
Lab 11 Binary Synchronous Communications Page 11.1

Jonathan W. Valvano

Lab 11 Binary Synchronous Communication
This laboratory assignment accompanies the book, Embedded Microcomputer Systems: Real Time Interfacing , by
Jonathan W. Valvano, published by Brooks-Cole, copyright © 2000.
Goals • Design the high-level communication interface between two or more microcomputers;

• Study the binary synchronous communication (BSC) protocol;
• Investigate the use of a longitudinal redundancy check (LRC) for error detection;
• Implement the “stop and wait automatic repeat request” for error recovery.

Review • Valvano Chapter 14.
Starter files • list from lab 10 plus OC3TEST.C, OC3.C, OC3.H
Background

The half-duplex communication system between two or more microcomputers will be designed in two layers.
The first layer, the physical layer performed in a previous lab, allowed single characters to be transmitted. The
second layer, to be designed, implemented and tested in this lab, will consist of a simplified binary synchronous
communication protocol (BSC). At this level message packets will be transmitted between the two machines. The
packet is shown in Figure 8.1. Each packet contains a variable length ASCII string.

STX Text ETX LRC

Figure 11.1. Data message packet.
The low-level interface (previous lab) transmits individual bytes, but at this level the hardware/software system

transmits packets. The control characters are described below:
- STX start of text: precedes text block (ASCII $02)
- ETX end of text block: ETX is followed by the error checking byte (ASCII $03)
- ACK affirmative acknowledge: last block received correctly (ASCII $06)
- NAK negative acknowledge: last block was received in error (ASCII $15)

There are two mechanisms that allow the transmission of variable amounts of data. This BSC protocol uses start
(STX) and stop (ETX) characters to surround a variable amount of data. In this lab, we will limit data transfers to a
maximum of 40 characters. The disadvantage of this “termination code” method is that binary data cannot be sent
because a data byte might match the termination character (ETX). It is not a problem if we will be sending ASCII
characters. The other method uses a byte count to specify the length of a message. Many protocols use a byte count.
The S19 records, for example, have a byte count in each line.

There are many ways to check for transmission errors. In this high-level, we will use a longitudinal redundancy
check (LRC) or horizontal even parity. The error check byte is simply the exclusive-or of all the data bytes (not
including the STX and ETX). The receiver also performs an exclusive-or on the data as well as the error check byte.
The result will equal zero if the block has been transmitted successfully. Another popular method is checksum, that
is simply the modulo256 (8 bit) or modulo65536 (16 bit) sum of the data packet. The LRC is chosen because of its
simplicity. In addition, each byte could have (but doesn’t) include even parity. The receiver will respond with an
ACK if the message was received properly, and will respond with a NAK if there are any framing, overrun, noise, or
LRC errors. The transmitter will send a message and “stop and wait” for either an ACK or a NAK. If an ACK is
received, then it can continue. If a NAK is received, or if no response is received after a reasonable delay, then the
message is re-transmitted. Because there is a half-duplex physical channel, there is a possibility of a collision. Your
low-level software will be able to detect a collision at the transmitter, but now rather than reporting an error to the
operator, it will implement retransmission so both transmit processes will complete (obviously one at a time.) You
should choose an upper limit (e.g., 3) on the number of times a packet is retransmitted. After 3 tries an error is
reported to the operator. Also remember the TA will short the network to ground (preventing transmission). A little
harder to deal with is when the TA disconnects the other computer. To solve this fault you will need some time out
mechanism (using output compare) to retransmit the packet if an ACK is not received in some reasonable time.

A fun but optional addition to this lab is to implement a chat room with more than 2 nodes. The packet will
have to be augmented by adding destination and source addresses. Decide as a group on that protocol. Obviously
the receiving node with the matching address will ACK the packet (not everybody). For example,

STX Text ETX LRCdestsource

Figure 11.2. Data message packet with the first 2 ASCII characters being the source and destination addresses.
The software for this lab will be divided into three parts. The low-level drivers were completed in the last lab.

The high-level “device driver” software will provide support for initialization, transmitting and receiving individual

Lab 11 Binary Synchronous Communications Page 11.2

Jonathan W. Valvano

BSC packets across the network. The packet transmission routines must be built on top of the low-level routines
developed in the previous lab. You are free to provide additional low-level support (e.g., routines that access the
SCI) that you add to the files Network.h and Network.c. You will add a periodic interrupt (output compare) to
handle any background tasks at the high-level. Two more fifo queues can be used link the high-level background
threads (OC interrupts) and foreground thread (the main program and the functions it calls). BSC handshake (ACK
and NAK) and packet retransmission is built into this higher layer. At this level, collision is detected either by the
low-level software, or by an incorrect LRC. Organize this high-level network software in the BSC.h and BSC.c files
to illustrate the layered nature of the software system. Again, use a naming convention to identify all components of
the high-level device driver (e.g., start all function and variable names with BSC). One way to tell if you have
divided the software properly into low-level (Network.c) and high-level (BSC.c), is to consider switching the
network from the SCI to a different serial port. This conversion should be possible by modifying only Network.c
without any changes to Network.h and BSC.c. Conversely, consider switching the network from “stop and wait” to
“go-back-N”. This conversion should be possible by modifying BSC.c without any changes to the main program,
Network.c, Network.h and BSC.h.

The third part is the main program. In this lab, it will accept keyboard input from the PC. Each character will
be echoed immediately on the PC terminal window. When a CR is typed, variable length string is transmitted as a
packet using the high-level network interface. Incoming packets received from the network (using your packet receive
function) will also be displayed in the PC terminal window. The high-level network interface should strip of the
echoed data so that the transmitter window does not see two copies of the operator keyboard input. If both
computers attempt to transmit packets simultaneously a collision error will occur. The objective of this part of the
lab is to send packets between computers. Again, please note that both machines are not driven by identical
software. The main program will look something like the following (you are free to modify as long as the effect is
similar.)
void main(void){ unsigned char TxString[40],RxString[40],ErrorCode;
 BSCInitialize(“j”); // address is “j” and calls NetworkInitialize
 while(1){
 if(InStatus()) { // first letter of the TxString is destination
 InString(TxString); // receive/echo input from PC keyboard
 BSCSendPacket(TxString);} // begin process of transmitting data
 if(BSCRecvPacket(RxString)) // skip if no incoming data
 OutString(RxString); // display on PC terminal window
 if(ErrorCode=BSCError()){ // check for network errors
 OutString(“The error code is ”); OutCh(13);
 OutUdec(ErrorCode);OutChar(13); // message on PC terminal window
 BSCReset();}}} // recover from error

Note that the BSCSendPacket() and BSCRecvPacket() do not perform I/O directly to the SCI interface (because
they are part of the foreground thread), rather they communicate with the low-level drivers. You could implement the
system such that BSCSendPacket() and BSCRecvPacket() return error codes rather than having a separate
BSCError() check error function. Once again it is very important that no I/O to the PC (e.g., InStatus(),
InChar(), OutChar(), OutUdec(), printf(), OutString(), etc.) occur in any of the BSCxxx() functions. In other
words, I/O to the PC exists only in the highest most main() program of the foreground thread. This modularity
provides for easier reuse of the device driver routines. Since the high-level network supports error detection and
packet retransmission, a BSC network error, BSCError(), will occur only after 3 tries to transmit the packet all fail.
Preparation

Since the hardware was built and tested in the previous lab, no additional hardware is required. Show the
syntax-free software for both the high-level device driver and the foreground main program that tests the network.
Procedure

You will probably need two computers (and two boards) for most of this lab. You should find another lab group
and test your software system with the other group. IT IS VERY IMPORTANT NOT TO SHARE
IMPLEMENTATION DETAILS (just specifications.) YOU MAY NOT SHARE SOFTWARE. The two software
solutions must be very different in style and approach. You are not to work as a group of four, and achieve one
optimal solution. You can communicate with other groups about channel specifications and network policies (no
sharing source code.)
Checkout

Demonstrate the transmission of character strings between two computer systems. You can cause errors by using
a third open collector driver on the transmission line. Also test what happens if the receiving computer is disabled
(not connected or not running its software.) You must demonstrate the detection of various errors and the retry
feature to your TA. Connect a scope to the channel so that the collusion detection and retry feature can be
demonstrated.

Lab 11 Binary Synchronous Communications Page 11.3

Jonathan W. Valvano

Hints
1) Check for overrun errors. If you do get overrun errors, you can add a delay between character transmissions.
2) When testing the BSC layer use an odd number of ASCII digits so that the LRC will be a printing character. For
example, the LRC for ASCII "1,2,4" will be $31 xor $32 xor $34 equals $37 which is of course an ASCII "7".
3) If you use the 6812 RAF flag to avoid collisions, then it needs to be built into the low-level Network layer.
4) There are two techniques to developing large complex software systems. The first is to develop the system in a
bottom up manner, making VERY small incremental steps. Test the system thoroughly at each step. The second
technique is to develop a rich set of debugging instruments that help you visualize the control and data flow within
the system.
5) If you change STX to 'S', ETX to 'E', ACK to 'A' and NAK to 'N' then the Lab11 software on one computer can
communicate with the Lab10 software on the other computer.
These flowcharts are only to illustrate some of the issues involved in this lab. You are clearly allowed to change any
and all aspects of its operation, as long as

1) information is transmitted in packets
2) error detection/recovery is performed
3) the implementation has three layers (main, BSC, previous lab Network)
4) PC I/O occurs only in the main layer.

main

 BSCxxx

SCI12.C Networkxxx

SCI0 SCI1

1) modular
2) hierarchical
 top down
or bottom up

// main.c
#include SCI12.h
#include BSC.h

// BSC.c
#include Network.h

// Network.c

Figure 11.3. Layered Hierarchy.

OutString(RxString);
OutCh(13);

 Main

BSCInit("j")

computer address (optional)

InStatus()
new key from PC

InString(TxString,40);

locals:
TxString[40]
RxString[40]

first letter is
destination

address
(optional)

BSCSendPacket(TxString);

none

BSCRecvPacket
(&RxString);

new message from other computer

none

Print Error(s)

BSCError();
some errors report multiple errors

(optional)

BSCReset();

none

send/receive
can occur in
background

Figure 11.4. Main program layer.

Lab 11 Binary Synchronous Communications Page 11.4

Jonathan W. Valvano

globals:
BSCSendFifo with Clear/Get/Put
BSCRecvFifo with Clear/Get/Put
BSCErrorCode (array optional)
BSCaddress (optional)
BSCmode (idle,rcv0,rcv1,...,xmt)

use BDM to observe globals

BSCRecvPacket(&string)

check
BSCRecvFifo

empty

not emptyreturn FALSE

copy message from input FIFO calling
BSCRecvFifoGet()

extract string from the message
STX,source,destination,string,ETX,LRC

sei

cli

return string, TRUE

BSCInit(letter)

BSCaddress=letter

BSCReset()

return

BSCReset()

BSCSendFifoClear();
BSCRecvFifoClear();

sei

BSCErrorCode=0

BSCmode=idle
enables IRQ

NetworkInit();

return

create the message
STX,source,destination,string,ETX,LRC

BSCSendPacket(&string)

copy message into output FIFO calling
BSCSendFifoPut()

set BSCerror if full

sei

cli

return

Figure 11.5. BSC programs in the foreground.

idle

NetworkRecvByte

STX
rcv0

NetworkRecvByte

source
rcv1

NetworkRecvByte

destination
rcv2

NetworkRecvByte

string data

NetworkRecvByte

ETX

NetworkRecvByte

LRC

rcv3
BSCSendFifo
has data

xmt

NetworkRecvByte

ACK

NetworkRecvByte

NAK
timeout, network error

3 NAK's,
network errors,
or timeouts

Figure 11.6. BSC state transition graph.

recover

Periodic Interrupt

Network
Error()

some low level error(s)

no errors

set BSC error code(s)

too fast wastes time
too slow affects bandwidth

recoverable? noyes

BSCmode

BSCIdleHand()

idle

rti

BSCRcv0Hand()

rcv0

BSCRcv1Hand()

rcv1

BSCRcv3Hand()

rcv3

BSCXmtHand()

xmt

BSCRcv1Hand()

rcv2

Figure 11.7. BSC background thread.

Lab 11 Binary Synchronous Communications Page 11.5

Jonathan W. Valvano

start of new incoming message

BSCIdleHan()

Network
RecvByte()

no incoming data

BSCmode=rcv0

Clear BSCmessageString
putting in the STX

BSCtimeoutCounter=value

globals:
BSCtimeoutCounter
BSCmessageString
BSCretryCounter

return

BSCSendFifo
has data

start of new outgoing message

no outgoing data

BSCmode=xmt

get message from
BSCSendFifoGet()

save a copy in
BSCmessageString

output to low level calling
NetworkSendByte()

over and over

BSCretryCounter=3
BSCtimeoutCounter=value

return

NetworkRAF()
active

channel free

return

data
not STX?

STX

how long
are you willing

to wait?

This assumes NetworkSendByte is
implemented with a FIFO, and can
accept the entire message at one time.
If it is not implemented with a FIFO,
then you can split xmt mode into two
modes. In the first mode, the bytes
are transmitted one at a time when
NetworkSendByte is ready. In the
second mode, you wait for the ACK
(similar to BSCXmtHan).

how long
are you willing

to wait?

Figure 11.8. BSC background idle handler.

destination

BSCRcv1Han()

Network
RecvByte()

BSCmode=rcv2

 put destination into
BSCmessageString

BSCtimeoutCounter=value

return

BSCtimeoutCounter--

timeout?

no data

yes no

BSCmode=idle

have received source,
looking for destination

how long
are you willing

to wait?

source

BSCRcv0Han()

Network
RecvByte()

BSCmode=rcv1

 put source into
BSCmessageString

BSCtimeoutCounter=value

return

BSCtimeoutCounter--

timeout?

no data

BSCmode=idle

yes no

have received STX,
 looking for source

how long
are you willing

to wait?

Figure 11.9. BSC background receiver handler for source and destination information.

Lab 11 Binary Synchronous Communications Page 11.6

Jonathan W. Valvano

data or ETX

BSCRcv2Han()

Network
RecvByte()

BSCmode=rcv3
 put ETX into

BSCmessageString
BSCtimeoutCounter=value

return

BSCtimeoutCounter--

timeout?

no data

BSCmode=idle

yes no

have received destination,
looking for data or ETX

ETX?

 put data into
BSCmessageString

yes no

Figure 11.10. BSC background receiver handler for data, and looking for ETX.

send ACK using
NetworkSendByte()

copy BSCmessageString
BSCRecvFifoPut()

set BSCerror if full

BSCmode=idle

LRC

BSCRcv3Han()

Network
RecvByte()

send NAK using
NetworkSendByte()

BSCmode=idle

return

BSCtimeoutCounter--

timeout?

no data

BSCmode=idle

yes no

have received ETX,
looking for LRC

destination
match?

yes no

BSCmode=idleLRC
OK?

yes no

Figure 11.11. BSC background receiver handler for LRC checking.

data

BSCXmtHan()

Network
RecvByte()

BSCmode=idle

return

BSCtimeoutCounter--

timeout?

no data

BSCretry()

yes no

have started to send message,
waiting for ACK

ACK or NAK

BSCretry()

ACK NAK

set BSC error code(s)
BSCmode=idle

try again

BSCretry()

BSCretryCounter--

return

give up

you may wish to setup a delay
and retry later

get copy of old message from
BSCmessageString

output to low level calling
NetworkSendByte()

over and over

BSCtimeoutCounter=value

NetworkRAF()
active

channel free

set up a delay
and retry later

Figure 11.12. BSC transmission handler.

