
 Lab 8 LCD Interface Page 8.1

Jonathan W. Valvano

Lab 8 LCD Display Interface
This laboratory assignment accompanies the book, Embedded Microcomputer Systems: Real Time Interfacing , by
Jonathan W. Valvano, published by Brooks-Cole, copyright © 2000.

Goals • Design the hardware interface between a LCD display to a microcomputer,
• Create the low-level device driver that can be used in other applications.

Review • Valvano Chapter 3 on Basic Handshake Mechanisms,
• Valvano Section 6.2.1 and 6.2.2 on Output Compare,
• Valvano Section 8.3 on LCD fundamentals,
• The chapter on the parallel port and output compare in the Motorola Reference Manual.

Starter files • LCD12.C, LCD12.H, LCDTEST.C

Background
 Microprocessor controlled LCD displays are widely used, having replaced most of their LED counterparts,

because of their low power and flexible display graphics. This experiment will illustrate how a handshaked parallel
port of the microcomputer will be used to output to the LCD display. The hardware for the display uses an industry
standard HD44780 controller. The low-level software initializes and outputs to the HD44780 controller.

Vss (ground)
Vdd (+5v power)
Vlc (0 to +5 contrast adjustment)
RS (0=instruction, 1=data)
R/W (0=write to LCD, 1=read from LCD)
E (enable)
DB0 (data bit 0)
DB1 (data bit 1)
DB2 (data bit 2)
DB3 (data bit 3)
DB4 (data bit 4)
DB5 (data bit 5)
DB6 (data bit 6)
DB7 (data bit 7)

1
2
3
4
5
6
7
8
9
10
11
12
13
14

LCD display

HD44780
controller

Figure 8.1. 1 by 16 LCD display.

There are four types of access cycles to the HD44780 depending on RS and R/W
RS R/W Cycle
0 0 Write to Instruction Register
0 1 Read Busy Flag (bit 7)
1 0 Write data from µP to the HD44780
1 1 Read data from HD44780 to the µP

Two types of synchronization can be used, blind cycle and gadfly. Most operations require 40 µs to complete while
some require 1.64 ms. The example implementation shown in the LCD12.H, LCD12.C uses OC5 to create the
blind cycle wait. A gadfly interface provides feedback to detect a faulty interface, but has the problem of creating a
software crash if the LCD never finishes. The best interface utilized both gadfly and blind cycle, so that the software
can return with an error code if a display operation does not finish on time (due to a broken wire or damaged
display.)

In embedded systems like we use, it is OK to provide LCD12.H and LCD12.C files which the user can
compile with their application. In our embedded system, linking will performed by the compiler. You are
encouraged to modify/extend this example, and define/develop/test your own format. Normally, we group the device
driver software into four categories. We will use interrupts in the later labs.
1. Data structures: global, protected (accessed only by the device driver, not the user.)
OpenFlag boolean that is true if the display port is open
 initially false, set to true by LCDOpen, set to false by LCDClose
 static storage (or dynamically created at bootstrap time, i.e., when loaded into memory)
2. Initialization routines (called by user)

 Lab 8 LCD Interface Page 8.2

Jonathan W. Valvano

#define LCDscroll 8
#define LCDnoscroll 0
#define LCDleft 0
#define LCDright 4
LCDOpen Initialization of display port
 Sets OpenFlag to true
 Initialize hardware, other data structures
 Returns an error code if unsuccessful
 hardware non-existent, already open, out of memory, hardware failure, illegal parameter
 Input Parameters(mode) see the LCD data sheets for various options, e.g., scrolling
 Output Parameter(none)
 Typical calling sequence
 if(!LCDOpen(LCDscroll|LCDright)) error();
LCDClose Release of display port
 Sets OpenFlag to false
 Release any dynamically allocated memory
 Returns an error code if not previously open
Output Parameter(error code)
 Typical calling sequence
 if(!LCDClose()) error();
3. Regular I/O calls (called by user to perform I/O)
LCDPutChar Output an ASCII character to the LCD port

Returns an error code if unsuccessful
 device not open, hardware failure (happens when a wire is loose)
 Input Parameter(ASCII character)
 Output Parameter(error code)
 Typical calling sequence (you are free to change)
 if(LCDPutChar(letter)) error();
4. Support software (protected, not directly accessible by the user).
None in this category for this lab, but there will be in later labs.

Preparation
Show the required hardware connections. Label all hardware chips, pin numbers, and resistor values. Write the

low-level LCD device driver. You must have a separate LCD12.H and LCD12.C files to simplify the reuse of these
routines. Write a main program that tests all features of the interface.

Procedure
You should look at the +5 V voltage versus time signal on a scope when power is first turned on to determine

if the LCD “power on reset” circuit will be properly activated. The LCD data sheet specifies it needs from 0.1 ms to
10 ms rise time from 0.2 V to 4.5 V to generate the power on reset. Connect the LCD to your microcomputer. Use
the scope to verify the sharpness of the digital inputs/outputs. Adjust the contrast potentiometer for the best looking
display. Test the device driver software and main program in small pieces.

Checkout
You should be able to demonstrate all the “cool” features of your LCD display system.

Hints
1) Make sure the 14 wires are securely attached to your board.
2) One way to test for the first call to open is to test the direction register. After reset, the direction registers are
usually zero, after a call to open, some direction register bits will be one.
3) Download from the class web site the files LCDTEST.C LCD12.H and LCD12.C files. These C language
routine to do low level LCD output to Port H/J. Notice that it does not perform any input (either status or data),
therefore it leaves DDRJ=0xFF, DDRH=0xFF. If you wish to include inputs, then you will have to toggle DDRH,
so that PORTH is an output for writes and an input for reads.
4) Although many LCD displays use the same HD44780 controller, the displays come in various sizes ranging from
1 row by 16 columns up to 4 rows by 40 columns.

