.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-151
ID061811 Non-Confidential

ARM and Thumb Instructions
3.12.2 CHKA

CHKA (Check Array) compares the unsigned values in two registers.

If the value in the first register is lower than, or the same as, the second, it copies the PC to the
LR, and causes a branch to the IndexCheck handler.

Syntax

CHKA Rn, Rm

where:
Rn contains the array size. Rn must not be PC.
Rm contains the array index. Rn must not be PC or SP.

Architectures

This instruction is not available in ARM state.

This 16-bit ThumbEE instruction is only available in ARMv7, with Thumb-2EE support.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-152
ID061811 Non-Confidential

ARM and Thumb Instructions
3.12.3 HB, HBL, HBLP, and HBP

Handler Branch, branches to a specified handler.

This instruction can optionally store a return address to the LR, pass a parameter to the handler,
or both.

Syntax

HB{L} #HandlerID

HB{L}P #imm, #HandlerID

where:

L is an optional suffix. If L is present, the instruction saves a return address in the
LR.

P is an optional suffix. If P is present, the instruction passes the value of imm to the
handler in R8.

imm is an immediate value. If L is present, imm must be in the range 0-31, otherwise imm
must be in the range 0-7.

HandlerID is the index number of the handler to be called. If P is present, HandlerID must be
in the range 0-31, otherwise HandlerID must be in the range 0-255.

Architectures

These instructions are not available in ARM state.

These 16-bit ThumbEE instructions are only available in ThumbEE state, in ARMv7 with
Thumb-2EE support.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-153
ID061811 Non-Confidential

ARM and Thumb Instructions
3.13 Pseudo-instructions
The ARM assembler supports a number of pseudo-instructions that are translated into the
appropriate combination of ARM, or Thumb instructions at assembly time.

The pseudo-instructions are described in the following sections:

• ADRL pseudo-instruction on page 3-155
Load a PC-relative or register-relative address into a register (medium range, position
independent)

• MOV32 pseudo--instruction on page 3-157
Load a register with a 32-bit immediate value or an address (unlimited range, but not
position independent). Available for ARMv6T2 and above only.

• LDR pseudo-instruction on page 3-158
Load a register with a 32-bit immediate value or an address (unlimited range, but not
position independent). Available for all ARM architectures.

• UND pseudo-instruction on page 3-161
Generate an architecturally undefined instruction. Available for all ARM architectures.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-154
ID061811 Non-Confidential

ARM and Thumb Instructions
3.13.1 ADRL pseudo-instruction

Load a PC-relative or register-relative address into a register. It is similar to the ADR instruction.
ADRL can load a wider range of addresses than ADR because it generates two data processing
instructions.

Note
 ADRL is only available when assembling Thumb instructions ARMv6T2 and later.

Syntax

ADRL{cond} Rd,label

where:

cond is an optional condition code.

Rd is the register to load.

label is a PC-relative or register-relative expression.

Usage

ADRL always assembles to two 32-bit instructions. Even if the address can be reached in a single
instruction, a second, redundant instruction is produced.

If the assembler cannot construct the address in two instructions, it generates an error message
and the assembly fails. You can use the LDR pseudo-instruction for loading a wider range of
addresses.

ADRL produces position-independent code, because the address is PC-relative or register-relative.

If label is PC-relative, it must evaluate to an address in the same assembler area as the ADRL
pseudo-instruction.

If you use ADRL to generate a target for a BX or BLX instruction, it is your responsibility to set the
Thumb bit (bit 0) of the address if the target contains Thumb instructions.

Architectures and range

The available range depends on the instruction set in use:

ARM ±64KB to a byte or halfword-aligned address.
±256KB bytes to a word-aligned address.

32-bit Thumb ±1MB bytes to a byte, halfword, or word-aligned address.

16-bit Thumb ADRL is not available.

The given range is relative to a point four bytes (in Thumb code) or two words (in ARM code)
after the address of the current instruction. More distant addresses can be in range if the
alignment is 16-bytes or more relative to this point.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-155
ID061811 Non-Confidential

ARM and Thumb Instructions
See also

Concepts
Using the Assembler:
• Register-relative and PC-relative expressions on page 8-7
• Load immediates into registers on page 5-5.

Reference:
• LDR pseudo-instruction on page 3-158
• AREA on page 5-61
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-156
ID061811 Non-Confidential

ARM and Thumb Instructions
3.13.2 MOV32 pseudo--instruction

Load a register with either:
• a 32-bit immediate value
• any address.

MOV32 always generates two 32-bit instructions, a MOV, MOVT pair. This enables you to load any
32-bit immediate, or to access the whole 32-bit address space.

Syntax

MOV32{cond} Rd, expr

where:

cond is an optional condition code.

Rd is the register to be loaded. Rd must not be SP or PC.

expr can be any one of the following:
symbol A label in this or another program area.
#constant Any 32-bit immediate value.
symbol + constant A label plus a 32-bit immediate value.

Usage

The main purposes of the MOV32 pseudo-instruction are:

• To generate literal constants when an immediate value cannot be generated in a single
instruction.

• To load a PC-relative or external address into a register. The address remains valid
regardless of where the linker places the ELF section containing the MOV32.

Note
 An address loaded in this way is fixed at link time, so the code is not position-independent.

MOV32 sets the Thumb bit (bit 0) of the address if the label referenced is in Thumb code.

Architectures

This pseudo-instruction is available in ARMv6T2 and above in both ARM and Thumb.

Examples

 MOV32 r3, #0xABCDEF12 ; loads 0xABCDEF12 into R3
 MOV32 r1, Trigger+12 ; loads the address that is 12 bytes higher than

; the address Trigger into R1

See also

Reference:
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-157
ID061811 Non-Confidential

ARM and Thumb Instructions
3.13.3 LDR pseudo-instruction

Load a register with either:
• a 32-bit immediate value
• an address.

Note
 This section describes the LDR pseudo-instruction only, and not the LDR instruction.

Syntax

LDR{cond}{.W} Rt, =expr

LDR{cond}{.W} Rt, =label_expr

where:

cond is an optional condition code.

.W is an optional instruction width specifier.

Rt is the register to be loaded.

expr evaluates to a numeric value.

label_expr is a PC-relative or external expression of an address in the form of a label plus or
minus a numeric value.

Usage

When using the LDR pseudo-instruction:

• If the value of expr can be loaded with a valid MOV or MVN instruction, the assembler uses
that instruction.

• If a valid MOV or MVN instruction cannot be used, or if the label_expr syntax is used, the
assembler places the constant in a literal pool and generates a PC-relative LDR instruction
that reads the constant from the literal pool.

Note
 — An address loaded in this way is fixed at link time, so the code is not

position-independent.
— The address holding the constant remains valid regardless of where the linker places

the ELF section containing the LDR instruction.

The assembler places the value of label_expr in a literal pool and generates a PC-relative LDR
instruction that loads the value from the literal pool.

If label_expr is an external expression, or is not contained in the current section, the assembler
places a linker relocation directive in the object file. The linker generates the address at link
time.

If label_expr is a local label, the assembler places a linker relocation directive in the object file
and generates a symbol for that local label. The address is generated at link time. If the local
label references Thumb code, the Thumb bit (bit 0) of the address is set.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-158
ID061811 Non-Confidential

ARM and Thumb Instructions
The offset from the PC to the value in the literal pool must be less than ±4KB (ARM, 32-bit
Thumb-2) or in the range 0 to +1KB (16-bit Thumb-2, pre-Thumb2 Thumb). You are
responsible for ensuring that there is a literal pool within range.

If the label referenced is in Thumb code, the LDR pseudo-instruction sets the Thumb bit (bit 0)
of label_expr.

Note
 In RealView® Compilation Tools (RVCT) v2.2, the Thumb bit of the address was not set. If you
have code that relies on this behavior, use the command line option --untyped_local_labels to
force the assembler not to set the Thumb bit when referencing labels in Thumb code.

LDR in Thumb code

You can use the .W width specifier to force LDR to generate a 32-bit instruction in Thumb code
on ARMv6T2 and above processors. LDR.W always generates a 32-bit instruction, even if the
immediate value could be loaded in a 16-bit MOV, or there is a literal pool within reach of a 16-bit
PC-relative load.

If the value to be loaded is not known in the first pass of the assembler, LDR without .W generates
a 16-bit instruction in Thumb code, even if that results in a 16-bit PC-relative load for a value
that could be generated in a 32-bit MOV or MVN instruction. However, if the value is known in the
first pass, and it can be generated using a 32-bit MOV or MVN instruction, the MOV or MVN instruction
is used.

The LDR pseudo-instruction never generates a 16-bit flag-setting MOV instruction. Use the
--diag_warning 1727 assembler command line option to check when a 16-bit instruction could
have been used.

You can use the MOV32 pseudo-instruction for generating immediate values or addresses without
loading from a literal pool.

Examples

 LDR r3,=0xff0 ; loads 0xff0 into R3
 ; => MOV.W r3,#0xff0
 LDR r1,=0xfff ; loads 0xfff into R1
 ; => LDR r1,[pc,offset_to_litpool]
 ; ...
 ; litpool DCD 0xfff
 LDR r2,=place ; loads the address of
 ; place into R2
 ; => LDR r2,[pc,offset_to_litpool]
 ; ...
 ; litpool DCD place

See also

Concepts
Using the Assembler:
• Numeric constants on page 8-5
• Register-relative and PC-relative expressions on page 8-7
• Local labels on page 8-12
• Load immediates into registers on page 5-5
• Load immediate 32-bit values to a register using LDR Rd, =const on page 5-10.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-159
ID061811 Non-Confidential

ARM and Thumb Instructions
Reference:
• Memory access instructions on page 3-9
• LTORG on page 5-16
• MOV32 pseudo--instruction on page 3-157
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-160
ID061811 Non-Confidential

ARM and Thumb Instructions
3.13.4 UND pseudo-instruction

Generate an architecturally undefined instruction. An attempt to execute an undefined
instruction causes the Undefined instruction exception. Architecturally undefined instructions
are expected to remain undefined.

Syntax

UND{cond}{.W} {#expr}

where:

cond is an optional condition code.

.W is an optional instruction width specifier.

expr evaluates to a numeric value. Table 3-10 shows the range and encoding of expr in
the instruction, where Y shows the locations of the bits that encode for expr and
V is the 4 bits that encode for the condition code.
If expr is omitted, the value 0 is used.

UND in Thumb code

You can use the .W width specifier to force UND to generate a 32-bit instruction in Thumb code
on ARMv6T2 and above processors. UND.W always generates a 32-bit instruction, even if expr is
in the range 0-255.

Disassembly

The encodings that this pseudo-instruction produces disassemble to DCI.

See also

Reference:
• Condition codes on page 3-162.

Table 3-10 Range and encoding of expr

Instruction Encoding Number of bits
for expr Range

ARM 0xV7FYYYFY 16 0-65535

32-bit Thumb 0xF7FYAYFY 12 0-4095

16-bit Thumb 0xDEYY 8 0-255
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-161
ID061811 Non-Confidential

ARM and Thumb Instructions
3.14 Condition codes
The instructions that can be conditional have an optional condition code, shown in syntax
descriptions as {cond}. Table 3-11 shows the condition codes that you can use.

Note
 The precise meanings of the condition codes depend on whether the condition code flags were
set by a VFP instruction or by an ARM data processing instruction.

See also

Concept:
Using the Assembler:
• Condition code meanings on page 6-8
• Conditional execution of VFP instructions on page 9-10.

Reference:
• IT on page 3-119
• VMRS and VMSR on page 4-14.

Table 3-11 Condition code suffixes

Suffix Meaning

EQ Equal

NE Not equal

CS Carry set (identical to HS)

HS Unsigned higher or same (identical to CS)

CC Carry clear (identical to LO)

LO Unsigned lower (identical to CC)

MI Minus or negative result

PL Positive or zero result

VS Overflow

VC No overflow

HI Unsigned higher

LS Unsigned lower or same

GE Signed greater than or equal

LT Signed less than

GT Signed greater than

LE Signed less than or equal

AL Always (this is the default)
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 3-162
ID061811 Non-Confidential

Chapter 4
VFP Programming

The following topics describe the assembly programming of the VFP coprocessor:
• VFP instruction summary on page 4-2
• VFP pseudo-instructions on page 4-4
• VFP instructions on page 4-7.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 4-1
ID061811 Non-Confidential

VFP Programming
4.1 VFP instruction summary
Table 4-1 shows a summary of VFP instructions.

Table 4-1 Location of VFP instructions

Mnemonic Brief description See Op. Arch.

VABS Absolute value page 4-8 Vector All

VADD Add page 4-9 Vector All

VCMP Compare page 4-17 Scalar All

VCVT Convert between single-precision and double-precision page 4-18 Scalar All

Convert between floating-point and integer page 4-19 Scalar All

Convert between floating-point and fixed-point page 4-20 Scalar VFPv3

VCVTB, VCVTT Convert between half-precision and single-precision
floating-point

page 4-21 Scalar Half-
precision

VDIV Divide page 4-9 Vector All

VFMA, VFMS Fused multiply accumulate, Fused multiply subtract page 4-16 Scalar VFPv4

VFNMA, VFNMS Fused multiply accumulate with negation, Fused multiply
subtract with negation

page 4-16 Scalar VFPv4

VLDM Load multiple page 4-11 - All

VLDR Load (see also VLDR pseudo-instruction on page 4-5) page 4-10 Scalar All

Load (post-increment and pre-decrement) page 4-6 Scalar All

VMLA Multiply accumulate page 4-15 Vector All

VMLS Multiply subtract page 4-15 Vector All

VMOV Transfer from two ARM registers to a doubleword register page 4-12 Scalar VFPv2

Transfer from a doubleword register to two ARM registers page 4-12 Scalar VFPv2

Transfer from single-precision to ARM register page 4-13 Scalar All

Transfer from ARM register to single-precision page 4-13 Scalar All

Insert floating-point immediate in single-precision or
double-precision register

page 4-22 Scalar VFPv3

VMRS Transfer from VFP system register to ARM register page 4-14 - All

VMSR Transfer from ARM register to VFP system register page 4-14 - All

VMUL Multiply page 4-15 Vector All

VNEG Negate page 4-8 Vector All

VNMLA Negated multiply accumulate page 4-15 Vector All

VNMLS Negated multiply subtract page 4-15 Vector All

VNMUL Negated multiply page 4-15 Vector All

VPOP Pop VFP registers from full-descending stack page 4-11 - All

VPUSH Push VFP registers to full-descending stack page 4-11 - All
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 4-2
ID061811 Non-Confidential

VFP Programming
VSQRT Square Root page 4-8 Vector All

VSTM Store multiple page 4-11 - All

VSTR Store page 4-10 Scalar All

Store (post-increment and pre-decrement) page 4-6 Scalar All

VSUB Subtract page 4-9 Vector All

Table 4-1 Location of VFP instructions (continued)

Mnemonic Brief description See Op. Arch.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 4-3
ID061811 Non-Confidential

VFP Programming
4.2 VFP pseudo-instructions
This section contains the following subsections:

• VLDR pseudo-instruction on page 4-5

• VLDR and VSTR (post-increment and pre-decrement) on page 4-6.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 4-4
ID061811 Non-Confidential

VFP Programming
4.2.1 VLDR pseudo-instruction

The VLDR pseudo-instruction loads a constant value into every element of a VFP single-precision
or double-precision register.

Note
 This section describes the VLDR pseudo-instruction only.

Syntax

VLDR{cond}.datatype Dd,=constant

VLDR{cond}.datatype Sd,=constant

where:

datatype must be one of F32 or F64.

cond is an optional condition code.

Dd or Sd is the extension register to be loaded.

constant is an immediate value of the appropriate type for datatype.

Usage

If an instruction (for example, VMOV) is available that can generate the constant directly into the
register, the assembler uses it. Otherwise, it generates a doubleword literal pool entry containing
the constant and loads the constant using a VLDR instruction.

See also

Reference:
• VLDR and VSTR on page 4-10
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 4-5
ID061811 Non-Confidential

VFP Programming
4.2.2 VLDR and VSTR (post-increment and pre-decrement)

Pseudo-instructions that load or store extension registers with post-increment and
pre-decrement.

Note
 There are also VLDR and VSTR instructions without post-increment and pre-decrement.

Syntax

op{cond}{.size} Fd, [Rn], #offset ; post-increment

op{cond}{.size} Fd, [Rn, #-offset]! ; pre-decrement

where:

op can be:
• VLDR - load extension register from memory
• VSTR - store contents of extension register to memory.

cond is an optional condition code.

size is an optional data size specifier. Must be 32 if Fd is an S register, or 64 if Fd is a
D register.

Fd is the extension register to be loaded or saved.It can be either a double precision
(Dd) or a single precision (Sd) register.

Rn is the ARM register holding the base address for the transfer.

offset is a numeric expression that must evaluate to a numeric value at assembly time.
The value must be 4 if Fd is an S register, or 8 if Fd is a D register.

Usage

The post-increment instruction increments the base address in the register by the offset value,
after the transfer. The pre-decrement instruction decrements the base address in the register by
the offset value, and then performs the transfer using the new address in the register. These
pseudo-instructions assemble to VLDM or VSTM instructions.

See also

Reference:
• VLDR and VSTR on page 4-10
• VLDM, VSTM, VPOP, and VPUSH on page 4-11
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 4-6
ID061811 Non-Confidential

VFP Programming
4.3 VFP instructions
This section contains the following subsections:

• VABS, VNEG, and VSQRT on page 4-8
Floating-point absolute value, negate, and square root.

• VADD, VSUB, and VDIV on page 4-9
Floating-point add, subtract, and divide.

• VLDR and VSTR on page 4-10
Extension register load and store.

• VLDM, VSTM, VPOP, and VPUSH on page 4-11
Extension register load and store multiple.

• VMOV (between two ARM registers and an extension register) on page 4-12
Transfer contents between two ARM registers and a 64-bit extension register.

• VMOV (between one ARM register and single precision VFP) on page 4-13
Transfer contents between a 32-bit extension register and an ARM register.

• VMRS and VMSR on page 4-14
Transfer contents between an ARM register and a VFP system register.

• VMUL, VMLA, VMLS, VNMUL, VNMLA, and VNMLS on page 4-15
Floating-point multiply and multiply accumulate, with optional negation.

• VFMA, VFMS, VFNMA, VFNMS on page 4-16
Fused floating-point multiply accumulate and fused floating-point multiply subtract, with
optional negation.

• VCMP on page 4-17
Floating-point compare.

• VCVT (between single-precision and double-precision) on page 4-18
Convert between single-precision and double-precision.

• VCVT (between floating-point and integer) on page 4-19
Convert between floating-point and integer.

• VCVT (between floating-point and fixed-point) on page 4-20
Convert between floating-point and fixed-point.

• VCVTB, VCVTT (half-precision extension) on page 4-21
Convert between half-precision and single-precision floating-point.

• VMOV on page 4-22
Insert a floating-point immediate value in a single-precision or double-precision register.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 4-7
ID061811 Non-Confidential

VFP Programming
4.3.1 VABS, VNEG, and VSQRT

Floating-point absolute value, negate, and square root.

These instructions can be scalar, vector, or mixed.

Syntax

Vop{cond}.F32 Sd, Sm

Vop{cond}.F64 Dd, Dm

where:

op is one of ABS, NEG, or SQRT.

cond is an optional condition code.

Sd, Sm are the single-precision registers for the result and operand.

Dd, Dm are the double-precision registers for the result and operand.

Usage

The VABS instruction takes the contents of Sm or Dm, clears the sign bit, and places the result in Sd
or Dd. This gives the absolute value.

The VNEG instruction takes the contents of Sm or Dm, changes the sign bit, and places the result in
Sd or Dd. This gives the negation of the value.

The VSQRT instruction takes the square root of the contents of Sm or Dm, and places the result in Sd
or Dd.

In the case of a VABS and VNEG instruction, if the operand is a NaN, the sign bit is determined in
each case as above, but no exception is produced.

Floating-point exceptions

VABS and VNEG instructions cannot produce any exceptions.

VSQRT instructions can produce Invalid Operation or Inexact exceptions.

See also

Concepts
Using the Assembler:
• Control of scalar, vector, and mixed operations on page 9-30.

Reference:
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 4-8
ID061811 Non-Confidential

VFP Programming
4.3.2 VADD, VSUB, and VDIV

Floating-point add, subtract, and divide.

These instructions can be scalar, vector, or mixed.

Syntax

Vop{cond}.F32 {Sd}, Sn, Sm

Vop{cond}.F64 {Dd}, Dn, Dm

where:

op is one of ADD, SUB, or DIV.

cond is an optional condition code.

Sd, Sn, Sm are the single-precision registers for the result and operands.

Dd, Dn, Dm are the double-precision registers for the result and operands.

Usage

The VADD instruction adds the values in the operand registers and places the result in the
destination register.

The VSUB instruction subtracts the value in the second operand register from the value in the first
operand register, and places the result in the destination register.

The VDIV instruction divides the value in the first operand register by the value in the second
operand register, and places the result in the destination register.

Floating-point exceptions

VADD and VSUB instructions can produce Invalid Operation, Overflow, or Inexact exceptions.

VDIV operations can produce Division by Zero, Invalid Operation, Overflow, Underflow, or
Inexact exceptions.

See also

Concepts
Using the Assembler:
• Control of scalar, vector, and mixed operations on page 9-30.

Reference:
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 4-9
ID061811 Non-Confidential

VFP Programming
4.3.3 VLDR and VSTR

Extension register load and store.

Syntax

VLDR{cond}{.size} Fd, [Rn{, #offset}]

VSTR{cond}{.size} Fd, [Rn{, #offset}]

VLDR{cond}{.size} Fd, label

VSTR{cond}{.size} Fd, label

where:

cond is an optional condition code.

size is an optional data size specifier. Must be 32 if Fd is an S register, or 64 otherwise.

Fd is the extension register to be loaded or saved. It can be either a D or S register.

Rn is the ARM register holding the base address for the transfer.

offset is an optional numeric expression. It must evaluate to a numeric value at assembly
time. The value must be a multiple of 4, and lie in the range –1020 to +1020. The
value is added to the base address to form the address used for the transfer.

label is a PC-relative expression.
label must be aligned on a word boundary within ±1KB of the current instruction.

Usage

The VLDR instruction loads an extension register from memory. The VSTR instruction saves the
contents of an extension register to memory.

One word is transferred if Fd is an S register. Two words are transferred otherwise.

There is also an VLDR pseudo-instruction.

See also

Concepts
Using the Assembler:
• Register-relative and PC-relative expressions on page 8-7.

Reference:
• Condition codes on page 3-162
• VLDR pseudo-instruction on page 4-5.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 4-10
ID061811 Non-Confidential

VFP Programming
4.3.4 VLDM, VSTM, VPOP, and VPUSH

Extension register load multiple, store multiple, pop from stack, push onto stack.

Syntax

VLDMmode{cond} Rn{!}, Registers

VSTMmode{cond} Rn{!}, Registers

VPOP{cond} Registers

VPUSH{cond} Registers

where:

mode must be one of:
IA meaning Increment address After each transfer. IA is the default, and

can be omitted.
DB meaning Decrement address Before each transfer.
EA meaning Empty Ascending stack operation. This is the same as DB for

loads, and the same as IA for saves.
FD meaning Full Descending stack operation. This is the same as IA for

loads, and the same as DB for saves.

cond is an optional condition code.

Rn is the ARM register holding the base address for the transfer.

! is optional. ! specifies that the updated base address must be written back to Rn.
If ! is not specified, mode must be IA.

Registers is a list of consecutive extension registers enclosed in braces, { and }. The list can
be comma-separated, or in range format. There must be at least one register in the
list.
You can specify S or D registers, but they must not be mixed. The number of
registers must not exceed 16 D registers.

Note
 VPOP Registers is equivalent to VLDM sp!, Registers.

VPUSH Registers is equivalent to VSTMDB sp!, Registers.

You can use either form of these instructions. They disassemble to VPOP and VPUSH.

See also

Concepts
Using the Assembler:
• Stack implementation using LDM and STM on page 5-22.

Reference:
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 4-11
ID061811 Non-Confidential

VFP Programming
4.3.5 VMOV (between two ARM registers and an extension register)

Transfer contents between two ARM registers and a 64-bit extension register, or two
consecutive 32-bit VFP registers.

Syntax

VMOV{cond} Dm, Rd, Rn

VMOV{cond} Rd, Rn, Dm

VMOV{cond} Sm, Sm1, Rd, Rn

VMOV{cond} Rd, Rn, Sm, Sm1

where:

cond is an optional condition code.

Dm is a 64-bit extension register.

Sm is a VFP 32-bit register.

Sm1 is the next consecutive VFP 32-bit register after Sm.

Rd, Rn are the ARM registers. Rd and Rn must not be PC.

Usage

VMOV Dm, Rd, Rn transfers the contents of Rd into the low half of Dm, and the contents of Rn into
the high half of Dm.

VMOV Rd, Rn, Dm transfers the contents of the low half of Dm into Rd, and the contents of the high
half of Dm into Rn.

VMOV Rd, Rn, Sm, Sm1 transfers the contents of Sm into Rd, and the contents of Sm1 into Rn.

VMOV Sm, Sm1, Rd, Rn transfers the contents of Rd into Sm, and the contents of Rn into Sm1.

Architectures

The 64-bit instructions are available in VFPv2 and above.

The 2 x 32-bit instructions are available in VFPv2 and above.

See also

Reference:
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 4-12
ID061811 Non-Confidential

VFP Programming
4.3.6 VMOV (between one ARM register and single precision VFP)

Transfer contents between a single-precision floating-point register and an ARM register.

Syntax

VMOV{cond} Rd, Sn

VMOV{cond} Sn, Rd

where:

cond is an optional condition code.

Sn is the VFP single-precision register.

Rd is the ARM register. Rd must not be PC.

Usage

VMOV Rd, Sn transfers the contents of Sn into Rd.

VMOV Sn, Rd transfers the contents of Rd into Sn.

See also

Reference:
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 4-13
ID061811 Non-Confidential

VFP Programming
4.3.7 VMRS and VMSR

Transfer contents between an ARM register and a VFP system register.

Syntax

VMRS{cond} Rd, extsysreg

VMSR{cond} extsysreg, Rd

where:

cond is an optional condition code.

extsysreg is the VFP system register, usually FPSCR, FPSID, or FPEXC.

Rd is the ARM register. Rd must not be PC.
It can be APSR_nzcv, if extsysreg is FPSCR. In this case, the floating-point status
flags are transferred into the corresponding flags in the ARM APSR.

Usage

The VMRS instruction transfers the contents of extsysreg into Rd.

The VMSR instruction transfers the contents of Rd into extsysreg.

Note
 These instructions stall the ARM until all current VFP operations complete.

Examples

 VMRS r2,FPCID
 VMRS APSR_nzcv, FPSCR ; transfer FP status register to ARM APSR
 VMSR FPSCR, r4

See also

Concepts
Using the Assembler:
• VFP system registers on page 9-15.

Reference:
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 4-14
ID061811 Non-Confidential

VFP Programming
4.3.8 VMUL, VMLA, VMLS, VNMUL, VNMLA, and VNMLS

Floating-point multiply and multiply accumulate, with optional negation.

These instructions can be scalar, vector, or mixed.

Syntax

V{N}MUL{cond}.F32 {Sd,} Sn, Sm

V{N}MUL{cond}.F64 {Dd,} Dn, Dm

V{N}MLA{cond}.F32 Sd, Sn, Sm

V{N}MLA{cond}.F64 Dd, Dn, Dm

V{N}MLS{cond}.F32 Sd, Sn, Sm

V{N}MLS{cond}.F64 Dd, Dn, Dm

where:

N negates the final result.

cond is an optional condition code.

Sd, Sn, Sm are the single-precision registers for the result and operands.

Dd, Dn, Dm are the double-precision registers for the result and operands.

Usage

The VMUL operation multiplies the values in the operand registers and places the result in the
destination register.

The VMLA operation multiplies the values in the operand registers, adds the value in the
destination register, and places the final result in the destination register.

The VMLS operation multiplies the values in the operand registers, subtracts the result from the
value in the destination register, and places the final result in the destination register.

In each case, the final result is negated if the N option is used.

Floating-point exceptions

These instructions can produce Invalid Operation, Overflow, Underflow, Inexact, or Input
Denormal exceptions.

See also

Concepts
Using the Assembler:
• Control of scalar, vector, and mixed operations on page 9-30.

Reference:
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 4-15
ID061811 Non-Confidential

VFP Programming
4.3.9 VFMA, VFMS, VFNMA, VFNMS

Fused floating-point multiply accumulate and fused floating-point multiply subtract with
optional negation.

These instructions are always scalar.

Syntax

VF{N}op{cond}.F64 {Dd}, Dn, Dm

VF{N}op{cond}.F32 {Sd}, Sn, Sm

where:

op is one of MA or MS.

N negates the final result.

cond is an optional condition code.

Sd, Sn, Sm are the single-precision registers for the result and operands.

Dd, Dn, Dm are the double-precision registers for the result and operands.

Qd, Qn, Qm are the double-precision registers for the result and operands.

Usage

VFMA multiplies the values in the operand registers, adds the value in the destination register, and
places the final result in the destination register. The result of the multiply is not rounded before
the accumulation.

VFMS multiplies the values in the operand registers, subtracts the product from the value in the
destination register, and places the final result in the destination register. The result of the
multiply is not rounded before the subtraction.

In each case, the final result is negated if the N option is used.

Floating-point exceptions

These instructions can produce Input Denormal, Invalid Operation, Overflow, Underflow, or
Inexact exceptions.

See also

Concepts
Using the Assembler:
• Control of scalar, vector, and mixed operations on page 9-30.

Reference:
• Condition codes on page 3-162
• VMUL, VMLA, VMLS, VNMUL, VNMLA, and VNMLS on page 4-15.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 4-16
ID061811 Non-Confidential

VFP Programming
4.3.10 VCMP

Floating-point compare.

VCMP is always scalar.

Syntax

VCMP{cond}.F32 Sd, Sm

VCMP{cond}.F32 Sd, #0

VCMP{cond}.F64 Dd, Dm

VCMP{cond}.F64 Dd, #0

where:

cond is an optional condition code.

Sd, Sm are the single-precision registers holding the operands.

Dd, Dm are the double-precision registers holding the operands.

Usage

The VCMP instruction subtracts the value in the second operand register (or 0 if the second
operand is #0) from the value in the first operand register, and sets the VFP condition flags on
the result.

Floating-point exceptions

VCMP instructions can produce Invalid Operation exceptions.

See also

Reference:
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 4-17
ID061811 Non-Confidential

VFP Programming
4.3.11 VCVT (between single-precision and double-precision)

Convert between single-precision and double-precision numbers.

VCVT is always scalar.

Syntax

VCVT{cond}.F64.F32 Dd, Sm

VCVT{cond}.F32.F64 Sd, Dm

where:

cond is an optional condition code.

Dd is a double-precision register for the result.

Sm is a single-precision register holding the operand.

Sd is a single-precision register for the result.

Dm is a double-precision register holding the operand.

Usage

These instructions convert the single-precision value in Sm to double-precision and places the
result in Dd, or the double-precision value in Dm to single-precision and place the result in Sd.

Floating-point exceptions

These instructions can produce Invalid Operation, Input Denormal, Overflow, Underflow, or
Inexact exceptions.

See also

Reference:
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 4-18
ID061811 Non-Confidential

VFP Programming
4.3.12 VCVT (between floating-point and integer)

Convert between floating-point numbers and integers.

VCVT is always scalar.

Syntax

VCVT{R}{cond}.type.F64 Sd, Dm

VCVT{R}{cond}.type.F32 Sd, Sm

VCVT{cond}.F64.type Dd, Sm

VCVT{cond}.F32.type Sd, Sm

where:

R makes the operation use the rounding mode specified by the FPSCR. Otherwise,
the operation rounds towards zero.

cond is an optional condition code.

type can be either U32 (unsigned 32-bit integer) or S32 (signed 32-bit integer).

Sd is a single-precision register for the result.

Dd is a double-precision register for the result.

Sm is a single-precision register holding the operand.

Dm is a double-precision register holding the operand.

Usage

The first two forms of this instruction convert from floating-point to integer.

The third and fourth forms convert from integer to floating-point.

Floating-point exceptions

These instructions can produce Input Denormal, Invalid Operation, or Inexact exceptions.

See also

Reference:
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 4-19
ID061811 Non-Confidential

VFP Programming
4.3.13 VCVT (between floating-point and fixed-point)

Convert between floating-point and fixed-point numbers.

VCVT is always scalar.

Syntax

VCVT{cond}.type.F64 Dd, Dd, #fbits

VCVT{cond}.type.F32 Sd, Sd, #fbits

VCVT{cond}.F64.type Dd, Dd, #fbits

VCVT{cond}.F32.type Sd, Sd, #fbits

where:

cond is an optional condition code.

type can be any one of:
S16 16-bit signed fixed-point number
U16 16-bit unsigned fixed-point number
S32 32-bit signed fixed-point number
U32 32-bit unsigned fixed-point number.

Sd is a single-precision register for the operand and result.

Dd is a double-precision register for the operand and result.

fbits is the number of fraction bits in the fixed-point number, in the range 0-16 if type
is S16 or U16, or in the range 1-32 if type is S32 or U32.

Usage

The first two forms of this instruction convert from floating-point to fixed-point.

The third and fourth forms convert from fixed-point to floating-point.

In all cases the fixed-point number is contained in the least significant 16 or 32 bits of the
register.

Floating-point exceptions

These instructions can produce Input Denormal, Invalid Operation, or Inexact exceptions.

See also

Reference:
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 4-20
ID061811 Non-Confidential

VFP Programming
4.3.14 VCVTB, VCVTT (half-precision extension)

Converts between half-precision and single-precision floating-point numbers in the following
ways:

• VCVTB uses the bottom half (bits[15:0]) of the single word register to obtain or store the
half-precision value

• VCVTT uses the top half (bits[31:16]) of the single word register to obtain or store the
half-precision value.

VCVTB and VCVTT are always scalar.

Syntax

VCVTB{cond}.type Sd, Sm

VCVTT{cond}.type Sd, Sm

where:

cond is an optional condition code.

type can be any one of:
F32.F16 convert from half-precision to single-precision
F16.F32 convert form single-precision to half-precision.

Sd is a single word register for the result.

Sm is a single word register for the operand.

Architectures

The instructions are only available in VFPv3 systems with the half-precision extension.

Floating-point exceptions

These instructions can produce Input Denormal, Invalid Operation, Overflow, Underflow, or
Inexact exceptions.

See also

Reference:
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 4-21
ID061811 Non-Confidential

VFP Programming
4.3.15 VMOV

Insert a floating-point immediate value in a single-precision or double-precision register, or
copy one register into another register.

This instruction is always scalar.

Syntax

VMOV{cond}.F32 Sd, #imm

VMOV{cond}.F64 Dd, #imm

VMOV{cond}.F32 Sd, Sm

VMOV{cond}.F64 Dd, Dm

where:

cond is an optional condition code.

Sd is the single-precision destination register.

Dd is the double-precision destination register.

imm is the floating-point immediate value.

Sm is the single-precision source register.

Dm is the double-precision source register.

Immediate values

Any number that can be expressed as +/–n * 2–r,where n and r are integers, 16 <= n <= 31, 0 <=
r <= 7.

Architectures

The instructions that copy immediate constants are available in VFPv3.

The instructions that copy from register are available on all VFP systems.

See also

Reference:
• Condition codes on page 3-162.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 4-22
ID061811 Non-Confidential

Chapter 5
Directives Reference

The following topics describe the directives that are provided by the ARM assembler, armasm:
• Alphabetical list of directives on page 5-2
• Symbol definition directives on page 5-3
• Data definition directives on page 5-15
• Assembly control directives on page 5-29
• Frame directives on page 5-37
• Reporting directives on page 5-50
• Instruction set and syntax selection directives on page 5-55
• Miscellaneous directives on page 5-57.

Note
 None of these directives are available in the inline assemblers in the ARM C and C++ compilers.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-1
ID061811 Non-Confidential

Directives Reference
5.1 Alphabetical list of directives
Table 5-1 shows a complete list of the directives. Use it to locate individual directives.

Table 5-1 Location of directives

Directive See Directive See Directive See

ALIAS page 5-58 EQU page 5-66 LTORG page 5-16

ALIGN page 5-59 EXPORT or GLOBAL page 5-67 MACRO and MEND page 5-30

ARM and CODE32 page 5-56 EXPORTAS page 5-69 MAP page 5-17

AREA page 5-61 EXTERN page 5-71 MEND see MACRO page 5-30

ASSERT page 5-50 FIELD page 5-18 MEXIT page 5-33

ATTR page 5-64 FRAME ADDRESS page 5-38 NOFP page 5-75

CN page 5-11 FRAME POP page 5-39 OPT page 5-52

CODE16 page 5-56 FRAME PUSH page 5-40 PRESERVE8 see REQUIRE8 page 5-76

COMMON page 5-28 FRAME REGISTER page 5-41 PROC see FUNCTION page 5-47

CP page 5-12 FRAME RESTORE page 5-42 QN page 5-13

DATA page 5-28 FRAME SAVE page 5-44 RELOC page 5-8

DCB page 5-20 FRAME STATE REMEMBER page 5-45 REQUIRE page 5-75

DCD and DCDU page 5-21 FRAME STATE RESTORE page 5-46 REQUIRE8 and PRESERVE8 page 5-76

DCDO page 5-22 FRAME UNWIND ON or OFF page 5-47 RLIST page 5-10

DCFD and DCFDU page 5-23 FUNCTION or PROC page 5-47 RN page 5-9

DCFS and DCFSU page 5-24 GBLA, GBLL, and GBLS page 5-4 ROUT page 5-77

DCI page 5-25 GET or INCLUDE page 5-70 SETA, SETL, and SETS page 5-7

DCQ and DCQU page 5-26 GLOBAL see EXPORT page 5-67 SN page 5-13

DCW and DCWU page 5-27 IF, ELSE, ENDIF, and ELIF page 5-34 SPACE or FILL page 5-19

DN page 5-13 IMPORT page 5-71 SUBT page 5-54

ELIF, ELSE see IF page 5-34 INCBIN page 5-73 THUMB page 5-56

END page 5-65 INCLUDE see GET page 5-70 THUMBX page 5-56

ENDFUNC or ENDP page 5-49 INFO page 5-51 TTL page 5-54

ENDIF see IF page 5-34 KEEP page 5-74 WHILE and WEND page 5-36

ENTRY page 5-65 LCLA, LCLL, and LCLS page 5-6
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-2
ID061811 Non-Confidential

Directives Reference
5.2 Symbol definition directives
This section describes the following directives:

• GBLA, GBLL, and GBLS on page 5-4
Declare a global arithmetic, logical, or string variable.

• LCLA, LCLL, and LCLS on page 5-6
Declare a local arithmetic, logical, or string variable.

• SETA, SETL, and SETS on page 5-7
Set the value of an arithmetic, logical, or string variable.

• RELOC on page 5-8
Encode an ELF relocation in an object file.

• RN on page 5-9
Define a name for a specified register.

• RLIST on page 5-10
Define a name for a set of general-purpose registers.

• CN on page 5-11
Define a coprocessor register name.

• CP on page 5-12
Define a coprocessor name.

• DN and SN on page 5-13
Define a double-precision or single-precision VFP register name.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-3
ID061811 Non-Confidential

Directives Reference
5.2.1 GBLA, GBLL, and GBLS

The GBLA directive declares a global arithmetic variable, and initializes its value to 0.

The GBLL directive declares a global logical variable, and initializes its value to {FALSE}.

The GBLS directive declares a global string variable and initializes its value to a null string, "".

Syntax

<gblx> variable

where:

<gblx> is one of GBLA, GBLL, or GBLS.

variable is the name of the variable. variable must be unique among symbols within a
source file.

Usage

Using one of these directives for a variable that is already defined re-initializes the variable to
the same values given above.

The scope of the variable is limited to the source file that contains it.

Set the value of the variable with a SETA, SETL, or SETS directive.

Global variables can also be set with the --predefine assembler command line option.

Examples

Example 5-1 declares a variable objectsize, sets the value of objectsize to 0xFF, and then uses
it later in a SPACE directive.

Example 5-1

 GBLA objectsize ; declare the variable name
objectsize SETA 0xFF ; set its value
 .
 . ; other code
 .
 SPACE objectsize ; quote the variable

Example 5-2 shows how to declare and set a variable when you invoke armasm. Use this when
you want to set the value of a variable at assembly time. --pd is a synonym for --predefine.

Example 5-2

armasm --predefine "objectsize SETA 0xFF" sourcefile -o objectfile
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-4
ID061811 Non-Confidential

Directives Reference
See also

Reference:
• SETA, SETL, and SETS on page 5-7
• LCLA, LCLL, and LCLS on page 5-6
• Assembler command line options on page 2-3.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-5
ID061811 Non-Confidential

Directives Reference
5.2.2 LCLA, LCLL, and LCLS

The LCLA directive declares a local arithmetic variable, and initializes its value to 0.

The LCLL directive declares a local logical variable, and initializes its value to {FALSE}.

The LCLS directive declares a local string variable, and initializes its value to a null string, "".

Syntax

<lclx> variable

where:

<lclx> is one of LCLA, LCLL, or LCLS.

variable is the name of the variable. variable must be unique within the macro that
contains it.

Usage

Using one of these directives for a variable that is already defined re-initializes the variable to
the same values given above.

The scope of the variable is limited to a particular instantiation of the macro that contains it.

Set the value of the variable with a SETA, SETL, or SETS directive.

Example

 MACRO ; Declare a macro
$label message $a ; Macro prototype line
 LCLS err ; Declare local string
 ; variable err.
err SETS "error no: " ; Set value of err
$label ; code
 INFO 0, "err":CC::STR:$a ; Use string
 MEND

See also

Reference:
• SETA, SETL, and SETS on page 5-7
• MACRO and MEND on page 5-30
• GBLA, GBLL, and GBLS on page 5-4.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-6
ID061811 Non-Confidential

Directives Reference
5.2.3 SETA, SETL, and SETS

The SETA directive sets the value of a local or global arithmetic variable.

The SETL directive sets the value of a local or global logical variable.

The SETS directive sets the value of a local or global string variable.

Syntax

variable <setx> expr

where:

<setx> is one of SETA, SETL, or SETS.

variable is the name of a variable declared by a GBLA, GBLL, GBLS, LCLA, LCLL, or LCLS
directive.

expr is an expression that is:
• numeric, for SETA
• logical, for SETL
• string, for SETS.

Usage

You must declare variable using a global or local declaration directive before using one of these
directives.

You can also predefine variable names on the command line.

Examples

 GBLA VersionNumber
VersionNumber SETA 21
 GBLL Debug
Debug SETL {TRUE}
 GBLS VersionString
VersionString SETS "Version 1.0"

See also

Concepts:
Using the Assembler:
• Numeric expressions on page 8-16
• Logical expressions on page 8-19
• String expressions on page 8-14.

Reference:
• Assembler command line options on page 2-3
• LCLA, LCLL, and LCLS on page 5-6
• GBLA, GBLL, and GBLS on page 5-4.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-7
ID061811 Non-Confidential

Directives Reference
5.2.4 RELOC

The RELOC directive explicitly encodes an ELF relocation in an object file.

Syntax

RELOC n, symbol

RELOC n

where:

n must be an integer in the range 0 to 255 or one of the relocation names defined in
the Application Binary Interface for the ARM Architecture.

symbol can be any PC-relative label.

Usage

Use RELOC n, symbol to create a relocation with respect to the address labeled by symbol.

If used immediately after an ARM or Thumb instruction, RELOC results in a relocation at that
instruction. If used immediately after a DCB, DCW, or DCD, or any other data generating directive,
RELOC results in a relocation at the start of the data. Any addend to be applied must be encoded
in the instruction or in the data.

If the assembler has already emitted a relocation at that place, the relocation is updated with the
details in the RELOC directive, for example:

DCD sym2 ; R_ARM_ABS32 to sym32
RELOC 55 ; ... makes it R_ARM_ABS32_NOI

RELOC is faulted in all other cases, for example, after any non-data generating directive, LTORG,
ALIGN, or as the first thing in an AREA.

Use RELOC n to create a relocation with respect to the anonymous symbol, that is, symbol 0 of the
symbol table. If you use RELOC n without a preceding assembler generated relocation, the
relocation is with respect to the anonymous symbol.

Examples

IMPORT impsym
LDR r0,[pc,#-8]
RELOC 4, impsym
DCD 0
RELOC 2, sym
DCD 0,1,2,3,4 ; the final word is relocated
RELOC 38,sym2 ; R_ARM_TARGET1
DCD impsym
RELOC R_ARM_TARGET1 ; relocation code 38

See also

Reference
• Application Binary Interface for the ARM Architecture,

http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.abi/index.html.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-8
ID061811 Non-Confidential

Directives Reference
5.2.5 RN

The RN directive defines a register name for a specified register.

Syntax

name RN expr

where:

name is the name to be assigned to the register. name cannot be the same as any of the
predefined names.

expr evaluates to a register number from 0 to 15.

Usage

Use RN to allocate convenient names to registers, to help you to remember what you use each
register for. Be careful to avoid conflicting uses of the same register under different names.

Examples

regname RN 11 ; defines regname for register 11
sqr4 RN r6 ; defines sqr4 for register 6

See also

Reference:
Using the Assembler:
• Predeclared core register names on page 3-12
• Predeclared extension register names on page 3-13
• Predeclared coprocessor names on page 3-14.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-9
ID061811 Non-Confidential

Directives Reference
5.2.6 RLIST

The RLIST (register list) directive gives a name to a set of general-purpose registers.

Syntax

name RLIST {list-of-registers}

where:

name is the name to be given to the set of registers. name cannot be the same as any of
the predefined names.

list-of-registers

is a comma-delimited list of register names and register ranges. The register list
must be enclosed in braces.

Usage

Use RLIST to give a name to a set of registers to be transferred by the LDM or STM instructions.

LDM and STM always put the lowest physical register numbers at the lowest address in memory,
regardless of the order they are supplied to the LDM or STM instruction. If you have defined your
own symbolic register names it can be less apparent that a register list is not in increasing
register order.

Use the --diag_warning 1206 assembler option to ensure that the registers in a register list are
supplied in increasing register order. If registers are not supplied in increasing register order, a
warning is issued.

Example

Context RLIST {r0-r6,r8,r10-r12,pc}

See also

Reference:
Using the Assembler:
• Predeclared core register names on page 3-12
• Predeclared extension register names on page 3-13
• Predeclared coprocessor names on page 3-14.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-10
ID061811 Non-Confidential

Directives Reference
5.2.7 CN

The CN directive defines a name for a coprocessor register.

Syntax

name CN expr

where:

name is the name to be defined for the coprocessor register. name cannot be the same as
any of the predefined names.

expr evaluates to a coprocessor register number from 0 to 15.

Usage

Use CN to allocate convenient names to registers, to help you remember what you use each
register for.

Note
 Avoid conflicting uses of the same register under different names.

The names c0 to c15 are predefined.

Example

power CN 6 ; defines power as a symbol for
 ; coprocessor register 6

See also

Reference:
Using the Assembler:
• Predeclared core register names on page 3-12
• Predeclared extension register names on page 3-13
• Predeclared coprocessor names on page 3-14.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-11
ID061811 Non-Confidential

Directives Reference
5.2.8 CP

The CP directive defines a name for a specified coprocessor. The coprocessor number must be
within the range 0 to 15.

Syntax

name CP expr

where:

name is the name to be assigned to the coprocessor. name cannot be the same as any of
the predefined names.

expr evaluates to a coprocessor number from 0 to 15.

Usage

Use CP to allocate convenient names to coprocessors, to help you to remember what you use
each one for.

Note
 Avoid conflicting uses of the same coprocessor under different names.

The names p0 to p15 are predefined for coprocessors 0 to 15.

Example

dmu CP 6 ; defines dmu as a symbol for
 ; coprocessor 6

See also

Reference:
Using the Assembler:
• Predeclared core register names on page 3-12
• Predeclared extension register names on page 3-13
• Predeclared coprocessor names on page 3-14.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-12
ID061811 Non-Confidential

Directives Reference
5.2.9 DN and SN

The DN directive defines a name for a specified 64-bit extension register.

The SN directive defines a name for a specified single-precision VFP register.

Syntax

name directive expr{.type}

where:

directive is DN or SN.

name is the name to be assigned to the extension register. name cannot be the same as
any of the predefined names.

expr Can be:
• an expression that evaluates to a number in the range:

— 0-15 if you are using DN in VFPv2
— 0-31 otherwise.

• a predefined register name, or a register name that has already been defined
in a previous directive.

type is any VFP datatype.

type is Extended notation.

Usage

Use DN or SN to allocate convenient names to extension registers, to help you to remember what
you use each one for.

Note
 Avoid conflicting uses of the same register under different names.

You cannot specify a vector length in a DN or SN directive.

Examples

energy DN 6 ; defines energy as a symbol for
 ; VFP double-precision register 6
mass SN 16 ; defines mass as a symbol for
 ; VFP single-precision register 16

Extended notation examples

varA DN d1.U16
varB DN d2.U16
varC DN d3.U16

VADD varA,varB,varC ; VADD.U16 d1,d2,d3
index DN d4.U16[0]
result QN q5.I32

VMULL result,varA,index ; VMULL.U16 q5,d1,d3[2]
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-13
ID061811 Non-Confidential

Directives Reference
See also

Reference:
Using the Assembler:
• Predeclared core register names on page 3-12
• Predeclared extension register names on page 3-13
• Predeclared coprocessor names on page 3-14
• Extended notation on page 9-13
• Extended notation examples on page 5-13
• VFP data types on page 9-12
• VFP directives and vector notation on page 9-31.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-14
ID061811 Non-Confidential

Directives Reference
5.3 Data definition directives
This section describes the following directives to allocate memory, define data structures, set
initial contents of memory:

• LTORG on page 5-16
Set an origin for a literal pool.

• MAP on page 5-17
Set the origin of a storage map.

• FIELD on page 5-18
Define a field within a storage map.

• SPACE or FILL on page 5-19
Allocate a zeroed block of memory.

• DCB on page 5-20
Allocate bytes of memory, and specify the initial contents.

• DCD and DCDU on page 5-21
Allocate words of memory, and specify the initial contents.

• DCDO on page 5-22
Allocate words of memory, and specify the initial contents as offsets from the static base
register.

• DCFD and DCFDU on page 5-23
Allocate doublewords of memory, and specify the initial contents as double-precision
floating-point numbers.

• DCFS and DCFSU on page 5-24
Allocate words of memory, and specify the initial contents as single-precision
floating-point numbers.

• DCI on page 5-25
Allocate words of memory, and specify the initial contents. Mark the location as code not
data.

• DCQ and DCQU on page 5-26
Allocate doublewords of memory, and specify the initial contents as 64-bit integers.

• DCW and DCWU on page 5-27
Allocate halfwords of memory, and specify the initial contents.

• COMMON on page 5-28
Allocate a block of memory at a symbol, and specify the alignment.

• DATA on page 5-28
Mark data within a code section. Obsolete, for backwards compatibility only.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-15
ID061811 Non-Confidential

Directives Reference
5.3.1 LTORG

The LTORG directive instructs the assembler to assemble the current literal pool immediately.

Syntax

LTORG

Usage

The assembler assembles the current literal pool at the end of every code section. The end of a
code section is determined by the AREA directive at the beginning of the following section, or the
end of the assembly.

These default literal pools can sometimes be out of range of some LDR, VLDR, and WLDR
pseudo-instructions. Use LTORG to ensure that a literal pool is assembled within range.

Large programs can require several literal pools. Place LTORG directives after unconditional
branches or subroutine return instructions so that the processor does not attempt to execute the
constants as instructions.

The assembler word-aligns data in literal pools.

Example

 AREA Example, CODE, READONLY
start BL func1
func1 ; function body
 ; code
 LDR r1,=0x55555555 ; => LDR R1, [pc, #offset to Literal Pool 1]
 ; code
 MOV pc,lr ; end function
 LTORG ; Literal Pool 1 contains literal &55555555.
data SPACE 4200 ; Clears 4200 bytes of memory,
 ; starting at current location.
 END ; Default literal pool is empty.

See also

Reference:
• LDR pseudo-instruction on page 3-158
• VLDR pseudo-instruction on page 4-5
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-16
ID061811 Non-Confidential

Directives Reference
5.3.2 MAP

The MAP directive sets the origin of a storage map to a specified address. The storage-map
location counter, {VAR}, is set to the same address. ^ is a synonym for MAP.

Syntax

MAP expr{,base-register}

where:

expr is a numeric or PC-relative expression:
• If base-register is not specified, expr evaluates to the address where the

storage map starts. The storage map location counter is set to this address.
• If expr is PC-relative, you must have defined the label before you use it in

the map. The map requires the definition of the label during the first pass of
the assembler.

base-register

specifies a register. If base-register is specified, the address where the storage
map starts is the sum of expr, and the value in base-register at runtime.

Usage

Use the MAP directive in combination with the FIELD directive to describe a storage map.

Specify base-register to define register-relative labels. The base register becomes implicit in
all labels defined by following FIELD directives, until the next MAP directive. The register-relative
labels can be used in load and store instructions.

The MAP directive can be used any number of times to define multiple storage maps.

The {VAR} counter is set to zero before the first MAP directive is used.

Examples

 MAP 0,r9
 MAP 0xff,r9

See also

Concept:
• How the assembler works on page 2-4 in Using the Assembler
• Directives that can be omitted in pass 2 of the assembler on page 2-6 in Using the

Assembler.

Reference:
• FIELD on page 5-18.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-17
ID061811 Non-Confidential

Directives Reference
5.3.3 FIELD

The FIELD directive describes space within a storage map that has been defined using the MAP
directive. # is a synonym for FIELD.

Syntax

{label} FIELD expr

where:

label is an optional label. If specified, label is assigned the value of the storage location
counter, {VAR}. The storage location counter is then incremented by the value of
expr.

expr is an expression that evaluates to the number of bytes to increment the storage
counter.

Usage

If a storage map is set by a MAP directive that specifies a base-register, the base register is implicit
in all labels defined by following FIELD directives, until the next MAP directive. These
register-relative labels can be quoted in load and store instructions.

Examples

The following example shows how register-relative labels are defined using the MAP and FIELD
directives.

 MAP 0,r9 ; set {VAR} to the address stored in R9
 FIELD 4 ; increment {VAR} by 4 bytes
Lab FIELD 4 ; set Lab to the address [R9 + 4]
 ; and then increment {VAR} by 4 bytes
 LDR r0,Lab ; equivalent to LDR r0,[r9,#4]

When using the MAP and FIELD directives, you must ensure that the values are consistent in both
passes. The following example shows a use of MAP and FIELD that cause inconsistent values for
the symbol x. In the first pass sym is not defined, so x is at 0x04+R9. In the second pass, sym is
defined, so x is at 0x00+R0. This example results in an assembly error.

MAP 0, r0
if :LNOT: :DEF: sym
MAP 0, r9
FIELD 4 ; x is at 0x04+R9 in first pass

ENDIF
x FIELD 4 ; x is at 0x00+R0 in second pass
sym LDR r0, x ; inconsistent values for x results in assembly error

See also

Concept:
• How the assembler works on page 2-4 in Using the Assembler
• Directives that can be omitted in pass 2 of the assembler on page 2-6 in Using the

Assembler.

Reference:
• MAP on page 5-17.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-18
ID061811 Non-Confidential

Directives Reference
5.3.4 SPACE or FILL

The SPACE directive reserves a zeroed block of memory. % is a synonym for SPACE.

The FILL directive reserves a block of memory to fill with the given value.

Syntax

{label} SPACE expr

{label} FILL expr{,value{,valuesize}}

where:

label is an optional label.

expr evaluates to the number of bytes to fill or zero.

value evaluates to the value to fill the reserved bytes with. value is optional and if
omitted, it is 0. value must be 0 in a NOINIT area.

valuesize is the size, in bytes, of value. It can be any of 1, 2, or 4. valuesize is optional and
if omitted, it is 1.

Usage

Use the ALIGN directive to align any code following a SPACE or FILL directive.

Example

 AREA MyData, DATA, READWRITE
data1 SPACE 255 ; defines 255 bytes of zeroed store
data2 FILL 50,0xAB,1 ; defines 50 bytes containing 0xAB

See also

Concept:
Using the Assembler:
• Numeric expressions on page 8-16.

Reference:
• DCB on page 5-20
• DCD and DCDU on page 5-21
• DCDO on page 5-22
• DCW and DCWU on page 5-27
• ALIGN on page 5-59.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-19
ID061811 Non-Confidential

Directives Reference
5.3.5 DCB

The DCB directive allocates one or more bytes of memory, and defines the initial runtime contents
of the memory. = is a synonym for DCB.

Syntax

{label} DCB expr{,expr}...

where:

expr is either:
• a numeric expression that evaluates to an integer in the range –128 to 255.
• a quoted string. The characters of the string are loaded into consecutive

bytes of store.

Usage

If DCB is followed by an instruction, use an ALIGN directive to ensure that the instruction is
aligned.

Example

Unlike C strings, ARM assembler strings are not nul-terminated. You can construct a
nul-terminated C string using DCB as follows:

C_string DCB "C_string",0

See also

Concept:
Using the Assembler:
• Numeric expressions on page 8-16.

Reference:
• DCD and DCDU on page 5-21
• DCQ and DCQU on page 5-26
• DCW and DCWU on page 5-27
• SPACE or FILL on page 5-19
• ALIGN on page 5-59.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-20
ID061811 Non-Confidential

Directives Reference
5.3.6 DCD and DCDU

The DCD directive allocates one or more words of memory, aligned on four-byte boundaries, and
defines the initial runtime contents of the memory.

& is a synonym for DCD.

DCDU is the same, except that the memory alignment is arbitrary.

Syntax

{label} DCD{U} expr{,expr}

where:

expr is either:
• a numeric expression.
• a PC-relative expression.

Usage

DCD inserts up to three bytes of padding before the first defined word, if necessary, to achieve
four-byte alignment.

Use DCDU if you do not require alignment.

Examples

data1 DCD 1,5,20 ; Defines 3 words containing
 ; decimal values 1, 5, and 20
data2 DCD mem06 + 4 ; Defines 1 word containing 4 +
 ; the address of the label mem06
 AREA MyData, DATA, READWRITE
 DCB 255 ; Now misaligned ...
data3 DCDU 1,5,20 ; Defines 3 words containing
 ; 1, 5 and 20, not word aligned

See also

Concept:
Using the Assembler:
• Numeric expressions on page 8-16.

Reference:
• DCB on page 5-20
• DCI on page 5-25
• DCW and DCWU on page 5-27
• DCQ and DCQU on page 5-26
• SPACE or FILL on page 5-19.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-21
ID061811 Non-Confidential

Directives Reference
5.3.7 DCDO

The DCDO directive allocates one or more words of memory, aligned on four-byte boundaries, and
defines the initial runtime contents of the memory as an offset from the static base register, sb
(R9).

Syntax

{label} DCDO expr{,expr}...

where:

expr is a register-relative expression or label. The base register must be sb.

Usage

Use DCDO to allocate space in memory for static base register relative relocatable addresses.

Example

 IMPORT externsym
 DCDO externsym ; 32-bit word relocated by offset of
 ; externsym from base of SB section.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-22
ID061811 Non-Confidential

Directives Reference
5.3.8 DCFD and DCFDU

The DCFD directive allocates memory for word-aligned double-precision floating-point numbers,
and defines the initial runtime contents of the memory. Double-precision numbers occupy two
words and must be word aligned to be used in arithmetic operations.

DCFDU is the same, except that the memory alignment is arbitrary.

Syntax

{label} DCFD{U} fpliteral{,fpliteral}...

where:

fpliteral is a double-precision floating-point literal.

Usage

The assembler inserts up to three bytes of padding before the first defined number, if necessary,
to achieve four-byte alignment.

Use DCFDU if you do not require alignment.

The word order used when converting fpliteral to internal form is controlled by the
floating-point architecture selected. You cannot use DCFD or DCFDU if you select the --fpu none
option.

The range for double-precision numbers is:
• maximum 1.79769313486231571e+308
• minimum 2.22507385850720138e–308.

Examples

 DCFD 1E308,-4E-100
 DCFDU 10000,-.1,3.1E26

See also

Concept:
Using the Assembler:
• Floating-point literals on page 8-18.

Reference:
• DCFS and DCFSU on page 5-24.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-23
ID061811 Non-Confidential

Directives Reference
5.3.9 DCFS and DCFSU

The DCFS directive allocates memory for word-aligned single-precision floating-point numbers,
and defines the initial runtime contents of the memory. Single-precision numbers occupy one
word and must be word aligned to be used in arithmetic operations.

DCFSU is the same, except that the memory alignment is arbitrary.

Syntax

{label} DCFS{U} fpliteral{,fpliteral}...

where:

fpliteral is a single-precision floating-point literal.

Usage

DCFS inserts up to three bytes of padding before the first defined number, if necessary to achieve
four-byte alignment.

Use DCFSU if you do not require alignment.

The range for single-precision values is:
• maximum 3.40282347e+38
• minimum 1.17549435e–38.

Examples

 DCFS 1E3,-4E-9
 DCFSU 1.0,-.1,3.1E6

See also

Concept:
Using the Assembler:
• Floating-point literals on page 8-18.

Reference:
• DCFD and DCFDU on page 5-23.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-24
ID061811 Non-Confidential

Directives Reference
5.3.10 DCI

In ARM code, the DCI directive allocates one or more words of memory, aligned on four-byte
boundaries, and defines the initial runtime contents of the memory.

In Thumb code, the DCI directive allocates one or more halfwords of memory, aligned on
two-byte boundaries, and defines the initial runtime contents of the memory.

Syntax

{label} DCI{.W} expr{,expr}

where:

expr is a numeric expression.

.W if present, indicates that four bytes must be inserted in Thumb code.

Usage

The DCI directive is very like the DCD or DCW directives, but the location is marked as code instead
of data. Use DCI when writing macros for new instructions not supported by the version of the
assembler you are using.

In ARM code, DCI inserts up to three bytes of padding before the first defined word, if necessary,
to achieve four-byte alignment. In Thumb code, DCI inserts an initial byte of padding, if
necessary, to achieve two-byte alignment.

You can use DCI to insert a bit pattern into the instruction stream. For example, use:

DCI 0x46c0

to insert the Thumb operation MOV r8,r8.

Example macro

 MACRO ; this macro translates newinstr Rd,Rm
 ; to the appropriate machine code
 newinst $Rd,$Rm
 DCI 0xe16f0f10 :OR: ($Rd:SHL:12) :OR: $Rm
 MEND

Thumb-2 example

 DCI.W 0xf3af8000 ; inserts 32-bit NOP, 2-byte aligned.

See also

Concept:
Using the Assembler:
• Numeric expressions on page 8-16.

Reference:
• DCD and DCDU on page 5-21
• DCW and DCWU on page 5-27.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-25
ID061811 Non-Confidential

Directives Reference
5.3.11 DCQ and DCQU

The DCQ directive allocates one or more eight-byte blocks of memory, aligned on four-byte
boundaries, and defines the initial runtime contents of the memory.

DCQU is the same, except that the memory alignment is arbitrary.

Syntax

{label} DCQ{U} {-}literal{,{-}literal}...

where:

literal is a 64-bit numeric literal.

The range of numbers permitted is 0 to 264–1.
In addition to the characters normally permitted in a numeric literal, you can
prefix literal with a minus sign. In this case, the range of numbers permitted is
–263 to –1.

The result of specifying -n is the same as the result of specifying 264–n.

Usage

DCQ inserts up to three bytes of padding before the first defined eight-byte block, if necessary, to
achieve four-byte alignment.

Use DCQU if you do not require alignment.

Examples

 AREA MiscData, DATA, READWRITE
data DCQ -225,2_101 ; 2_101 means binary 101.
 DCQU number+4 ; number must already be defined.

See also

Concept:
Using the Assembler:
• Numeric literals on page 8-17.

Reference:
• DCB on page 5-20
• DCD and DCDU on page 5-21
• DCW and DCWU on page 5-27
• SPACE or FILL on page 5-19.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-26
ID061811 Non-Confidential

Directives Reference
5.3.12 DCW and DCWU

The DCW directive allocates one or more halfwords of memory, aligned on two-byte boundaries,
and defines the initial runtime contents of the memory.

DCWU is the same, except that the memory alignment is arbitrary.

Syntax

{label} DCW{U} expr{,expr}...

where:

expr is a numeric expression that evaluates to an integer in the range –32768 to 65535.

Usage

DCW inserts a byte of padding before the first defined halfword if necessary to achieve two-byte
alignment.

Use DCWU if you do not require alignment.

Examples

data DCW -225,2*number ; number must already be defined
 DCWU number+4

See also

Concept:
Using the Assembler:
• Numeric expressions on page 8-16.

Reference:
• DCB on page 5-20
• DCD and DCDU on page 5-21
• DCQ and DCQU on page 5-26
• SPACE or FILL on page 5-19.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-27
ID061811 Non-Confidential

Directives Reference
5.3.13 COMMON

The COMMON directive allocates a block of memory, of the defined size, at the specified symbol.
You specify how the memory is aligned. If alignment is omitted, the default alignment is 4. If
size is omitted, the default size is 0.

You can access this memory as you would any other memory, but no space is allocated in object
files.

Syntax

COMMON symbol{,size{,alignment}} {[attr]}

where:

symbol is the symbol name. The symbol name is case-sensitive.

size is the number of bytes to reserve.

alignment is the alignment.

attr can be any one of:
DYNAMIC sets the ELF symbol visibility to STV_DEFAULT.
PROTECTED sets the ELF symbol visibility to STV_PROTECTED.
HIDDEN sets the ELF symbol visibility to STV_HIDDEN.
INTERNAL sets the ELF symbol visibility to STV_INTERNAL.

Usage

The linker allocates the required space as zero initialized memory during the link stage. You
cannot define, IMPORT or EXTERN a symbol that has already been created by the COMMON directive.
In the same way, if a symbol has already been defined or used with the IMPORT or EXTERN
directive, you cannot use the same symbol for the COMMON directive.

Example

LDR r0, =xyz
COMMON xyz,255,4 ; defines 255 bytes of ZI store, word-aligned

Incorrect examples

COMMON foo,4,4
COMMON bar,4,4

foo DCD 0 ; cannot define label with same name as COMMON
IMPORT bar ; cannot import label with same name as COMMON

5.3.14 DATA

The DATA directive is no longer required. It is ignored by the assembler.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-28
ID061811 Non-Confidential

Directives Reference
5.4 Assembly control directives
This section describes the following directives to control conditional assembly, looping,
inclusions, and macros:
• MACRO and MEND on page 5-30
• MEXIT on page 5-33
• IF, ELSE, ENDIF, and ELIF on page 5-34
• WHILE and WEND on page 5-36.

5.4.1 Nesting directives

The following structures can be nested to a total depth of 256:
• MACRO definitions
• WHILE...WEND loops
• IF...ELSE...ENDIF conditional structures
• INCLUDE file inclusions.

The limit applies to all structures taken together, regardless of how they are nested. The limit is
not 256 of each type of structure.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-29
ID061811 Non-Confidential

Directives Reference
5.4.2 MACRO and MEND

The MACRO directive marks the start of the definition of a macro. Macro expansion terminates at
the MEND directive.

Syntax

Two directives are used to define a macro. The syntax is:

 MACRO
{$label} macroname{$cond} {$parameter{,$parameter}...}
 ; code
 MEND

where:

$label is a parameter that is substituted with a symbol given when the macro is invoked.
The symbol is usually a label.

macroname is the name of the macro. It must not begin with an instruction or directive name.

$cond is a special parameter designed to contain a condition code. Values other than
valid condition codes are permitted.

$parameter is a parameter that is substituted when the macro is invoked. A default value for
a parameter can be set using this format:
$parameter="default value"

Double quotes must be used if there are any spaces within, or at either end of, the
default value.

Usage

If you start any WHILE...WEND loops or IF...ENDIF conditions within a macro, they must be closed
before the MEND directive is reached. You can use MEXIT to enable an early exit from a macro, for
example, from within a loop.

Within the macro body, parameters such as $label, $parameter or $cond can be used in the same
way as other variables. They are given new values each time the macro is invoked. Parameters
must begin with $ to distinguish them from ordinary symbols. Any number of parameters can
be used.

$label is optional. It is useful if the macro defines internal labels. It is treated as a parameter to
the macro. It does not necessarily represent the first instruction in the macro expansion. The
macro defines the locations of any labels.

Use | as the argument to use the default value of a parameter. An empty string is used if the
argument is omitted.

In a macro that uses several internal labels, it is useful to define each internal label as the base
label with a different suffix.

Use a dot between a parameter and following text, or a following parameter, if a space is not
required in the expansion. Do not use a dot between preceding text and a parameter.

You can use the $cond parameter for condition codes. Use the unary operator :REVERSE_CC: to
find the inverse condition code, and :CC_ENCODING: to find the 4-bit encoding of the condition
code.

Macros define the scope of local variables.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-30
ID061811 Non-Confidential

Directives Reference
Macros can be nested.

Examples

 ; macro definition
 MACRO ; start macro definition
$label xmac $p1,$p2
 ; code
$label.loop1 ; code
 ; code
 BGE $label.loop1
$label.loop2 ; code
 BL $p1
 BGT $label.loop2
 ; code
 ADR $p2
 ; code
 MEND ; end macro definition
 ; macro invocation
abc xmac subr1,de ; invoke macro
 ; code ; this is what is
abcloop1 ; code ; is produced when
 ; code ; the xmac macro is
 BGE abcloop1 ; expanded
abcloop2 ; code
 BL subr1
 BGT abcloop2
 ; code
 ADR de
 ; code

Using a macro to produce assembly-time diagnostics:

 MACRO ; Macro definition
 diagnose $param1="default" ; This macro produces
 INFO 0,"$param1" ; assembly-time diagnostics
 MEND ; (on second assembly pass)
 ; macro expansion
 diagnose ; Prints blank line at assembly-time
 diagnose "hello" ; Prints "hello" at assembly-time
 diagnose | ; Prints "default" at assembly-time

Note
 When variables are also being passed in as arguments, use of | might leave some variables
unsubstituted. To workaround this, define the | in a LCLS or GBLS variable and pass this variable
as an argument instead of |. For example:

MACRO ; Macro definition
m2 $a,$b=r1,$c ; The default value for $b is r1
add $a,$b,$c ; The macro adds $b and $c and puts result in $a
MEND ; Macro end

MACRO ; Macro definition
m1 $a,$b ; This macro adds $b to r1 and puts result in $a
LCLS def ; Declare a local string variable for |

def SETS "|" ; Define |
m2 $a,$def,$b ; Invoke macro m2 with $def instead of |

; to use the default value for the second argument.
MEND ; Macro end
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-31
ID061811 Non-Confidential

Directives Reference
Conditional macro example

 AREA codx, CODE, READONLY

; macro definition

MACRO
Return$cond
[{ARCHITECTURE} <> "4"
BX$cond lr
|
MOV$cond pc,lr

]
MEND

; macro invocation

fun PROC
CMP r0,#0
MOVEQ r0,#1
ReturnEQ
 MOV r0,#0
Return
ENDP

END

See also

Concept:
Using the Assembler:
• Use of macros on page 5-30
• Assembly time substitution of variables on page 8-6.

Reference:
• MEXIT on page 5-33
• Nesting directives on page 5-29
• GBLA, GBLL, and GBLS on page 5-4
• LCLA, LCLL, and LCLS on page 5-6.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-32
ID061811 Non-Confidential

Directives Reference
5.4.3 MEXIT

The MEXIT directive is used to exit a macro definition before the end.

Usage

Use MEXIT when you require an exit from within the body of a macro. Any unclosed
WHILE...WEND loops or IF...ENDIF conditions within the body of the macro are closed by the
assembler before the macro is exited.

Example

 MACRO
$abc example abc $param1,$param2
 ; code
 WHILE condition1
 ; code
 IF condition2
 ; code
 MEXIT
 ELSE
 ; code
 ENDIF
 WEND
 ; code
 MEND

See also

Reference:
• MACRO and MEND on page 5-30.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-33
ID061811 Non-Confidential

Directives Reference
5.4.4 IF, ELSE, ENDIF, and ELIF

The IF directive introduces a condition that is used to decide whether to assemble a sequence of
instructions and directives. [is a synonym for IF.

The ELSE directive marks the beginning of a sequence of instructions or directives that you want
to be assembled if the preceding condition fails. | is a synonym for ELSE.

The ENDIF directive marks the end of a sequence of instructions or directives that you want to be
conditionally assembled.] is a synonym for ENDIF.

The ELIF directive creates a structure equivalent to ELSE IF, without the requirement for nesting
or repeating the condition.

Syntax

 IF logical-expression …;code
{ELSE …;code} ENDIF

where:

logical-expression

is an expression that evaluates to either {TRUE} or {FALSE}.

Usage

Use IF with ENDIF, and optionally with ELSE, for sequences of instructions or directives that are
only to be assembled or acted on under a specified condition.

IF...ENDIF conditions can be nested.

Using ELIF

Without using ELIF, you can construct a nested set of conditional instructions like this:

 IF logical-expression
 instructions
 ELSE
 IF logical-expression2
 instructions
 ELSE
 IF logical-expression3
 instructions
 ENDIF
 ENDIF
 ENDIF

A nested structure like this can be nested up to 256 levels deep.

You can write the same structure more simply using ELIF:

 IF logical-expression
 instructions
 ELIF logical-expression2
 instructions
 ELIF logical-expression3
 instructions
 ENDIF

This structure only adds one to the current nesting depth, for the IF...ENDIF pair.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-34
ID061811 Non-Confidential

Directives Reference
Examples

Example 5-3 assembles the first set of instructions if NEWVERSION is defined, or the alternative set
otherwise.

Example 5-3 Assembly conditional on a variable being defined

 IF :DEF:NEWVERSION
 ; first set of instructions or directives
 ELSE
 ; alternative set of instructions or directives
 ENDIF

Invoking armasm as follows defines NEWVERSION, so the first set of instructions and directives are
assembled:

armasm --predefine "NEWVERSION SETL {TRUE}" test.s

Invoking armasm as follows leaves NEWVERSION undefined, so the second set of instructions and
directives are assembled:

armasm test.s

Example 5-4 assembles the first set of instructions if NEWVERSION has the value {TRUE}, or the
alternative set otherwise.

Example 5-4 Assembly conditional on a variable value

 IF NEWVERSION = {TRUE}
 ; first set of instructions or directives
 ELSE
 ; alternative set of instructions or directives
 ENDIF

Invoking armasm as follows causes the first set of instructions and directives to be assembled:

armasm --predefine "NEWVERSION SETL {TRUE}" test.s

Invoking armasm as follows causes the second set of instructions and directives to be assembled:

armasm --predefine "NEWVERSION SETL {FALSE}" test.s

See also

Concept:
Using the Assembler:
• Relational operators on page 8-27.

Reference:
• Using ELIF on page 5-34
• Nesting directives on page 5-29.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-35
ID061811 Non-Confidential

Directives Reference
5.4.5 WHILE and WEND

The WHILE directive starts a sequence of instructions or directives that are to be assembled
repeatedly. The sequence is terminated with a WEND directive.

Syntax

WHILE logical-expression

code

WEND

where:

logical-expression

is an expression that can evaluate to either {TRUE} or {FALSE}.

Usage

Use the WHILE directive, together with the WEND directive, to assemble a sequence of instructions
a number of times. The number of repetitions can be zero.

You can use IF...ENDIF conditions within WHILE...WEND loops.

WHILE...WEND loops can be nested.

Example

GBLA count ; declare local variable
count SETA 1 ; you are not restricted to
 WHILE count <= 4 ; such simple conditions
count SETA count+1 ; In this case,
 ; code ; this code will be
 ; code ; repeated four times
 WEND

See also

Concept:
Using the Assembler:
• Logical expressions on page 8-19.

Reference:
• Nesting directives on page 5-29.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-36
ID061811 Non-Confidential

Directives Reference
5.5 Frame directives
This section describes the following directives:
• FRAME ADDRESS on page 5-38
• FRAME POP on page 5-39
• FRAME PUSH on page 5-40
• FRAME REGISTER on page 5-41
• FRAME RESTORE on page 5-42
• FRAME RETURN ADDRESS on page 5-43
• FRAME SAVE on page 5-44
• FRAME STATE REMEMBER on page 5-45
• FRAME STATE RESTORE on page 5-46
• FRAME UNWIND ON on page 5-47
• FRAME UNWIND OFF on page 5-47
• FUNCTION or PROC on page 5-47
• ENDFUNC or ENDP on page 5-49.

Correct use of these directives:

• enables the armlink --callgraph option to calculate stack usage of assembler functions.
The following rules are used to determine stack usage:
— If a function is not marked with PROC or ENDP, stack usage is unknown.
— If a function is marked with PROC or ENDP but with no FRAME PUSH or FRAME POP, stack

usage is assumed to be zero. This means that there is no requirement to manually
add FRAME PUSH 0 or FRAME POP 0.

— If a function is marked with PROC or ENDP and with FRAME PUSH n or FRAME POP n, stack
usage is assumed to be n bytes.

• helps you to avoid errors in function construction, particularly when you are modifying
existing code

• enables the assembler to alert you to errors in function construction

• enables backtracing of function calls during debugging

• enables the debugger to profile assembler functions.

If you require profiling of assembler functions, but do not want frame description directives for
other purposes:

• you must use the FUNCTION and ENDFUNC, or PROC and ENDP, directives

• you can omit the other FRAME directives

• you only have to use the FUNCTION and ENDFUNC directives for the functions you want to
profile.

In DWARF, the canonical frame address is an address on the stack specifying where the call
frame of an interrupted function is located.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-37
ID061811 Non-Confidential

Directives Reference
5.5.1 FRAME ADDRESS

The FRAME ADDRESS directive describes how to calculate the canonical frame address for
following instructions. You can only use it in functions with FUNCTION and ENDFUNC or PROC and
ENDP directives.

Syntax

FRAME ADDRESS reg[,offset]

where:

reg is the register on which the canonical frame address is to be based. This is SP
unless the function uses a separate frame pointer.

offset is the offset of the canonical frame address from reg. If offset is zero, you can
omit it.

Usage

Use FRAME ADDRESS if your code alters which register the canonical frame address is based on, or
if it changes the offset of the canonical frame address from the register. You must use FRAME
ADDRESS immediately after the instruction that changes the calculation of the canonical frame
address.

Note
 If your code uses a single instruction to save registers and alter the stack pointer, you can use
FRAME PUSH instead of using both FRAME ADDRESS and FRAME SAVE.

If your code uses a single instruction to load registers and alter the stack pointer, you can use
FRAME POP instead of using both FRAME ADDRESS and FRAME RESTORE.

Example

_fn FUNCTION ; CFA (Canonical Frame Address) is value
 ; of SP on entry to function
 PUSH {r4,fp,ip,lr,pc}
 FRAME PUSH {r4,fp,ip,lr,pc}
 SUB sp,sp,#4 ; CFA offset now changed
 FRAME ADDRESS sp,24 ; - so we correct it
 ADD fp,sp,#20
 FRAME ADDRESS fp,4 ; New base register
 ; code using fp to base call-frame on, instead of SP

See also

Reference:
• FRAME POP on page 5-39
• FRAME PUSH on page 5-40.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-38
ID061811 Non-Confidential

Directives Reference
5.5.2 FRAME POP

Use the FRAME POP directive to inform the assembler when the callee reloads registers. You can
only use it within functions with FUNCTION and ENDFUNC or PROC and ENDP directives.

You do not have to do this after the last instruction in a function.

Syntax

There are three alternative syntaxes for FRAME POP:

FRAME POP {reglist}

FRAME POP {reglist},n

FRAME POP n

where:

reglist is a list of registers restored to the values they had on entry to the function. There
must be at least one register in the list.

n is the number of bytes that the stack pointer moves.

Usage

FRAME POP is equivalent to a FRAME ADDRESS and a FRAME RESTORE directive. You can use it when a
single instruction loads registers and alters the stack pointer.

You must use FRAME POP immediately after the instruction it refers to.

If n is not specified or is zero, the assembler calculates the new offset for the canonical frame
address from {reglist}. It assumes that:

• each ARM register popped occupies four bytes on the stack

• each VFP single-precision register popped occupies four bytes on the stack, plus an extra
four-byte word for each list

• each VFP double-precision register popped occupies eight bytes on the stack, plus an
extra four-byte word for each list.

See also

Reference:
• FRAME ADDRESS on page 5-38
• FRAME RESTORE on page 5-42.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-39
ID061811 Non-Confidential

Directives Reference
5.5.3 FRAME PUSH

Use the FRAME PUSH directive to inform the assembler when the callee saves registers, normally
at function entry. You can only use it within functions with FUNCTION and ENDFUNC or PROC and
ENDP directives.

Syntax

There are two alternative syntaxes for FRAME PUSH:

FRAME PUSH {reglist}

FRAME PUSH {reglist},n

FRAME PUSH n

where:

reglist is a list of registers stored consecutively below the canonical frame address. There
must be at least one register in the list.

n is the number of bytes that the stack pointer moves.

Usage

FRAME PUSH is equivalent to a FRAME ADDRESS and a FRAME SAVE directive. You can use it when a
single instruction saves registers and alters the stack pointer.

You must use FRAME PUSH immediately after the instruction it refers to.

If n is not specified or is zero, the assembler calculates the new offset for the canonical frame
address from {reglist}. It assumes that:

• each ARM register pushed occupies four bytes on the stack

• each VFP single-precision register pushed occupies four bytes on the stack, plus an extra
four-byte word for each list

• each VFP double-precision register popped occupies eight bytes on the stack, plus an
extra four-byte word for each list.

Example

p PROC ; Canonical frame address is SP + 0
 EXPORT p
 PUSH {r4-r6,lr}
 ; SP has moved relative to the canonical frame address,
 ; and registers R4, R5, R6 and LR are now on the stack
 FRAME PUSH {r4-r6,lr}
 ; Equivalent to:
 ; FRAME ADDRESS sp,16 ; 16 bytes in {R4-R6,LR}
 ; FRAME SAVE {r4-r6,lr},-16

See also

Reference:
• FRAME ADDRESS on page 5-38
• FRAME SAVE on page 5-44.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-40
ID061811 Non-Confidential

Directives Reference
5.5.4 FRAME REGISTER

Use the FRAME REGISTER directive to maintain a record of the locations of function arguments held
in registers. You can only use it within functions with FUNCTION and ENDFUNC or PROC and ENDP
directives.

Syntax

FRAME REGISTER reg1,
 reg2

where:

reg1 is the register that held the argument on entry to the function.

reg2 is the register in which the value is preserved.

Usage

Use the FRAME REGISTER directive when you use a register to preserve an argument that was held
in a different register on entry to a function.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-41
ID061811 Non-Confidential

Directives Reference
5.5.5 FRAME RESTORE

Use the FRAME RESTORE directive to inform the assembler that the contents of specified registers
have been restored to the values they had on entry to the function. You can only use it within
functions with FUNCTION and ENDFUNC or PROC and ENDP directives.

Syntax

FRAME RESTORE {reglist}

where:

reglist is a list of registers whose contents have been restored. There must be at least one
register in the list.

Usage

Use FRAME RESTORE immediately after the callee reloads registers from the stack. You do not have
to do this after the last instruction in a function.

reglist can contain integer registers or floating-point registers, but not both.

Note
 If your code uses a single instruction to load registers and alter the stack pointer, you can use
FRAME POP instead of using both FRAME RESTORE and FRAME ADDRESS.

See also

Reference:
• FRAME POP on page 5-39.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-42
ID061811 Non-Confidential

Directives Reference
5.5.6 FRAME RETURN ADDRESS

The FRAME RETURN ADDRESS directive provides for functions that use a register other than LR for
their return address. You can only use it within functions with FUNCTION and ENDFUNC or PROC and
ENDP directives.

Note
 Any function that uses a register other than LR for its return address is not AAPCS compliant.
Such a function must not be exported.

Syntax

FRAME RETURN ADDRESS reg

where:

reg is the register used for the return address.

Usage

Use the FRAME RETURN ADDRESS directive in any function that does not use LR for its return
address. Otherwise, a debugger cannot backtrace through the function.

Use FRAME RETURN ADDRESS immediately after the FUNCTION or PROC directive that introduces the
function.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-43
ID061811 Non-Confidential

Directives Reference
5.5.7 FRAME SAVE

The FRAME SAVE directive describes the location of saved register contents relative to the
canonical frame address. You can only use it within functions with FUNCTION and ENDFUNC or PROC
and ENDP directives.

Syntax

FRAME SAVE {reglist}, offset

where:

reglist is a list of registers stored consecutively starting at offset from the canonical
frame address. There must be at least one register in the list.

Usage

Use FRAME SAVE immediately after the callee stores registers onto the stack.

reglist can include registers which are not required for backtracing. The assembler determines
which registers it requires to record in the DWARF call frame information.

Note
 If your code uses a single instruction to save registers and alter the stack pointer, you can use
FRAME PUSH instead of using both FRAME SAVE and FRAME ADDRESS.

See also

Reference:
• FRAME PUSH on page 5-40.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-44
ID061811 Non-Confidential

Directives Reference
5.5.8 FRAME STATE REMEMBER

The FRAME STATE REMEMBER directive saves the current information on how to calculate the
canonical frame address and locations of saved register values. You can only use it within
functions with FUNCTION and ENDFUNC or PROC and ENDP directives.

Syntax

FRAME STATE REMEMBER

Usage

During an inline exit sequence the information about calculation of canonical frame address and
locations of saved register values can change. After the exit sequence another branch can
continue using the same information as before. Use FRAME STATE REMEMBER to preserve this
information, and FRAME STATE RESTORE to restore it.

These directives can be nested. Each FRAME STATE RESTORE directive must have a corresponding
FRAME STATE REMEMBER directive.

Example

 ; function code
 FRAME STATE REMEMBER
 ; save frame state before in-line exit sequence
 POP {r4-r6,pc}
 ; do not have to FRAME POP here, as control has
 ; transferred out of the function
 FRAME STATE RESTORE
 ; end of exit sequence, so restore state
exitB ; code for exitB
 POP {r4-r6,pc}
 ENDP

See also

Reference:
• FRAME STATE RESTORE on page 5-46
• FUNCTION or PROC on page 5-47.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-45
ID061811 Non-Confidential

Directives Reference
5.5.9 FRAME STATE RESTORE

The FRAME STATE RESTORE directive restores information about how to calculate the canonical
frame address and locations of saved register values. You can only use it within functions with
FUNCTION and ENDFUNC or PROC and ENDP directives.

Syntax

FRAME STATE RESTORE

See also

Reference:
• FRAME STATE REMEMBER on page 5-45
• FUNCTION or PROC on page 5-47.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-46
ID061811 Non-Confidential

Directives Reference
5.5.10 FRAME UNWIND ON

The FRAME UNWIND ON directive instructs the assembler to produce unwind tables for this and
subsequent functions.

Syntax

FRAME UNWIND ON

Usage

You can use this directive outside functions. In this case, the assembler produces unwind tables
for all following functions until it reaches a FRAME UNWIND OFF directive.

Note
 A FRAME UNWIND directive is not sufficient to turn on exception table generation. Furthermore a
FRAME UNWIND directive, without other FRAME directives, is not sufficient information for the
assembler to generate the unwind information.

See also

Reference:
• --exceptions on page 2-12
• --exceptions_unwind on page 2-12.

5.5.11 FRAME UNWIND OFF

The FRAME UNWIND OFF directive instructs the assembler to produce nounwind tables for this and
subsequent functions.

Syntax

FRAME UNWIND OFF

Usage

You can use this directive outside functions. In this case, the assembler produces nounwind
tables for all following functions until it reaches a FRAME UNWIND ON directive.

See also

Reference:
• --exceptions on page 2-12
• --exceptions_unwind on page 2-12.

5.5.12 FUNCTION or PROC

The FUNCTION directive marks the start of a function. PROC is a synonym for FUNCTION.

Syntax

label FUNCTION [{reglist1} [, {reglist2}]]
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-47
ID061811 Non-Confidential

Directives Reference
where:

reglist1 is an optional list of callee saved ARM registers. If reglist1 is not present, and
your debugger checks register usage, it will assume that the AAPCS is in use.

reglist2 is an optional list of callee saved VFP registers.

Usage

Use FUNCTION to mark the start of functions. The assembler uses FUNCTION to identify the start of
a function when producing DWARF call frame information for ELF.

FUNCTION sets the canonical frame address to be R13 (SP), and the frame state stack to be empty.

Each FUNCTION directive must have a matching ENDFUNC directive. You must not nest FUNCTION and
ENDFUNC pairs, and they must not contain PROC or ENDP directives.

You can use the optional reglist parameters to inform the debugger about an alternative
procedure call standard, if you are using your own. Not all debuggers support this feature. See
your debugger documentation for details.

Note
 FUNCTION does not automatically cause alignment to a word boundary (or halfword boundary for
Thumb). Use ALIGN if necessary to ensure alignment, otherwise the call frame might not point
to the start of the function.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-48
ID061811 Non-Confidential

Directives Reference
Examples

 ALIGN ; ensures alignment
dadd FUNCTION ; without the ALIGN directive, this might not be word-aligned
 EXPORT dadd
 PUSH {r4-r6,lr} ; this line automatically word-aligned
 FRAME PUSH {r4-r6,lr}
 ; subroutine body
 POP {r4-r6,pc}
 ENDFUNC
func6 PROC {r4-r8,r12},{D1-D3} ; non-AAPCS-conforming function
 ...
 ENDP

See also

Reference:
• FRAME ADDRESS on page 5-38
• FRAME STATE RESTORE on page 5-46
• ALIGN on page 5-59.

5.5.13 ENDFUNC or ENDP

The ENDFUNC directive marks the end of an AAPCS-conforming function. ENDP is a synonym for
ENDFUNC.

See also

Reference:
• FUNCTION or PROC on page 5-47.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-49
ID061811 Non-Confidential

Directives Reference
5.6 Reporting directives
This section describes the following directives:

• ASSERT
generates an error message if an assertion is false during assembly.

• INFO on page 5-51
generates diagnostic information during assembly.

• OPT on page 5-52
sets listing options.

• TTL and SUBT on page 5-54
insert titles and subtitles in listings.

5.6.1 ASSERT

The ASSERT directive generates an error message during assembly if a given assertion is false.

Syntax

ASSERT logical-expression

where:

logical-expression

is an assertion that can evaluate to either {TRUE} or {FALSE}.

Usage

Use ASSERT to ensure that any necessary condition is met during assembly.

If the assertion is false an error message is generated and assembly fails.

Example

 ASSERT label1 <= label2 ; Tests if the address
 ; represented by label1
 ; is <= the address
 ; represented by label2.

See also

Reference:
• INFO on page 5-51.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-50
ID061811 Non-Confidential

Directives Reference
5.6.2 INFO

The INFO directive supports diagnostic generation on either pass of the assembly.

! is very similar to INFO, but has less detailed reporting.

Syntax

INFO numeric-expression, string-expression{, severity}

where:

numeric-expression

is a numeric expression that is evaluated during assembly. If the expression
evaluates to zero:
• no action is taken during pass one
• string-expression is printed as a warning during pass two if severity is 1
• string-expression is printed as a message during pass two if severity is 0

or not specified.
If the expression does not evaluate to zero:
• string-expression is printed as an error message and the assembly fails

irrespective of whether severity is specified or not (non-zero values for
severity are reserved in this case).

string-expression

is an expression that evaluates to a string.

severity

is an optional number that controls the severity of the message. Its value can be
either 0 or 1. All other values are reserved.

Usage

INFO provides a flexible means of creating custom error messages.

Examples

 INFO 0, "Version 1.0"
 IF endofdata <= label1
 INFO 4, "Data overrun at label1"
 ENDIF

See also

Concept:
Using the Assembler:
• Numeric expressions on page 8-16
• String expressions on page 8-14.

Reference:
• ASSERT on page 5-50.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-51
ID061811 Non-Confidential

Directives Reference
5.6.3 OPT

The OPT directive sets listing options from within the source code.

Syntax

OPT n

where:

n is the OPT directive setting. Table 5-2 lists valid settings.

Usage

Specify the --list= assembler option to turn on listing.

By default the --list= option produces a normal listing that includes variable declarations,
macro expansions, call-conditioned directives, and MEND directives. The listing is produced on
the second pass only. Use the OPT directive to modify the default listing options from within your
code.

You can use OPT to format code listings. For example, you can specify a new page before
functions and sections.

Table 5-2 OPT directive settings

OPT n Effect

1 Turns on normal listing.

2 Turns off normal listing.

4 Page throw. Issues an immediate form feed and starts a new page.

8 Resets the line number counter to zero.

16 Turns on listing for SET, GBL and LCL directives.

32 Turns off listing for SET, GBL and LCL directives.

64 Turns on listing of macro expansions.

128 Turns off listing of macro expansions.

256 Turns on listing of macro invocations.

512 Turns off listing of macro invocations.

1024 Turns on the first pass listing.

2048 Turns off the first pass listing.

4096 Turns on listing of conditional directives.

8192 Turns off listing of conditional directives.

16384 Turns on listing of MEND directives.

32768 Turns off listing of MEND directives.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-52
ID061811 Non-Confidential

Directives Reference
Example

 AREA Example, CODE, READONLY
start ; code
 ; code
 BL func1
 ; code
 OPT 4 ; places a page break before func1
func1 ; code

See also

Reference:
• --list=file on page 2-16.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-53
ID061811 Non-Confidential

Directives Reference
5.6.4 TTL and SUBT

The TTL directive inserts a title at the start of each page of a listing file. The title is printed on
each page until a new TTL directive is issued.

The SUBT directive places a subtitle on the pages of a listing file. The subtitle is printed on each
page until a new SUBT directive is issued.

Syntax

TTL title

SUBT subtitle

where:

title is the title.

subtitle is the subtitle.

Usage

Use the TTL directive to place a title at the top of the pages of a listing file. If you want the title
to appear on the first page, the TTL directive must be on the first line of the source file.

Use additional TTL directives to change the title. Each new TTL directive takes effect from the top
of the next page.

Use SUBT to place a subtitle at the top of the pages of a listing file. Subtitles appear in the line
below the titles. If you want the subtitle to appear on the first page, the SUBT directive must be
on the first line of the source file.

Use additional SUBT directives to change subtitles. Each new SUBT directive takes effect from the
top of the next page.

Examples

 TTL First Title ; places a title on the first
 ; and subsequent pages of a
 ; listing file.
 SUBT First Subtitle ; places a subtitle on the
 ; second and subsequent pages
 ; of a listing file.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-54
ID061811 Non-Confidential

Directives Reference
5.7 Instruction set and syntax selection directives
This section describes the following directives:
• ARM, THUMB, THUMBX, CODE16 and CODE32 on page 5-56.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-55
ID061811 Non-Confidential

Directives Reference
5.7.1 ARM, THUMB, THUMBX, CODE16 and CODE32

The ARM directive and the CODE32 directive are synonyms. They instruct the assembler to interpret
subsequent instructions as ARM instructions, using either the UAL or the pre-UAL ARM
assembler language syntax.

The THUMB directive instructs the assembler to interpret subsequent instructions as Thumb
instructions, using the UAL syntax.

The THUMBX directive instructs the assembler to interpret subsequent instructions as Thumb-2EE
instructions, using the UAL syntax.

The CODE16 directive instructs the assembler to interpret subsequent instructions as Thumb
instructions, using the pre-UAL assembly language syntax.

If necessary, these directives also insert up to three bytes of padding to align to the next word
boundary for ARM, or up to one byte of padding to align to the next halfword boundary for
Thumb or Thumb-2EE.

Syntax

ARM
THUMB
THUMBX
CODE16
CODE32

Usage

In files that contain code using different instruction sets:
• ARM must precede any ARM code. CODE32 is a synonym for ARM.
• THUMB must precede Thumb code written in UAL syntax.
• THUMBX must precede Thumb-2EE code written in UAL syntax.
• CODE16 must precede Thumb code written in pre-UAL syntax.

These directives do not assemble to any instructions. They also do not change the state. They
only instruct the assembler to assemble ARM, Thumb, or Thumb-2EE instructions as
appropriate, and insert padding if necessary.

Example

This example shows how ARM and THUMB can be used to switch state and assemble both ARM and
Thumb instructions in a single area.

 AREA ToThumb, CODE, READONLY ; Name this block of code
 ENTRY ; Mark first instruction to execute
 ARM ; Subsequent instructions are ARM
start
 ADR r0, into_thumb + 1 ; Processor starts in ARM state
 BX r0 ; Inline switch to Thumb state
 THUMB ; Subsequent instructions are Thumb
into_thumb
 MOVS r0, #10 ; New-style Thumb instructions
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-56
ID061811 Non-Confidential

Directives Reference
5.8 Miscellaneous directives
This section describes the following directives:
• ALIAS on page 5-58
• ALIGN on page 5-59
• AREA on page 5-61
• ATTR on page 5-64
• END on page 5-65
• ENTRY on page 5-65
• EQU on page 5-66
• EXPORT or GLOBAL on page 5-67
• EXPORTAS on page 5-69
• GET or INCLUDE on page 5-70
• IMPORT and EXTERN on page 5-71
• INCBIN on page 5-73
• KEEP on page 5-74
• NOFP on page 5-75
• REQUIRE on page 5-75
• REQUIRE8 and PRESERVE8 on page 5-76
• ROUT on page 5-77.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-57
ID061811 Non-Confidential

Directives Reference
5.8.1 ALIAS

The ALIAS directive creates an alias for a symbol.

Syntax

ALIAS name, aliasname

where:
name is the name of the symbol to create an alias for
aliasname is the name of the alias to be created.

Usage

The symbol name must already be defined in the source file before creating an alias for it.
Properties of name set by the EXPORT directive will not be inherited by aliasname, so you must use
EXPORT on aliasname if you want to make the alias available outside the current source file. Apart
from the properties set by the EXPORT directive, name and aliasname are identical.

Example

baz
bar PROC

BX lr
ENDP
ALIAS bar,foo ; foo is an alias for bar
EXPORT bar
EXPORT foo ; foo and bar have identical properties

; because foo was created using ALIAS
EXPORT baz ; baz and bar are not identical

; because the size field of baz is not set

Incorrect example

EXPORT bar
IMPORT car
ALIAS bar,foo ; ERROR - bar is not defined yet
ALIAS car,boo ; ERROR - car is external

bar PROC
BX lr
ENDP

See also

Reference:
• Data definition directives on page 5-15
• EXPORT or GLOBAL on page 5-67.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-58
ID061811 Non-Confidential

Directives Reference
5.8.2 ALIGN

The ALIGN directive aligns the current location to a specified boundary by padding with zeros or
NOP instructions.

Syntax

ALIGN {expr{,offset{,pad{,padsize}}}}

where:
expr is a numeric expression evaluating to any power of 2 from 20 to 231

offset can be any numeric expression
pad can be any numeric expression
padsize can be 1, 2 or 4.

Operation

The current location is aligned to the next lowest address of the form:

offset + n * expr

n is any integer which the assembler selects to minimise padding.

If expr is not specified, ALIGN sets the current location to the next word (four byte) boundary. The
unused space between the previous and the new current location are filled with:

• copies of pad, if pad is specified

• NOP instructions, if all the following conditions are satisfied:
— pad is not specified
— the ALIGN directive follows ARM or Thumb instructions
— the current section has the CODEALIGN attribute set on the AREA directive

• zeros otherwise.

pad is treated as a byte, halfword, or word, according to the value of padsize. If padsize is not
specified, pad defaults to bytes in data sections, halfwords in Thumb code, or words in ARM
code.

Usage

Use ALIGN to ensure that your data and code is aligned to appropriate boundaries. This is
typically required in the following circumstances:

• The ADR Thumb pseudo-instruction can only load addresses that are word aligned, but a
label within Thumb code might not be word aligned. Use ALIGN 4 to ensure four-byte
alignment of an address within Thumb code.

• Use ALIGN to take advantage of caches on some ARM processors. For example, the
ARM940T has a cache with 16-byte lines. Use ALIGN 16 to align function entries on
16-byte boundaries and maximize the efficiency of the cache.

• LDRD and STRD doubleword data transfers must be eight-byte aligned. Use ALIGN 8 before
memory allocation directives such as DCQ if the data is to be accessed using LDRD or STRD.

• A label on a line by itself can be arbitrarily aligned. Following ARM code is word-aligned
(Thumb code is halfword aligned). The label therefore does not address the code correctly.
Use ALIGN 4 (or ALIGN 2 for Thumb) before the label.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-59
ID061811 Non-Confidential

Directives Reference
Alignment is relative to the start of the ELF section where the routine is located. The section
must be aligned to the same, or coarser, boundaries. The ALIGN attribute on the AREA directive is
specified differently.

Examples

 AREA cacheable, CODE, ALIGN=3
rout1 ; code ; aligned on 8-byte boundary
 ; code
 MOV pc,lr ; aligned only on 4-byte boundary
 ALIGN 8 ; now aligned on 8-byte boundary
rout2 ; code

In the following example, the ALIGN directive tells the assembler that the next instruction is word
aligned and offset by 3 bytes. The 3 byte offset is counted from the previous word aligned
address, resulting in the second DCB placed in the last byte of the same word and 2 bytes of
padding are to be added.

AREA OffsetExample, CODE
 DCB 1 ; This example places the two bytes in the first
 ALIGN 4,3 ; and fourth bytes of the same word.
 DCB 1 ; The second DCB is offset by 3 bytes from the first DCB

In the following example, the ALIGN directive tells the assembler that the next instruction is word
aligned and offset by 2 bytes. Here, the 2 byte offset is counted from the next word aligned
address, so the value n is set to 1 (n=0 clashes with the third DCB). This time three bytes of
padding are to be added.

AREA OffsetExample1, CODE
DCB 1 ; In this example, n cannot be 0 because it clashes with
DCB 1 ; the 3rd DCB. The assembler sets n to 1.
DCB 1
ALIGN 4,2 ; The next instruction is word aligned and offset by 2.
DCB 2

In the following example, the DCB directive makes the PC misaligned. The ALIGN directive
ensures that the label subroutine1 and the following instruction are word aligned.

 AREA Example, CODE, READONLY
start LDR r6,=label1
 ; code
 MOV pc,lr
label1 DCB 1 ; PC now misaligned
 ALIGN ; ensures that subroutine1 addresses
subroutine1 ; the following instruction.
 MOV r5,#0x5

See also

Reference:
• Data definition directives on page 5-15
• AREA on page 5-61
• Examples.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-60
ID061811 Non-Confidential

Directives Reference
5.8.3 AREA

The AREA directive instructs the assembler to assemble a new code or data section. Sections are
independent, named, indivisible chunks of code or data that are manipulated by the linker.

Syntax

AREA sectionname{,attr}{,attr}...

where:

sectionname is the name to give to the section.
You can choose any name for your sections. However, names starting with
a non-alphabetic character must be enclosed in bars or a missing section
name error is generated. For example, |1_DataArea|.
Certain names are conventional. For example, |.text| is used for code
sections produced by the C compiler, or for code sections otherwise
associated with the C library.

attr are one or more comma-delimited section attributes. Valid attributes are:
ALIGN=expression

By default, ELF sections are aligned on a four-byte boundary.
expression can have any integer value from 0 to 31. The section
is aligned on a 2expression-byte boundary. For example, if
expression is 10, the section is aligned on a 1KB boundary.
This is not the same as the way that the ALIGN directive is
specified.

Note
 Do not use ALIGN=0 or ALIGN=1 for ARM code sections.

Do not use ALIGN=0 for Thumb code sections.

ASSOC=section

section specifies an associated ELF section. sectionname must
be included in any link that includes section

CODE Contains machine instructions. READONLY is the default.
CODEALIGN

Causes the assembler to insert NOP instructions when the ALIGN
directive is used after ARM or Thumb instructions within the
section, unless the ALIGN directive specifies a different padding.

COMDEF Is a common section definition. This ELF section can contain
code or data. It must be identical to any other section of the
same name in other source files.
Identical ELF sections with the same name are overlaid in the
same section of memory by the linker. If any are different, the
linker generates a warning and does not overlay the sections.

COMGROUP=symbol_name

Is the signature that makes the AREA part of the named ELF
section group. See the GROUP=symbol_name for more information.
The COMGROUP attribute marks the ELF section group with the
GRP_COMDAT flag.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-61
ID061811 Non-Confidential

Directives Reference
COMMON Is a common data section. You must not define any code or data
in it. It is initialized to zeros by the linker. All common sections
with the same name are overlaid in the same section of memory
by the linker. They do not all have to be the same size. The
linker allocates as much space as is required by the largest
common section of each name.

DATA Contains data, not instructions. READWRITE is the default.
FINI_ARRAY

Sets the ELF type of the current area to SHT_FINI_ARRAY.
GROUP=symbol_name

Is the signature that makes the AREA part of the named ELF
section group. It must be defined by the source file, or a file
included by the source file. All AREAS with the same symbol_name
signature are part of the same group. Sections within a group
are kept or discarded together.

INIT_ARRAY

Sets the ELF type of the current area to SHT_INIT_ARRAY.
LINKORDER=section

Specifies a relative location for the current section in the image.
It ensures that the order of all the sections with the LINKORDER
attribute, with respect to each other, is the same as the order of
the corresponding named sections in the image.

MERGE=n Indicates that the linker can merge the current section with
other sections with the MERGE=n attribute. n is the size of the
elements in the section, for example n is 1 for characters. You
must not assume that the section will be merged because the
attribute does not force the linker to merge the sections.

NOALLOC Indicates that no memory on the target system is allocated to
this area.

NOINIT Indicates that the data section is uninitialized, or initialized to
zero. It contains only space reservation directives SPACE or DCB,
DCD, DCDU, DCQ, DCQU, DCW, or DCWU with initialized values of zero.
You can decide at link time whether an area is uninitialized or
zero initialized.

PREINIT_ARRAY

Sets the ELF type of the current area to SHT_PREINIT_ARRAY.
READONLY Indicates that this section must not be written to. This is the

default for Code areas.
READWRITE Indicates that this section can be read from and written to. This

is the default for Data areas.
SECFLAGS=n

Adds one or more ELF flags, denoted by n, to the current
section.

SECTYPE=n

Sets the ELF type of the current section to n.
STRINGS Adds the SHF_STRINGS flag to the current section. To use the

STRINGS attribute, you must also use the MERGE=1 attribute. The
contents of the section must be strings that are nul-terminated
using the DCB directive.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-62
ID061811 Non-Confidential

Directives Reference
Usage

Use the AREA directive to subdivide your source file into ELF sections. You can use the same
name in more than one AREA directive. All areas with the same name are placed in the same ELF
section. Only the attributes of the first AREA directive of a particular name are applied.

You should normally use separate ELF sections for code and data. However, you can put data
in code sections. Large programs can usually be conveniently divided into several code sections.
Large independent data sets are also usually best placed in separate sections.

The scope of local labels is defined by AREA directives, optionally subdivided by ROUT directives.

There must be at least one AREA directive for an assembly.

Note
 The assembler emits R_ARM_TARGET1 relocations for the DCD and DCDU directives if the directive
uses PC-relative expressions and is in any of the PREINIT_ARRAY, FINI_ARRAY, or INIT_ARRAY ELF
sections. You can override the relocation using the RELOC directive after each DCD or DCDU
directive. If this relocation is used, read-write sections might become read-only sections at link
time if the platform ABI permits this.

Example

The following example defines a read-only code section named Example.

 AREA Example,CODE,READONLY ; An example code section.
 ; code

See also

Concept:
Using the Assembler:
• ELF sections and the AREA directive on page 4-5.

Concept:
Using the Linker:
• Chapter 4 Image structure and generation.

Reference:
• ALIGN on page 5-59
• RELOC on page 5-8
• DCD and DCDU on page 5-21.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-63
ID061811 Non-Confidential

Directives Reference
5.8.4 ATTR

The ATTR set directives set values for the ABI build attributes.

The ATTR scope directives specify the scope for which the set value applies to.

Syntax

ATTR FILESCOPE

ATTR SCOPE name

ATTR settype tagid, value

where:

name is a section name or symbol name.

settype can be any of:
• SETVALUE

• SETSTRING

• SETCOMPATIBLEWITHVALUE

• SETCOMPATIBLEWITHSTRING

tagid is an attribute tag name (or its numerical value) defined in the ABI for the ARM
Architecture.

value depends on settype:
• is a 32-bit integer value when settype is SETVALUE or

SETCOMPATIBLEWITHVALUE

• is a nul-terminated string when settype is SETSTRING or
SETCOMPATIBLEWITHSTRING

Usage

The ATTR set directives following the ATTR FILESCOPE directive apply to the entire object file. The
ATTR set directives following the ATTR SCOPE name directive apply only to the named section or
symbol.

For tags that expect an integer, you must use SETVALUE or SETCOMPATIBLEWITHVALUE. For tags that
expect a string, you must use SETSTRING or SETCOMPATIBLEWITHSTRING.

Use SETCOMPATIBLEWITHVALUE and SETCOMPATIBLEWITHSTRING to set tag values which the object file
is also compatible with.

Examples

ATTR SETSTRING Tag_CPU_raw_name, "Cortex-R4F"
ATTR SETVALUE Tag_VFP_arch, 3 ; VFPv3 instructions were permitted.
ATTR SETVALUE 10, 3 ; 10 is the numerical value of

; Tag_VFP_arch.

See also

Reference
• Addenda to, and Errata in, the ABI for the ARM Architecture,

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0045-/index.html.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-64
ID061811 Non-Confidential

Directives Reference
5.8.5 END

The END directive informs the assembler that it has reached the end of a source file.

Syntax

END

Usage

Every assembly language source file must end with END on a line by itself.

If the source file has been included in a parent file by a GET directive, the assembler returns to
the parent file and continues assembly at the first line following the GET directive.

If END is reached in the top-level source file during the first pass without any errors, the second
pass begins.

If END is reached in the top-level source file during the second pass, the assembler finishes the
assembly and writes the appropriate output.

See also

Reference:
• GET or INCLUDE on page 5-70.

5.8.6 ENTRY

The ENTRY directive declares an entry point to a program.

Syntax

ENTRY

Usage

You must specify at least one ENTRY point for a program. If no ENTRY exists, a warning is
generated at link time.

You must not use more than one ENTRY directive in a single source file. Not every source file has
to have an ENTRY directive. If more than one ENTRY exists in a single source file, an error message
is generated at assembly time.

Example

 AREA ARMex, CODE, READONLY
 ENTRY ; Entry point for the application
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-65
ID061811 Non-Confidential

Directives Reference
5.8.7 EQU

The EQU directive gives a symbolic name to a numeric constant, a register-relative value or a
PC-relative value. * is a synonym for EQU.

Syntax

name EQU expr{, type}

where:

name is the symbolic name to assign to the value.

expr is a register-relative address, a PC-relative address, an absolute address, or a
32-bit integer constant.

type is optional. type can be any one of:
• ARM

• THUMB

• CODE32

• CODE16

• DATA

You can use type only if expr is an absolute address. If name is exported, the name
entry in the symbol table in the object file will be marked as ARM, THUMB, CODE32,
CODE16, or DATA, according to type. This can be used by the linker.

Usage

Use EQU to define constants. This is similar to the use of #define to define a constant in C.

Examples

abc EQU 2 ; assigns the value 2 to the symbol abc.
xyz EQU label+8 ; assigns the address (label+8) to the
 ; symbol xyz.
fiq EQU 0x1C, CODE32 ; assigns the absolute address 0x1C to
 ; the symbol fiq, and marks it as code

See also

Reference:
• KEEP on page 5-74
• EXPORT or GLOBAL on page 5-67.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-66
ID061811 Non-Confidential

Directives Reference
5.8.8 EXPORT or GLOBAL

The EXPORT directive declares a symbol that can be used by the linker to resolve symbol
references in separate object and library files. GLOBAL is a synonym for EXPORT.

Syntax

EXPORT {[WEAK]}

EXPORT symbol {[SIZE=n]}

EXPORT symbol {[type{,set}]}

EXPORT symbol [attr{,type{,set}}{,SIZE=n}]

EXPORT symbol [WEAK{,attr}{,type{,set}}{,SIZE=n}]

where:

symbol is the symbol name to export. The symbol name is case-sensitive. If symbol is
omitted, all symbols are exported.

WEAK symbol is only imported into other sources if no other source exports an alternative
symbol. If [WEAK] is used without symbol, all exported symbols are weak.

attr can be any one of:
DYNAMIC sets the ELF symbol visibility to STV_DEFAULT.
PROTECTED sets the ELF symbol visibility to STV_PROTECTED.
HIDDEN sets the ELF symbol visibility to STV_HIDDEN.
INTERNAL sets the ELF symbol visibility to STV_INTERNAL.

type specifies the symbol type:
DATA symbol is treated as data when the source is assembled and linked.
CODE symbol is treated as code when the source is assembled and linked.
ELFTYPE=n symbol is treated as a particular ELF symbol, as specified by the value

of n, where n can be any number from 0 to 15.
If unspecified, the assembler determines the most appropriate type. Usually the
assembler determines the correct type so there is no need to specify the type.

set specifies the instruction set:
ARM symbol is treated as an ARM symbol.
THUMB symbol is treated as a Thumb symbol.
If unspecified, the assembler determines the most appropriate set.

n specifies the size and can be any 32-bit value. If the SIZE attribute is not specified,
the assembler calculates the size:
• For PROC and FUNCTION symbols, the size is set to the size of the code until

its ENDP or ENDFUNC.
• For other symbols, the size is the size of instruction or data on the same

source line. If there is no instruction or data, the size is zero.

Usage

Use EXPORT to give code in other files access to symbols in the current file.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-67
ID061811 Non-Confidential

Directives Reference
Use the [WEAK] attribute to inform the linker that a different instance of symbol takes precedence
over this one, if a different one is available from another source. You can use the [WEAK] attribute
with any of the symbol visibility attributes.

Example

 AREA Example,CODE,READONLY
 EXPORT DoAdd ; Export the function name
 ; to be used by external
 ; modules.
DoAdd ADD r0,r0,r1

Symbol visibility can be overridden for duplicate exports. In the following example, the last
EXPORT takes precedence for both binding and visibility:

 EXPORT SymA[WEAK] ; Export as weak-hidden
 EXPORT SymA[DYNAMIC] ; SymA becomes non-weak dynamic.

The following examples show the use of the SIZE attribute:

EXPORT symA [SIZE=4]
EXPORT symA [DATA, SIZE=4]

See also

Reference:
• IMPORT and EXTERN on page 5-71.
• ELF for the ARM Architecture,

http://infocenter/help/topic/com.arm.doc.ihi0044-/index.html.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-68
ID061811 Non-Confidential

Directives Reference
5.8.9 EXPORTAS

The EXPORTAS directive enables you to export a symbol to the object file, corresponding to a
different symbol in the source file.

Syntax

EXPORTAS symbol1, symbol2

where:

symbol1 is the symbol name in the source file. symbol1 must have been defined already. It
can be any symbol, including an area name, a label, or a constant.

symbol2 is the symbol name you want to appear in the object file.

The symbol names are case-sensitive.

Usage

Use EXPORTAS to change a symbol in the object file without having to change every instance in
the source file.

Examples

 AREA data1, DATA ; starts a new area data1
 AREA data2, DATA ; starts a new area data2
 EXPORTAS data2, data1 ; the section symbol referred to as data2 will

 ; appear in the object file string table as data1.
one EQU 2
 EXPORTAS one, two
 EXPORT one ; the symbol 'two' will appear in the object

; file's symbol table with the value 2.

See also

Reference:
• EXPORT or GLOBAL on page 5-67.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-69
ID061811 Non-Confidential

Directives Reference
5.8.10 GET or INCLUDE

The GET directive includes a file within the file being assembled. The included file is assembled
at the location of the GET directive. INCLUDE is a synonym for GET.

Syntax

GET filename

where:

filename is the name of the file to be included in the assembly. The assembler accepts
pathnames in either UNIX or MS-DOS format.

Usage

GET is useful for including macro definitions, EQUs, and storage maps in an assembly. When
assembly of the included file is complete, assembly continues at the line following the GET
directive.

By default the assembler searches the current place for included files. The current place is the
directory where the calling file is located. Use the -i assembler command line option to add
directories to the search path. File names and directory names containing spaces must not be
enclosed in double quotes (" ").

The included file can contain additional GET directives to include other files.

If the included file is in a different directory from the current place, this becomes the current
place until the end of the included file. The previous current place is then restored.

GET cannot be used to include object files.

Examples

 AREA Example, CODE, READONLY
 GET file1.s ; includes file1 if it exists
 ; in the current place.
 GET c:\project\file2.s ; includes file2
 GET c:\Program files\file3.s ; space is permitted

See also

Reference:
• INCBIN on page 5-73
• Nesting directives on page 5-29.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-70
ID061811 Non-Confidential

Directives Reference
5.8.11 IMPORT and EXTERN

These directives provide the assembler with a name that is not defined in the current assembly.

Syntax

directive symbol {[SIZE=n]}

directive symbol {[type]}

directive symbol [attr{,type}{,SIZE=n}]

directive symbol [WEAK{,attr}{,type}{,SIZE=n}]

where:

directive can be either:
IMPORT imports the symbol unconditionally.
EXTERN imports the symbol only if it is referred to in the current assembly.

symbol is a symbol name defined in a separately assembled source file, object file, or
library. The symbol name is case-sensitive.

WEAK prevents the linker generating an error message if the symbol is not defined
elsewhere. It also prevents the linker searching libraries that are not already
included.

attr can be any one of:
DYNAMIC sets the ELF symbol visibility to STV_DEFAULT.
PROTECTED sets the ELF symbol visibility to STV_PROTECTED.
HIDDEN sets the ELF symbol visibility to STV_HIDDEN.
INTERNAL sets the ELF symbol visibility to STV_INTERNAL.

type specifies the symbol type:
DATA symbol is treated as data when the source is assembled and linked.
CODE symbol is treated as code when the source is assembled and linked.
ELFTYPE=n symbol is treated as a particular ELF symbol, as specified by the value

of n, where n can be any number from 0 to 15.
If unspecified, the linker determines the most appropriate type.

n specifies the size and can be any 32-bit value. If the SIZE attribute is not specified,
the assembler calculates the size:
• For PROC and FUNCTION symbols, the size is set to the size of the code until

its ENDP or ENDFUNC.
• For other symbols, the size is the size of instruction or data on the same

source line. If there is no instruction or data, the size is zero.

Usage

The name is resolved at link time to a symbol defined in a separate object file. The symbol is
treated as a program address. If [WEAK] is not specified, the linker generates an error if no
corresponding symbol is found at link time.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-71
ID061811 Non-Confidential

Directives Reference
If [WEAK] is specified and no corresponding symbol is found at link time:

• If the reference is the destination of a B or BL instruction, the value of the symbol is taken
as the address of the following instruction. This makes the B or BL instruction effectively
a NOP.

• Otherwise, the value of the symbol is taken as zero.

Example

The example tests to see if the C++ library has been linked, and branches conditionally on the
result.

 AREA Example, CODE, READONLY
 EXTERN __CPP_INITIALIZE[WEAK] ; If C++ library linked, gets the address of
 ; __CPP_INITIALIZE function.
 LDR r0,=__CPP_INITIALIZE ; If not linked, address is zeroed.
 CMP r0,#0 ; Test if zero.
 BEQ nocplusplus ; Branch on the result.

The following examples show the use of the SIZE attribute:

EXTERN symA [SIZE=4]
EXTERN symA [DATA, SIZE=4]

See also

Reference
• ELF for the ARM Architecture,

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0044-/index.html.
• EXPORT or GLOBAL on page 5-67.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-72
ID061811 Non-Confidential

Directives Reference
5.8.12 INCBIN

The INCBIN directive includes a file within the file being assembled. The file is included as it is,
without being assembled.

Syntax

INCBIN filename

where:

filename is the name of the file to be included in the assembly. The assembler accepts
pathnames in either UNIX or MS-DOS format.

Usage

You can use INCBIN to include executable files, literals, or any arbitrary data. The contents of the
file are added to the current ELF section, byte for byte, without being interpreted in any way.
Assembly continues at the line following the INCBIN directive.

By default, the assembler searches the current place for included files. The current place is the
directory where the calling file is located. Use the -i assembler command line option to add
directories to the search path. File names and directory names containing spaces must not be
enclosed in double quotes (" ").

Example

 AREA Example, CODE, READONLY
 INCBIN file1.dat ; includes file1 if it
 ; exists in the
 ; current place.
 INCBIN c:\project\file2.txt ; includes file2
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-73
ID061811 Non-Confidential

Directives Reference
5.8.13 KEEP

The KEEP directive instructs the assembler to retain local symbols in the symbol table in the
object file.

Syntax

KEEP {symbol}

where:

symbol is the name of the local symbol to keep. If symbol is not specified, all local
symbols are kept except register-relative symbols.

Usage

By default, the only symbols that the assembler describes in its output object file are:
• exported symbols
• symbols that are relocated against.

Use KEEP to preserve local symbols that can be used to help debugging. Kept symbols appear in
the ARM debuggers and in linker map files.

KEEP cannot preserve register-relative symbols.

Example

label ADC r2,r3,r4
 KEEP label ; makes label available to debuggers
 ADD r2,r2,r5

See also

Reference:
• MAP on page 5-17.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-74
ID061811 Non-Confidential

Directives Reference
5.8.14 NOFP

The NOFP directive ensures that there are no floating-point instructions in an assembly language
source file.

Syntax

NOFP

Usage

Use NOFP to ensure that no floating-point instructions are used in situations where there is no
support for floating-point instructions either in software or in target hardware.

If a floating-point instruction occurs after the NOFP directive, an Unknown opcode error is generated
and the assembly fails.

If a NOFP directive occurs after a floating-point instruction, the assembler generates the error:

Too late to ban floating point instructions

and the assembly fails.

5.8.15 REQUIRE

The REQUIRE directive specifies a dependency between sections.

Syntax

REQUIRE label

where:

label is the name of the required label.

Usage

Use REQUIRE to ensure that a related section is included, even if it is not directly called. If the
section containing the REQUIRE directive is included in a link, the linker also includes the section
containing the definition of the specified label.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-75
ID061811 Non-Confidential

Directives Reference
5.8.16 REQUIRE8 and PRESERVE8

The REQUIRE8 directive specifies that the current file requires eight-byte alignment of the stack.
It sets the REQ8 build attribute to inform the linker.

The PRESERVE8 directive specifies that the current file preserves eight-byte alignment of the
stack. It sets the PRES8 build attribute to inform the linker.

The linker checks that any code that requires eight-byte alignment of the stack is only called,
directly or indirectly, by code that preserves eight-byte alignment of the stack.

Syntax

REQUIRE8 {bool}

PRESERVE8 {bool}

where:

bool is an optional Boolean constant, either {TRUE} or {FALSE}.

Usage

Where required, if your code preserves eight-byte alignment of the stack, use PRESERVE8 to set
the PRES8 build attribute on your file. If your code does not preserve eight-byte alignment of
the stack, use PRESERVE8 {FALSE} to ensure that the PRES8 build attribute is not set. If there are
multiple REQUIRE8 or PRESERVE8 directives in a file, the assembler uses the value of the last
directive.

Note
 If you omit both PRESERVE8 and PRESERVE8 {FALSE}, the assembler decides whether to set the
PRES8 build attribute or not, by examining instructions that modify the SP. ARM recommends
that you specify PRESERVE8 explicitly.

You can enable a warning with:

armasm --diag_warning 1546

This gives you warnings like:

"test.s", line 37: Warning: A1546W: Stack pointer update potentially
 breaks 8 byte stack alignment

 37 00000044 STMFD sp!,{r2,r3,lr}

Examples

REQUIRE8
REQUIRE8 {TRUE} ; equivalent to REQUIRE8
REQUIRE8 {FALSE} ; equivalent to absence of REQUIRE8
PRESERVE8 {TRUE} ; equivalent to PRESERVE8
PRESERVE8 {FALSE} ; NOT exactly equivalent to absence of PRESERVE8
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-76
ID061811 Non-Confidential

Directives Reference
See also

Concept:
• 8 Byte Stack Alignment,

http://infocenter.arm.com/help/topic/com.arm.doc.faqs/ka4127.html.

Reference:
• Assembler command line options on page 2-3.

5.8.17 ROUT

The ROUT directive marks the boundaries of the scope of local labels.

Syntax

{name} ROUT

where:

name is the name to be assigned to the scope.

Usage

Use the ROUT directive to limit the scope of local labels. This makes it easier for you to avoid
referring to a wrong label by accident. The scope of local labels is the whole area if there are no
ROUT directives in it.

Use the name option to ensure that each reference is to the correct local label. If the name of a
label or a reference to a label does not match the preceding ROUT directive, the assembler
generates an error message and the assembly fails.

Example

 ; code
routineA ROUT ; ROUT is not necessarily a routine
 ; code
3routineA ; code ; this label is checked
 ; code
 BEQ %4routineA ; this reference is checked
 ; code
 BGE %3 ; refers to 3 above, but not checked
 ; code
4routineA ; code ; this label is checked
 ; code
otherstuff ROUT ; start of next scope

See also

Concept:
Using the Assembler:
• Local labels on page 8-12.

Reference:
• AREA on page 5-61.
ARM DUI 0588A Copyright © 2011 ARM. All rights reserved. 5-77
ID061811 Non-Confidential

	ARM Compiler toolchain v4.1 for µVision Assembler Reference
	Contents
	Conventions and feedback
	Assembler command line options
	2.1 Assembler command line syntax
	2.2 Assembler command line options
	2.2.1 --16
	2.2.2 --32
	2.2.3 --apcs=qualifier…qualifier
	2.2.4 --arm
	2.2.5 --arm_only
	2.2.6 --bi
	2.2.7 --bigend
	2.2.8 --brief_diagnostics
	2.2.9 --checkreglist
	2.2.10 --compatible=name
	2.2.11 --cpreproc
	2.2.12 --cpreproc_opts=options
	2.2.13 --cpu=list
	2.2.14 --cpu=name
	2.2.15 --debug
	2.2.16 --depend=dependfile
	2.2.17 --depend_format=string
	2.2.18 --diag_error=tag{, tag}
	2.2.19 --diag_remark=tag{, tag}
	2.2.20 --diag_style=style
	2.2.21 --diag_suppress=tag{, tag}
	2.2.22 --diag_warning=tag{, tag}
	2.2.23 --dllexport_all
	2.2.24 --dwarf2
	2.2.25 --dwarf3
	2.2.26 --errors=errorfile
	2.2.27 --execstack
	2.2.28 --exceptions
	2.2.29 --exceptions_unwind
	2.2.30 --fpmode=model
	2.2.31 --fpu=list
	2.2.32 --fpu=name
	2.2.33 -g
	2.2.34 --help
	2.2.35 -idir{,dir, …}
	2.2.36 --keep
	2.2.37 --length=n
	2.2.38 --li
	2.2.39 --library_type=lib
	2.2.40 --list=file
	2.2.41 --list=
	2.2.42 --littleend
	2.2.43 -m
	2.2.44 --maxcache=n
	2.2.45 --md
	2.2.46 --no_code_gen
	2.2.47 --no_esc
	2.2.48 --no_execstack
	2.2.49 --no_exceptions
	2.2.50 --no_exceptions_unwind
	2.2.51 --no_hide_all
	2.2.52 --no_project
	2.2.53 --no_reduce_paths
	2.2.54 --no_regs
	2.2.55 --no_terse
	2.2.56 --no_unaligned_access
	2.2.57 --no_warn
	2.2.58 -o filename
	2.2.59 --pd
	2.2.60 --predefine "directive"
	2.2.61 --project=filename
	2.2.62 --reduce_paths
	2.2.63 --regnames=none
	2.2.64 --regnames=callstd
	2.2.65 --regnames=all
	2.2.66 --reinitialize_workdir
	2.2.67 --report-if-not-wysiwyg
	2.2.68 --show_cmdline
	2.2.69 --split_ldm
	2.2.70 --thumb
	2.2.71 --thumbx
	2.2.72 --unaligned_access
	2.2.73 --unsafe
	2.2.74 --untyped_local_labels
	2.2.75 --version_number
	2.2.76 --via=file
	2.2.77 --vsn
	2.2.78 --width=n
	2.2.79 --workdir=directory
	2.2.80 --xref

	ARM and Thumb Instructions
	3.1 Instruction summary
	3.2 Instruction width specifiers
	3.3 Memory access instructions
	3.3.1 LDR and STR (immediate offset)
	3.3.2 LDR and STR (register offset)
	3.3.3 LDR and STR, unprivileged
	3.3.4 LDR (PC-relative)
	3.3.5 LDR (register-relative)
	3.3.6 ADR (PC-relative)
	3.3.7 ADR (register-relative)
	3.3.8 PLD, PLDW, and PLI
	3.3.9 LDM and STM
	3.3.10 PUSH and POP
	3.3.11 RFE
	3.3.12 SRS
	3.3.13 LDREX and STREX
	3.3.14 CLREX
	3.3.15 SWP and SWPB

	3.4 General data processing instructions
	3.4.1 Flexible second operand (Operand2)
	3.4.2 Operand 2 as a constant
	3.4.3 Operand2 as a register with optional shift
	3.4.4 Shift Operations
	3.4.5 ADD, SUB, RSB, ADC, SBC, and RSC
	3.4.6 SUBS pc, lr
	3.4.7 AND, ORR, EOR, BIC, and ORN
	3.4.8 CLZ
	3.4.9 CMP and CMN
	3.4.10 MOV and MVN
	3.4.11 MOVT
	3.4.12 TST and TEQ
	3.4.13 SEL
	3.4.14 REV, REV16, REVSH, and RBIT
	3.4.15 ASR, LSL, LSR, ROR, and RRX
	3.4.16 SDIV and UDIV

	3.5 Multiply instructions
	3.5.1 MUL, MLA, and MLS
	3.5.2 UMULL, UMLAL, SMULL, and SMLAL
	3.5.3 SMULxy and SMLAxy
	3.5.4 SMULWy and SMLAWy
	3.5.5 SMLALxy
	3.5.6 SMUAD{X} and SMUSD{X}
	3.5.7 SMMUL, SMMLA, and SMMLS
	3.5.8 SMLAD and SMLSD
	3.5.9 SMLALD and SMLSLD
	3.5.10 UMAAL
	3.5.11 MIA, MIAPH, and MIAxy

	3.6 Saturating instructions
	3.6.1 Saturating arithmetic
	3.6.2 QADD, QSUB, QDADD, and QDSUB
	3.6.3 SSAT and USAT

	3.7 Parallel instructions
	3.7.1 Parallel add and subtract
	3.7.2 USAD8 and USADA8
	3.7.3 SSAT16 and USAT16

	3.8 Packing and unpacking instructions
	3.8.1 BFC and BFI
	3.8.2 SBFX and UBFX
	3.8.3 SXT, SXTA, UXT, and UXTA
	3.8.4 PKHBT and PKHTB

	3.9 Branch and control instructions
	3.9.1 B, BL, BX, BLX, and BXJ
	3.9.2 IT
	3.9.3 CBZ and CBNZ
	3.9.4 TBB and TBH

	3.10 Coprocessor instructions
	3.10.1 CDP and CDP2
	3.10.2 MCR, MCR2, MCRR, and MCRR2
	3.10.3 MRC, MRC2, MRRC and MRRC2
	3.10.4 MSR
	3.10.5 MRS
	3.10.6 SYS
	3.10.7 LDC, LDC2, STC, and STC2

	3.11 Miscellaneous instructions
	3.11.1 BKPT
	3.11.2 SVC
	3.11.3 MRS
	3.11.4 MSR
	3.11.5 CPS
	3.11.6 SMC
	3.11.7 SETEND
	3.11.8 NOP
	3.11.9 SEV, WFE, WFI, and YIELD
	3.11.10 DBG
	3.11.11 DMB, DSB, and ISB
	3.11.12 MAR and MRA

	3.12 ThumbEE instructions
	3.12.1 ENTERX and LEAVEX
	3.12.2 CHKA
	3.12.3 HB, HBL, HBLP, and HBP

	3.13 Pseudo-instructions
	3.13.1 ADRL pseudo-instruction
	3.13.2 MOV32 pseudo--instruction
	3.13.3 LDR pseudo-instruction
	3.13.4 UND pseudo-instruction

	3.14 Condition codes

	VFP Programming
	4.1 VFP instruction summary
	4.2 VFP pseudo-instructions
	4.2.1 VLDR pseudo-instruction
	4.2.2 VLDR and VSTR (post-increment and pre-decrement)

	4.3 VFP instructions
	4.3.1 VABS, VNEG, and VSQRT
	4.3.2 VADD, VSUB, and VDIV
	4.3.3 VLDR and VSTR
	4.3.4 VLDM, VSTM, VPOP, and VPUSH
	4.3.5 VMOV (between two ARM registers and an extension register)
	4.3.6 VMOV (between one ARM register and single precision VFP)
	4.3.7 VMRS and VMSR
	4.3.8 VMUL, VMLA, VMLS, VNMUL, VNMLA, and VNMLS
	4.3.9 VFMA, VFMS, VFNMA, VFNMS
	4.3.10 VCMP
	4.3.11 VCVT (between single-precision and double-precision)
	4.3.12 VCVT (between floating-point and integer)
	4.3.13 VCVT (between floating-point and fixed-point)
	4.3.14 VCVTB, VCVTT (half-precision extension)
	4.3.15 VMOV

	Directives Reference
	5.1 Alphabetical list of directives
	5.2 Symbol definition directives
	5.2.1 GBLA, GBLL, and GBLS
	5.2.2 LCLA, LCLL, and LCLS
	5.2.3 SETA, SETL, and SETS
	5.2.4 RELOC
	5.2.5 RN
	5.2.6 RLIST
	5.2.7 CN
	5.2.8 CP
	5.2.9 DN and SN

	5.3 Data definition directives
	5.3.1 LTORG
	5.3.2 MAP
	5.3.3 FIELD
	5.3.4 SPACE or FILL
	5.3.5 DCB
	5.3.6 DCD and DCDU
	5.3.7 DCDO
	5.3.8 DCFD and DCFDU
	5.3.9 DCFS and DCFSU
	5.3.10 DCI
	5.3.11 DCQ and DCQU
	5.3.12 DCW and DCWU
	5.3.13 COMMON
	5.3.14 DATA

	5.4 Assembly control directives
	5.4.1 Nesting directives
	5.4.2 MACRO and MEND
	5.4.3 MEXIT
	5.4.4 IF, ELSE, ENDIF, and ELIF
	5.4.5 WHILE and WEND

	5.5 Frame directives
	5.5.1 FRAME ADDRESS
	5.5.2 FRAME POP
	5.5.3 FRAME PUSH
	5.5.4 FRAME REGISTER
	5.5.5 FRAME RESTORE
	5.5.6 FRAME RETURN ADDRESS
	5.5.7 FRAME SAVE
	5.5.8 FRAME STATE REMEMBER
	5.5.9 FRAME STATE RESTORE
	5.5.10 FRAME UNWIND ON
	5.5.11 FRAME UNWIND OFF
	5.5.12 FUNCTION or PROC
	5.5.13 ENDFUNC or ENDP

	5.6 Reporting directives
	5.6.1 ASSERT
	5.6.2 INFO
	5.6.3 OPT
	5.6.4 TTL and SUBT

	5.7 Instruction set and syntax selection directives
	5.7.1 ARM, THUMB, THUMBX, CODE16 and CODE32

	5.8 Miscellaneous directives
	5.8.1 ALIAS
	5.8.2 ALIGN
	5.8.3 AREA
	5.8.4 ATTR
	5.8.5 END
	5.8.6 ENTRY
	5.8.7 EQU
	5.8.8 EXPORT or GLOBAL
	5.8.9 EXPORTAS
	5.8.10 GET or INCLUDE
	5.8.11 IMPORT and EXTERN
	5.8.12 INCBIN
	5.8.13 KEEP
	5.8.14 NOFP
	5.8.15 REQUIRE
	5.8.16 REQUIRE8 and PRESERVE8
	5.8.17 ROUT

