
Embedded Microcomputer
Systems: Real Time Interfacing

Laboratory Manual

5

8

IRF540

1 2

3

+5V
Vpp

Computer
7405

+5V
800Ω

Vpp

coil2

3

6N139
6

1kΩ
1N4003

Fall 2001

Jonathan W. Valvano
Electrical and Computer Engineering

University of Texas at Austin

email: valvano@uts.cc.utexas.edu
web: http://www.ece.utexas.edu/~valvano
how to program: http://www.ece.utexas.edu/~valvano/embed/toc1.htm

Embedded Microcomputer Systems: Lab Manual Page 2

Jonathan W. Valvano

This laboratory manual accompanies the book, Embedded Microcomputer Systems: Real Time Interfacing , by
Jonathan W. Valvano, published by Brooks-Cole, copyright © 2000.

I. Introduction to Microcomputer Laboratory

I.1. Grading Policies
Groups will consist of exactly two students. Lab partners have separate lab quiz and checkout grades, but

share the preparation report and late penalty grades. For each lab assignment, there are a number of preparation tasks
that must be completed before the laboratory period. The purpose of the lab quiz is to evaluate the completeness of
the lab preparation. At the beginning of lab, you turn in your preparation and take the lab quiz. If a student has
completed the preparation, he/she should perform well on the lab quiz. During the quiz, the TA should check your
preparation and return it after the quiz.

Responsibility grade
Quiz 20+

Preparation 10*

Printout of software, due at the start of lab
Edited and compiled with no syntax errors
Not handwritten, hard copy printout, but not necessarily debugged

Hardware circuit diagram, due at the start of lab
Chip numbers, pin numbers, resistor/capacitor types and tolerances
Connections to computer,
Procurement of all necessary parts
Preliminary hardware circuit diagrams but not necessarily built or debugged

Report 45*

(5) Final hardware circuit diagrams (handwritten drawings are OK)
(25) Software quality

Documentation, the comments, choice of good variable names
Interface to the human operator, menus, error messages
Style, organization, top down structure, local variables, careful use of the stack

(15) Results printout, performance/data graphs (handwritten drawings are OK)
Checkout, demonstration to TA

Performance, correctness of the program function 15*

Oral understanding of engineering tradeoffs 10+

Penalty Late Checkout -5/day*

Late Report -5/day *
Total 100+

+ partners receive a separate grade
* partners receive the same grade

I.2. SAFETY REGULATIONS:

IN CASE OF EMERGENCY DIAL 911 or 9-911

Since there will be times when students will work other than the regularly scheduled lab sections, it is
necessary that certain regulations be observed for the convenience and safety of all. Since the possibility of lethal
shock exists in those circuits utilizing low potentials, the following should always be observed:

1. Working alone in a lab room is not permitted.

2. Working after regular hours without written permission is not permitted.

3. Work benches must be clear of all coats, knapsacks and extraneous materials. Coat racks are desired for
those desiring this convenience. Otherwise all materials must be stored under the work area or out of
the way.

Embedded Microcomputer Systems: Lab Manual Page 3

Jonathan W. Valvano

4. Shoes must be worn in the lab at all times. Shoes represent a significant protection against electrical
shock.

5. Smoking, food and beverages (e.g., coffee) are not permitted anywhere in the lab area.

IN CASE OF INJURY OR SHOCK:

Turn off power, do not move the injured. Start artificial respiration if breathing has stopped. Have someone
else call 911 or 9-911 if CPR is needed.

IN CASE OF FIRE:

Turn off the power, call 911 or 9-911, fight fire with available extinguisher, have someone clear the
building.

I.3. LAB PROCEDURES AND POLICIES

FIRST WEEK OF CLASSES : Go to the regularly scheduled lab during the first week of classes. During this time,
you will be introduced to the lab equipment. You will also be instructed on lab procedures and grading policy. If
you missed your regularly scheduled lab, attend one of the other lab periods. Note that attending a lab session for
which you are not registered is not permitted except during the first week of classes.

LAB PARTNERS : Every student is required to have a lab partner. You will perform all labs with a partner.
Students choose their own lab partners during the first week.

LAB EQUIPMENT USAGE : Lab hours are posted in the laboratory. There are no sign-up sheets, but cooperation
is expected. If you start debugging on a station, you may stay as long as you like, with three exceptions:

You must leave when the second floor labs are closed for the day;
You must leave during the first hour of the other regularly scheduled lab periods;
You may not leave the station unattended for more than 15 minutes.

If you would like to use a station that has been left unattended for more than 15 minutes:
1) Carefully disconnect the hardware and eject any floppy disks;
2) Do not save any software files;
3) Return all materials (hardware, disks, paper) to the front desk;
4) Leave a note on the station with your name and time;
5) Write a note to the TA describing exact times listing what you turned in.

LAB QUIZ : The purpose of the lab quiz is to encourage students to prepare for the lab. The scope of the quizzes
will be material relevant to the lab preparation. The quiz will be conducted during the first 10-15 minutes of each
lab session.

LAB PRE PARATION : Lab preparation must be performed prior to the regularly scheduled lab period. All software
must be written, edited and designed before coming to the lab. Hardware must be designed down to the pin
numbers. Label all resistance and capacitance values and types. For example, 1kΩ 5% carbon, or 0.01µF 5%
ceramic. In this way, the lab period may be spent in debugging your system with the TA’s help. The preparation is
due at the start of the lab. Preparation includes gathering all the physical components required to perform the lab.

LAB REPORT : Each lab report is bound separately (you should not put them together.) No purpose, methods, or
analysis required. Every lab report should include the following items:

1. Detailed hardware designs with pin numbers.
Include all external devices used (chips, R’s C’s values and types)
Show connections to the 6812 board.

2. Source code listings: Document your software so that what you did and why you did it could be easily
understood by the TA (and by you a year from now.)
Make it clear how the individual files are compiled together.

3. Data/Results: Whenever appropriate, use the printer to get a hardcopy listing of your results. Include
graphs and figures as specified in the assignment.

Embedded Microcomputer Systems: Lab Manual Page 4

Jonathan W. Valvano

CHECKOUT : A rough draft of your hardware diagrams and hard copy printout of your source code listings must be
given to the TA before you demonstrate. If your experiment works you will be assigned a good score on the
performance part. The TA will ask the partners oral questions that test your “understanding” of the computer
engineering concepts of the lab. The partners will answer separate questions and receive separate “understanding”
grades. You must get your rough draft software listings signed and dated by a TA to prove that the lab was
completed in a satisfactory manner. Late checkouts will result in lost points.

I.4. PROJECT DEVELOPMENT

BDM TOP

BDM Interface
Copyright(c) Kevin Ross

reset

PIC16

pin 1

DB9 to PC
COM1MAX232

ON

1 2 3 4

red

green

MC68HC812A4

H1

H2

optional
DB9 to PC

COM2

reset pin 1
J5

unregulated
power

Run BootRS485

ADAPT812
1997(c) Techological Arts

0
0

MODB

MODA

J4

Each of the stations is equipped with the following:
- The PC COM1 is connected to a serial port 2-to-1 switch box

one serial port is connected to a Kevin Ross BDM-12 module
the other serial port is connected to a Motorola MC68HC912B32 EVB (pod mode)

- The PC COM2 is connected to your Adapt812 SCI0 port (optional)
- A Kevin Ross BDM-12 background debug module

you will connect this BDM-12 to the BDM port of your Adapt812
- An unregulated power supply

you will connect this power to the power connector of your Adapt812

I.4.1. BDM-12/Adapt812 interface
The Kevin Ross BDM-12 is a debugging interface between the PC and the Adapt812. It allows us to

download programs, view/change registers, view/change memory, single step, and run software. When the logic
analyzer is used to debug, we will use the BDM-12 to modify the MC68HC812A4 mode so that the address and
data bus are available on the Adapt812 H2 connector. Circuit diagrams and software manuals are included at the end

Embedded Microcomputer Systems: Lab Manual Page 5

Jonathan W. Valvano

of this introduction chapter. With Windows NT or 95, you will run Kevin Ross’s DOS-level DB12.EXE program
using the batch file we wrote called B.BAT. You can purchase your own BDM-12 board in kit form for about $48
from Kevin Ross at "Kevin Ross" <kevinro@nwlink.com> Identity yourself as a student.
The proper DIP settings on the Kevin Ross BDM-12 board are

1 ON for 38400 bits/sec
2 OFF for debugger mode
3 OFF for 8 MHz 6812
4 OFF for 8 MHz 6812

The 6-pin ribbon cable between the Kevin Ross BDM-12 and the Technological Arts Adapt812 should be attached
so that Pin 1 is connected to Pin 1. It is possible to reverse the polarity so be careful. The power lights come on
(but the system doesn't work) if the cable is reversed. There are two versions of the Adapt812 board1. The
Technological Arts APAPT812 Rev1 settings are

 Run/Boot switch (SW2) should be in the Run position (bypass the on-chip boot loader)
MODA/MODB jumpers should both be in the 0 position (single chip mode.)

The Technological Arts APAPT812 Rev2 settings are
Run/Boot switch (SW2) should be in the Run position (bypass the on-chip boot loader)
Exp/Sgl switch (SW3) should be in the Sgl position (for single chip mode)
Rterm jumper (W12) should be inserted (enables resistor for RS485 network)
MODA jumper (JB2) should be inserted
MODB jumper (JB1) should both be in the 0 position (single chip mode.)

I.4.2. IBM-PC and ICC11/ICC12
I.4.2.1. ImageCraft

The PC can also be used as an intelligent terminal to interface with the 6812 micro-controller. It will also
be used to write the software, assemble it, and then down load it to the 6812. There are professional quality C
compilers from ImageCraft at a low cost. IMAGECRAFT ICC12 IS NOT FREEWARE. You would need to add an
editor and a terminal program. The ImageCraft Windows-based integrated development system includes an editor
and terminal program for about $165+shipping. The full system with IDE supports direct programming of 'E2's
EEPROM in single chip mode at 8 MHz crystal (e.g. the MIT Miniboard, BotBoard, TechArt board etc.)
ImageCraft can be contacted at

ImageCraft
706 Colorado Ave. Suite 10-88
Palo Alto, CA 94303
info@imagecraft.com
http://www.imagecraft.com

cool web site: http://www.interlog.com/~techart/myfiles/links.ltml
Developing Embedded Software in C http://www.ece.utexas.edu/~valvano/embed/toc1.htm

File type Example How you use it
C source code LED1.C Modify using the editor, save to floppy
C header code HC12.H Modify using the editor, save to floppy
preprocessed C source LED1.I you don't use it
assembly source LED1.S normally you don't use it2

relocatable object LED1.O you don't use it
library archive LED1.A you don't use it for small programs
object code LED1.S19 you download this into the µC
assembly listing LED1.LIS you don't use it
linker listing LED1.LST very helpful for debugging
linker map LED1.MP or LED1.MAP very helpful for debugging

1 Rev1 and Rev2 have different H1 connector pin assignments for PS5 PS6, PS7
2 You could write assembly programs by creating file.s assembly source files

Embedded Microcomputer Systems: Lab Manual Page 6

Jonathan W. Valvano

I.4.2.2. Interrupts, vectors, and Dealing with the COP on the Adapt812
In ICC12, the steps required to initialize an interrupt handler are illustrated in the following example.

When the Adapt812 software is started with the reset button, it is in normal single chip mode with Computer
Operating Properly (COP) enabled. You must either disable COP as is done in this example or periodically refresh
it as is done in the second example. Notice how the reset vector is defined at the end of the program. After reset on a
software system created with ICC12, the 6812 will begin at _start, which initializes RAM and calls your main()
program. In ICC12, the entry point _start is defined in the file crt12.s.

In any mode, your software can disable the COP feature with:
 COPCTL=0x00; // disable COP reset

This first example disables the COP. The Red LED (PT6) on the Adapt812 will flash on/off.
// *********LED1.C****************
// PT6 LED flashes on and off
#include "HC12.H"
void init(void){
 COPCTL=0x00; // disable COP
 DDRT|=0x40;} // PortT bit 6 is output to LED
void main(void){ int i;
 init(); // initialize COP, Port T
 while(1){ i++;
 if(i>0)
 PORTT |= 0x40; // LED is on
 else
 PORTT &= ~0x40;}} // LED is off
extern void _start();
#pragma abs_address:0xfffe
void (*reset_vector[])() = { _start };
#pragma end_abs_address

In this second example, a background TOF interrupt is requested every time the TCNT register overflows from
0xFFFF to 0x0000. The ritual TOFinit() will activate TOF periodic interrupts. The software interrupt handler will
keep the COP happy. This TOF interrupt also toggles bit 6 of Port T, flashing the red LED. The TOF interrupt
vector is right after the interrupt service routine, and the reset vector is defined right after the main program.

// *********LED2.C*********************
// PT6 LED flashes on and off
#include "HC12.H"
void TOFinit(void){
 DDRT|=0x40; // PortT bit 6 is output to LED
 TSCR=0x80; // TEN(enable)
 TMSK2=0xA5; // TOI arm, TPU(pullup) timer/32 (4us)
 CLKCTL=0x00;
asm(" cli");} // enable interrupts
#pragma interrupt_handler TOFhandler
void TOFhandler(void){
 TFLG2=0x80; // TOF interrupt acknowledge
 PORTT^=0x40; // toggle bit 6
 COPRST=0x55; // make COP happy
 COPRST=0xAA;}
#pragma abs_address:0xffde
void (*TOF_vector[])() = { TOFhandler };
#pragma end_abs_address
void main(void){
 TOFinit(); // Enable TOF interrupt to make COP happy
 while(1){
 }
};
extern void _start(); /* entry point in crt12.s */
#pragma abs_address:0xfffe
void (*reset_vector[])() = { _start };
#pragma end_abs_address

Embedded Microcomputer Systems: Lab Manual Page 7

Jonathan W. Valvano

Normally we will start our Adapt812 software by pushing the reset vector, which runs our software in normal single
chip mode. When our Adapt812 software is started with the BDM-12 module, then it is possible to run software in
special single chip mode. We can run our software in special single chip mode by typing the following lines using
the BDM-12 debugger.
reset
load LED2.S19
g F000

There are many good examples on the web at http://www.ece.utexas.edu/~valvano/programs
MEALY12.C, MOORE12.C, MOORE2.C finite state machines (Valvano book Chapter 2)
DSTEST.C, DS1620.H, DS1620.C bit bang interface with DS1620 (Valvano book Chapter 3)
RTI.C Periodic interrupt (Valvano book Chapter 4)
THREAD3.C thread scheduler with spinlock semaphores (Valvano book Chapter 5)
PWMOD.C Pulse width moduation interrupt (Valvano book Chapter 6)
SCIDEMO.C, SCI12.H, SCI12.C simple serial port I/O (Valvano book Chapter 7)
SCI12A.C, RXFIFO.*, TXFIFO.* interrupting serial port I/O (Valvano book Chapter 7)
DSTESTB.C, DS1620.H, DS1620B.C SPI interface with DS1620 (Valvano book Chapter 7)
LCDTEST.C, LCD12.H, LCD12.C simple interface to Hitachi HD44780 LCD (Valvano book Chapter 8)
OC3TEST.C, OC3.H, OC3.C Periodic interrupt, stepper driver (Valvano book Chapters 6,8)
ADTEST.C Data acquisition system using an ADC (Valvano book Chapter 11)

I.4.2.3. ICC12 options menu for developing software for the Adapt812
On the ICC12 development system, we use the options_compiler_linker menu command to specify where

the start of globals (the data section grows towards higher addresses), and the start of the object code (the text
section grows towards higher addresses). The initial stack pointer (stack grows towards lower addresses), is specified
in options_compiler_linker menu. On our Adapt812 system,

the globals (data) should start at 0x0800
the program (text) should start at 0xF000
the stack could be set to 0x0C00
the Library path is set to e:\mc6812\lib (ask you TA about this field)
the “Create Map File” button is selected
the “Heap size” is 0.

Embedded Microcomputer Systems: Lab Manual Page 8

Jonathan W. Valvano

We use the options_compiler_compiler dialog to specify that C source code be added to the Asm Output On our
Adapt812 system,

Check the “Emit Interspersed C Source in Asm Output” button.

Embedded Microcomputer Systems: Lab Manual Page 9

Jonathan W. Valvano

We use the options_compiler_preprocessor dialog to specify that C++ comments can be used. On our Adapt812
system,

the Include path is set to e:\mc6812\include (ask you TA about this field)
Check the “Accepts C++ Comments” button.

I.4.2.4. Backing up software onto your floppy
One of the things you need to do often is copying files between the floppy and the hard drive. A batch file

is a convenient way to do this. Create a text file on your floppy called LOD.BAT with the following contents:
copy A:*.c D:\TEMP
copy A:*.h D:\TEMP
copy A:*.bat D:\TEMP

When you execute this file (from DOS or Windows File Manager) it will copy your 6812 development files from
your floppy disk to the system hard drive. If you are working with other types of files (e.g., *.s or *.map) you can
add them to the list.

Create a second file called SAV.BAT with the following contents:
copy D:\TEMP*.c A:
copy D:\TEMP*.h A:
copy D:\TEMP*.bat A:

When you execute SAV.BAT, it will copy files from the hard drive back to your floppy disk. During software
development you should rotate at least 3 floppy disks, so that you can return to previous states when you get a
computer crash, when one file becomes corrupted, or when you make a software modification you wish to undo.
Notice how the three floppy disks are used in a rotation. In each case, you load the files from the newest floppy, edit
the files on the hard drive, then save the files onto the oldest floppy disk. When you have a software system that
runs enough to allow a partial credit demonstration to the TA, put that disk aside and entire new floppy disk into
the rotation. The following table shows the contents of the disks after each software development session.
time session disk A disk B disk C
1 create new programs, save on A session 1 blank blank
2 load from A, edit, save on B session 1 session 2 blank
3 load from B, edit, save on C session 1 session 2 session 3
4 load from C, edit, save on A session 4 session 2 session 3

Embedded Microcomputer Systems: Lab Manual Page 10

Jonathan W. Valvano

I.4.2.5. How to compile with a mixture of assembly and C files
The following C program embeds an assembly language file (programs and data). To access an assembly

function, the C program simply calls it, with the standard ICC12 parameter passing rules. To access an assembly
level global variable, the C program types it with the extern.

/* C level program file="high.C" Jonathan W. Valvano */
int highGlobal;
extern int lowGlobal; // typed here but defined in low.s
asm(".include 'low.s' "); // insert assembly here
void main(void){
 lowSub(5); // call to assemble routine
 lowGlobal=6; // access of assembly global
}
int highSub(int input){return(input++);}

The following assembly program is embedded into the above high level C program. The double colon,
::, specifies the label as external and will be available in the *.map file. The .area text is the standard place for
programs, and the .area bss is the standard area for globals. Assembly level functions (e.g., _lowSub) and
variables (e.g., _lowGlobal) are defined beginning with an underscore, “_”. To access a C function, the assembly
program simply calls it (the name begins with an underscore.) The assembly program has full access to high level
global variables (the name begins with an underscore.)

; assembly language program file="low.s" Jonathan W. Valvano
 .area text
_lowSub:: ; definition of low level subroutine
 jsr _highSub ; call to high level function
 std _highGlobal ; access to high level global
 rts
 .area bss
_lowGlobal:: ; definition of low level global
 .blkb 2

Again, parameter passing with both functions (the assembly calls to the C and the C calls to the assembly) must
adhere to the standard ICC12 parameter passing rules:

• The output parameter, if it exists, is passed in Register D,
• The first input parameter is passed in Register D,
• The remaining input parameters are passed on the stack,
• 8-bit parameters are promoted to 16 bits.

If you are writing an assembly language function that is to be called from C, one method to get the parameter
passing correct is to write a simple C function that simply passes the parameters. Compile this simple C function
with your other C code, and observe the assembly language created by the compiler for the simple C function. Next
draw a stack picture that exists at the start of the function. The C compiler will do some weird things within the
function (like pushing register D on the stack, and shifting some 8 bit parameters around), which you do not have to
duplicate. One difficulty with mixing the assembly with C is that when the compiler is upgraded, this compatibility
matching must be redone. For more information on parameter passing see

 http://www.ece.utexas.edu/~valvano/embed/toc1.htm

All source files used with ICC12 must end in a carriage return (ENTER.) We have noticed that the following error
means the last character in this file is not a carriage return.

!E E:\ICC\STUDENTS\345M\LAB1/SCI12.C(352): illegal character `#'
!E E:\ICC\STUDENTS\345M\LAB1/SCI12.C(352): syntax error; found `54' expecting `;'
!E E:\ICC\STUDENTS\345M\LAB1/SCI12.C(352): unrecognized declaration
!E E:\ICC\STUDENTS\345M\LAB1/SCI12.C(352): unrecognized declaration

Embedded Microcomputer Systems: Lab Manual Page 11

Jonathan W. Valvano

I.4.2.6. How to set interrupt vectors for ICC12
The reset vector tells the computer where to start after a power up or reset. The following code must be

included if your system is to begin execution on power up, or is to restart execution after the reset button is pushed.
extern void _start(); /* entry point in crt12.s */
#pragma abs_address:0xfffe
void (*reset_vector[])() = { _start };
#pragma end_abs_address

An interrupt vector tells the computer what interrupt service routine to execute on a hardware or software
interrupt. Normally, we define the interrupt vector right after the interrupt service routine itself. For example,
#pragma interrupt_handler TOFhandler
void TOFhandler(void){
 TFLG2=0x80; // TOF interrupt acknowledge
 PORTT^=0x40; // toggle bit 6
}
#pragma abs_address:0xffde
void (*TOF_vector[])() = { TOFhandler };
#pragma end_abs_address

There is a ICC12 Version 5 bug, such that two #pragma abs_address commands can not follow each
other. For example this code will not compile under ICC12 V5 (you get a very weird error)
#pragma interrupt_handler TOFhandler
void TOFhandler(void){
 TFLG2=0x80; // TOF interrupt acknowledge
 PORTT^=0x40; // toggle bit 6
}

#pragma interrupt_handler OC5handler
void OC5handler(void){
 TFLG1=0x20; // C5F interrupt acknowledge
 TC5=TC5+1000;
 PORTT^=0x40; // toggle bit 6
}
#pragma abs_address:0xffe4
void (*OC5_vector[])() = { OC5handler };
#pragma end_abs_address

#pragma abs_address:0xffde
void (*TOF_vector[])() = { TOFhandler };
#pragma end_abs_address

On the other hand, this code will compile (I moved the #pragma)
#pragma interrupt_handler TOFhandler
void TOFhandler(void){
 TFLG2=0x80; // TOF interrupt acknowledge
 PORTT^=0x40; // toggle bit 6
}
#pragma abs_address:0xffde
void (*TOF_vector[])() = { TOFhandler };
#pragma end_abs_address

#pragma interrupt_handler OC5handler
void OC5handler(void){
 TFLG1=0x20; // C5F interrupt acknowledge
 TC5=TC5+1000;
 PORTT^=0x40; // toggle bit 6
}
#pragma abs_address:0xffe4
void (*OC5_vector[])() = { OC5handler };
#pragma end_abs_address

Embedded Microcomputer Systems: Lab Manual Page 12

Jonathan W. Valvano

I.5. Hardware/Software Development in Lab
I.5.1. Power

The Adapt812 board can accept power from one of two sources. We will use an unregulated AC adapter
(greater than 6 volts) connected to the power connector J1. The other option for the Adapt812 would be to connect a
regulated +5v supply to the H1 connect (we will not be doing this.) The BDM-12 helper board received its power
from the Adapt812 through the BDM cable.

I.5.2. Development Procedure
 The following steps are required for the project development:

1. Design the software
2. Design the hardware (if any)
3. Using ICC12, write (modify) the code
4. Remove compiler or assembly errors from the code, and also any logical errors in the code which you

think might be present, print out the MAP (or MP) file to assist in debugging
5. Build the hardware(if any) on your own protoboard

the Adapt812 board should remain plugged in your prototype board for the entire semester.
6. Eliminate as many hardware errors as possible before connecting to the 68HC812A4.
7. With the power of the PC and BDM-12 off, connect a PC serial port to the BDM-12 helper board
8. Start the Kevin Ross BDM software in a DOS window. The batch file B.BAT will execute DL12.EXE

with a baud rate of 38400. You must type reset to the BDM, and hit the reset buttons on the BDM-
12 and Adapt812 boards until the status command returns a C0.

reset
status

9. Down load the object code of your software into the 68HC812A4. Do not attempt to download the object
code until the status command returns a C0. Any S19 file can be downloaded. If the BDM-12 red
light comes on, hit reset on both boards and try again.

load LED2.S19
10. Start execution. You can start your 6812 in normal mode by hitting the Adapt812 reset button, or by

turning the power from off to on. You can start your 6812 in special mode by typing.
g F000

11. Debugging. You can use the BDM-12 to observe global memory including I/O ports while your software
is running.

d 0800
while stopped DL12 can observe/modify memory and registers

I.5.3. The address map of the Adapt 812 development board
same as MC68HC812A4 in single chip mode.

I.5.4. Adapt 812 Board Jumpers
JB1 has two jumpers for MODA and MODB. They both should be in the 0 position. This will bring the
MC68HC812 up in single chip mode, placing the 4K EEPROM from $F000 to $FFFF. There is a run/boot switch
that should be in the “run” position. There is a boot loader in high EEPROM memory that can be used to program
the Adapt812 from a serial port without the need for a Kevin Ross BDM. This procedure places the run/boot switch
in the “boot” position.

I.6. Hardware/Software Development at home
I.6.1. Software
If you have a PC at home it is possible to develop software at home. All you need is a power supply, a serial

modem cable, and an assembler or compiler. ImageCraft ICC12.EXE IS NOT FREEWARE. To use ICC12 at
home, you will need to purchase a copy of the compiler. The TExaS simulator includes a 6812 assembler that can
generate S19 records for downloading. There is a free ICC11 C compiler on the TExaS CD. You will have the
option of simulating some labs (ask you TA about which ones are possible.) With this option, the 6811 chip and
the ICC11 compiler can be run at home with no cost to you. On the TExaS CD is a limited-version of the Hiware
C compiler. It has some interesting limitations (10 objects and 1000 bytes of object code) so ask your TA about
how to develop software with this compiler. Unless you program is very small, you will find it difficult to develop

Embedded Microcomputer Systems: Lab Manual Page 13

Jonathan W. Valvano

with the limited-version of Hiware. For a sense of how large a program you can develop with the limited-version,
look at the Hiware 6812 examples in the Hiware12 folder of the TExaS application (after TExaS is installed.)

I.6.2. Power Adapter
To run the Adapt812, you will need 5.5 to 9 VDC unregulated power source with a current of at least 100

mA, plus the additional current your external circuits need. A good choice is a +6V AC adapter at 300 to 500 mA.
If the voltage is too high then the regulator on the Adapt812 will get hot. Test your power source while attached to
the Adapt812 to guarantee the supply voltage is less than +9 V, and the Vcc power on the H1 connector is about
+5.0 V.

I.6.3. Serial Cable
The cables between the PC and the development boards are standard 9 pin null modem serial cables.

I.6.4. Downloading to the Adapt812
There are three ways to program the Adapt812. For about $48, you can purchase your own Kevin Ross board in

kit form. With this board you download using the DOS-level application DL12.exe. Second, you could check out a
Motorola MC68HC912B32 EVB board. The Hiware C compiler supports this configuration. I.e., the PC connected
to a 912EVB in POD mode, connected to the 812A4 target. Lastly, the Adapt812 board has a boot loader that can
accept S19 records directly from the PC. The disadvantages of this last method are there is no verify and no
debugging support (but it is cheap.)

In short, without spending about $210 ($165 for the ICC12 and $48 for the Kevin Ross), you won’t be able to
much more that edit at home. There are two exceptions to this rule:

• If you use the free Hiware compiler both in lab and at home
• If you perform a lab with the simulator (either in 6812 assembly or 6811 C)

I.6.5. Need more program space?
If you need more program space then buy or borrow a 32K by 8 bit static RAM chip. The pin numbers for

the 32K by 8 bit static RAM are
Pin 1 - A14 Pin 28 - Vcc (+5V)
Pin 2 - A12 Pin 27 - WE (negative logic)
Pin 3 - A7 Pin 26 - A13
Pin 4 - A6 Pin 25 - A8
Pin 5 - A5 Pin 24 - A9
Pin 6 - A4 Pin 23 - A11
Pin 7 - A3 Pin 22 - OE (negative logic)
Pin 8 - A2 Pin 21 - A10
Pin 9 - A1 Pin 20 - CE (negative logic)
Pin 10- A0 Pin 19 - D7
Pin 11- D0 Pin 18 - D6
Pin 12- D1 Pin 17 - D5
Pin 13- D2 Pin 16 - D4
Pin 14- Gnd Pin 15 - D3

Connect the 32K RAM to the 68HC812A4 like figure 9.60, except use CSP0 inplace of CSD. The memory bus is
available on the Adapt812 H2 connector:
 6812 Ports A, B contain the 16-bit address A15-A0,
 6812 Port C contains the bidirectional 8-bit data bus,
 6812 Port E contains the E clock and R/W,
 6812 Port F contains the built-in chips selects.
In narrow mode the data is on PORTC, but is labeled as D15-D8 on the Adapt812. The jumpers MODA and
MODB are on the Adapt board (change MODA from off to on), remember to put MODA back before you turn the
board in. Within ICC12, change the text (program) option from F000 to 8000. You now have 32K of program
space. If you need to download, and untether the system from the PC power, then power the Adapt board with
batteries (6V into the power connector) or 5V directly into the 6812.

I.7. Web sites
cool web site: http://www.interlog.com/~techart/myfiles/links.ltml

Embedded Microcomputer Systems: Lab Manual Page 14

Jonathan W. Valvano

see 6812 products at: http://www.interlog.com/~techart/
electronic parts at: http://www.bgmicro.com
robot parts at: http://www.RobotStore.com
ICC11/ICC12 at: http://www.imagecraft.com
Writing in C for ICC12 at: http://www.ece.utexas.edu/~valvano/embed/toc1.htm
Writing in assembly at: http://www.ece.utexas.edu/~valvano/assmbly/index.html
links to companies at: http://www.ece.utexas.edu/~valvano/book.htm

I.8. Legal Stuff
The opinions expressed in these notes do not necessarily reflect the opinions of the University, its

management or its big time financial donors. Also, there shall be no bologna, Bevis, mustard, chewing the cables,
free lunch, sob stories, running & screaming, whining, hitting, spitting, kicking, biting, or tag backs. Quit it or
we’re telling. (Enjoy the course.)

