
Lab 17 Real Time OS Page 17.1

Jonathan W. Valvano

Lab 17 Real Time Operating System

This laboratory assignment accompanies the book, Embedded Microcomputer Systems: Real Time Interfacing , by
Jonathan W. Valvano, published by Brooks-Cole, copyright © 2000.

Goals • Develop OS facilities for real time applications,
• Coordinate multiple foreground and background threads,
• Design a round robin multi-thread scheduler,
• Blocking semaphores and priority scheduler,
• Implement inter-thread communication.

Review • Valvano Chapter 4 on Fifo queues and interrupts,
• Valvano Chapter 5 on Threads and semaphores,
• Valvano Chapter 6 on periodic interrupts using output compare

Starter files • Many files with names Lab17*.*

Background
Your job is to evaluate then expand operating system commands that implement a multiple thread

environment. In real time applications, the scheduling of software tasks is critical for the proper operation of the
system. For a data acquisition system, the software must start the analog-to-digital converter (ADC) and read the
result at precise time intervals. Let ∆t be the time interval, which is one divided by the sampling rate.

∆t=1/fs

For a control system, the software must read the sensors, perform the digital control equations, then output to the
actuators at a fixed rate. For a system that generates signals, the software must output to the digital-to-analog
converter (DAC) at a fixed rate. We can define time-jitter, δt, as the difference between when a periodic task is
supposed to be run, and when it is actually run. Let tn be the time the software task is actually run, and let n∆t be
the time it was supposed to be run, then the time-jitter at sample n is

δtn= tn - n∆t
For a real time system with periodic tasks, we must be able to place an upper bound, k, on the time-jitter.

-k ≤ δtn ≤ +k for all n
Sometimes it is more important to control the time difference between periodic events rather than the absolute time
itself. Let ∆tn be the actual time difference between two executions of a software task (e.g., starting the ADC). The
desired time difference is 1/fs. For this situation, we define the time-jitter at sample n to be

δtn= ∆tn - 1/fs

Again, we must be able to place an upper bound, k, on the time-jitter.
-k ≤ δtn ≤ +k for all n

For example, in this lab the ADC is sampled at 2000 Hz. This means the ADC should be activated every 125µs.
This sampling rate is fixed and should not be increased or decreased. Using a ScanPoint, the following
TheLog.RTF data shows the TCNT values measured at the first ten times the ADC was sampled.

_Time=1 TCNT=16660
_Time=2 TCNT=20651
_Time=3 TCNT=24653
_Time=4 TCNT=28652
_Time=5 TCNT=32655
_Time=6 TCNT=36673
_Time=7 TCNT=40652
_Time=8 TCNT=44723
_Time=9 TCNT=48652
_Time=10 TCNT=52651

Although the difference should have been exactly 4000 cycles (500 µs), there was some variability in when the
signal was sampled. In this system, the measured time-jitter is usually less than ±20µs. Under most situations, this
error is acceptable, and we are confident to specify this system as real time.

For a real time system with input/output devices, the software latency is important. For an input device, the
software latency is the time delay between when the hardware says the input is ready and the time when the software
reads the data. With a simple serial port like ones on the 6812, the software must response to an input within 10 bit
times or risk an overrun error (lost data.) For an output device, the software latency is the time delay between when
the hardware says the output is idle and the time when the software write new data to the device. The software

Lab 17 Real Time OS Page 17.2

Jonathan W. Valvano

latency for the output task will affect the overall bandwidth, but there is usually no hard upper bound above which
the system stops working.

Not all software tasks in a real time system require execution at specified times. For example, in a data
acquisition and control systems, updating visual displays or saving the results in secondary storage can often be
performed when the computer is free, i.e., not needed for time critical functions.

When there are a small number of real time tasks in a system, a simple software solution can usually be found.
But as the number and complexity of the tasks increase, we will need a set of OS facilities to manage time.
Foreground threads will be run using a priority thread scheduler. Background threads (interrupt service routines) will
be run as a result of specific hardware conditions. In particular, SCI transmit, SCI receiver, and output compare will
generate hardware interrupts in this lab. A thread is a “light weight” process. Threads share resources (global
memory, I/O devices) but have separate registers, stack and local variables. Typically threads cooperate to achieve a
common goal. Background threads will have the highest priority and they will be used to perform the most time-
critical functions. It will be important to develop debugging tools to visualize software activity. Using these tools,
you will develop performance measures to evaluate system efficiency. You will first add cooperative multitasking,
then you will extend the thread scheduler to implement blocking. In this way important foreground tasks can be run
only when there is work to be done. Priority can be added so that more important software tasks are performed first.
Semaphores will be used with the OS to provide synchronization/communication between threads.

It will be important to implement reentrant code, because multiple threads will be executing the same
software. You will have to carefully consider what information is local to each thread and what is global. A
nonreentrant subroutine will have a section of code called a vulnerable window. An error occurs if

1) one thread calls the nonreentrant subroutine
2) is executing in the “vulnerable” window when interrupted by a second thread
3) the second thread calls the same subroutine
4) control is returned to the first thread
5) the first thread finishes the subroutine.

A vulnerable window may exist when two different subroutines access the same memory-resident data structure.
Consider the following situation: Thread1 increments a counter, and Thread2 decrements it. Because the ICC12
compiler implements the increment and decrement using multiple instructions, the read-modify-write access is
nonatomic, and hence a vulnerable window exists. In particular, if Thread1 is interrupted by Thread2 in the
middle of a read-modify-write access to the counter, then the counter will have an incorrect value.

int counter; // shared global
void
Thread1(void){

void
Thread2(void){

 while(1){ while(1){
 counter++; counter--;
 } }
} }

 Look at the Lab17.C example. When SCI_InChar() needs information from its RxFifo, it calls
RxFifo_Get. If the RxFifo is empty, it will spin on the semaphore RxAvailable because it can not retrieve
any information. On the other hand, when SCI_OutChar() outputs information to its TxFifo, it calls
TxFifo_Put. If the TxFifo is full, then it will spin on the TxRoomLeft semaphore because it can not save its
information. The spinning occurs in the OS_Wait routine. In the third part of this lab, you will replace this
inefficient do-nothing software function with a blocking scheme, which will release the computer to execute other
real tasks. But for now, all threads remain in the ready queue.

active run

OS grants control

time slice over, OS takes control away

 With spinlock semaphores, a foreground thread can be in one of two states. A foreground thread is in the active
state if it ready to run but waiting for its turn. A foreground thread is in the run state if it is currently executing.
With a single instruction stream computer like the 6812, at most one thread can be in the run state at a time.
Therefore, the thread that is running uses the actual registers (CCR, A, B, X, Y, SP, and PC.) On the other hand, a
foreground thread that is not running has its registers (CCR, A, B, X, Y, and PC) on top of its stack, and has its
stack pointer saved in its TCB. A circular linked list data structure holds the ready and active threads. Again, the
background threads are the interrupt service routines, which are executed in response to specific hardware events.

Lab 17 Real Time OS Page 17.3

Jonathan W. Valvano

The 6812 output compare interrupt feature (OC3) will be used by your operating system (OS) to grant and take
away execution control from the available active foreground threads. You will implement pre-emptive round robin
scheduling. A second output compare channel (OC4) is used by the Producer to implement the real-time data
acquisition.

When passing data between two foreground threads, we can use a buffered approach (DataFifo) or an
unbuffered (mailbox) approach. When using a DataFifo buffer, the two counting semaphores called,
DataAvailable and DataRoomLeft, contain the number of 8-bit entries currently stored in the message
DataRoomLeft and the number of 8-bit spaces left in the DataFifo respectively. DataAvailable is
initialized to zero, and DataRoomLeft is initialized to the maximum allowable number of elements in the
DataFifo. The Send routine, called by the Producer, executes the following steps:

OS_Wait(&DataRoomLeft)
Disable Interrupts
Enter 8-bit data into the DataFifo structure
Enable Interrupts
OS_Signal(&DataAvailable)

The Receive routine, called by the Consumer, executes the following steps:
OS_Wait(&DataAvailable)
Disable Interrupts
Remove 8-bit data from the DataFifo structure
Enable Interrupts
OS_Signal(&DataRoomLeft)

A “producer” thread creates data, then sends the data to a consumer (calls Send). A “consumer” thread receives the
data from a producer (calls Receive). The DataFifo is used for interthread communication. In some applications
there might be multiple producers and multiple consumers. In this lab however, we will have the simple situation of
having a single producer and a single consumer.

When one of the threads involved in the buffered producer/consumer communication is a background thread, we
must remove the OS_Wait call from the ISR. This is because only foreground threads will be allowed to spin or
block. In the Lab17.C example, the buffered input has the following semaphore usage. The RxFifo_Put routine is
called from the SCI ISR when new data is received. In this example, data is lost if the RxFifo becomes full.

Input the new input data from the SCI receiver
 Try to enter 8-bit data into the RxFifo

If successful OS_Signal(&RxAvailable)
The RxGetFifo routine is called when a foreground thread calls SCI_InChar

OS_Wait(&RxAvailable)
Remove 8-bit data from the RxFifo

Similarly, the buffered output has the following semaphore usage. The TxFifo_Get routine is called from the SCI
ISR when the output channel is idle (ready for more output). In this example, the output interrupts are disarmed if
the TxFifo becomes empty.

Try to remove 8-bit data from the TxFifo
If successful OS_Signal(&TxRoomLeft) and output the data to the SCI

 If not successful because it was empty, disarm
The TxPutFifo routine is called when a foreground thread calls SCI_OutChar

OS_Wait(&TxRoomLeft)
Enter the 8-bit data into the TxFifo

In this next example, we will pass data from a single foreground producer thread to a single foreground
consumer thread using an unbuffered approach. You will not be using this unbuffered approach. It is included here so
that you can compare it with the buffered approach. A single global (called mailbox) will contain the data passed
from producer to consumer. The counting semaphores, Available Acknowledge , are both initialized to zero
meaning the mailbox is empty. If the producer executes Send first, it will put its data into the mailbox,
increment Available then wait on the semaphore Acknowledge. When the consumer arrives second (executing
Receive), it will decrement Available, get the data from the mailbox and increment Acknowledge.
Incrementing Acknowledge will allow the producer to proceed. If the consumer executes Receive first, it will

Lab 17 Real Time OS Page 17.4

Jonathan W. Valvano

wait on the semaphore Available. When the producer arrives second (executing Send), it will put its data into
the mailbox, increment Available then wait on the semaphore Acknowledge. Incrementing Available
will allow the consumer to proceed. When the consumer proceeds, it will get the data and increment
Acknowledge. Incrementing Acknowledge will allow the producer to proceed. The Send routine executes the
following steps:

Put data into the mailbox
OS_Signal(&Available)
OS_Wait(&Acknowledge)

The Receive routine executes the following steps:
OS_Wait(&Available)
Retrieve the data from the mailbox
OS_Signal(&Acknowledge)

An alternative solution to the unbuffered mailbox is essentially a fifo of size 1. In this case, RoomLeft and
Available are initialized to 1 and 0 respectively. The alternative approach will have a higher bandwidth than the
first mailbox implementation, because the producer waits before writing into the mailbox rather than after. The
Send routine executes the following steps:

OS_Wait(&RoomLeft)
Put data into the mailbox
OS_Signal(&Available)

The Receive routine executes the following steps:
OS_Wait(&Available)
Retrieve the data from the mailbox
OS_Signal(&RoomLeft)

Again, you will not be using any unbuffered approaches. The description is included here for your information only.
When we perform SCI serial port output we will need a mechanism to share this resource. You will have to

implement mutual exclusion (only one thread at a time can call the SCI output functions.) A traditional Computer
Science term for this type of semaphore is mutex. We will call our semaphore DisplayFree. It will prevent
more than one thread from outputting at the same time. It is initialized to 1 that means there is 1 display available.
When the DisplayFree semaphore is zero, it means no displays are free (a thread is currently doing output.)
Some operating systems provide special support for this true/false type of semaphore, calling it a binary semaphore.
For example if you wished to output a message, then a thread could call a function like the following:

void Message(char letter, unsigned int data){
 SCI_Open(); // calls OS_Wait(&DisplayFree); in OS
 SCI_OutChar(letter);
 SCI_OutUDec(data);
 SCI_OutChar(CR);
 SCI_Close(); // calls OS_Signal(&DisplayFree);
}

Before you begin writing code for this lab, you will run an existing multithreaded system and “visualize” the
execution pattern of the system. The initial system has three foreground threads and two background threads. One
background thread performs data acquisition (Producer). The other background thread uses SCI interrupts to
perform serial I/O. The foreground threads are a display thread (Consumer), a thread calculating square roots
(Math), and an interpreter thread (Interpreter). These threads are defined at compile/assembly time, and you
will not need to create threads dynamically at run time. For this lab, you will not need a dynamic memory manager,
because the thread control block, TCB, for each thread can be allocated statically. The TCB contains information for
each thread:

• Thread number (not really needed, but is used for debugging)
• Current Stack Pointer, SP, for this thread
• Stack area for this thread

Inside the stack area, the local variables are stored. When a thread is suspended because of a time slice interrupt, the
registers (CCR,A,B,X,Y,PC) are stored also on this stack. If a thread wishes to output to the display, but another
thread is currently outputting, it will spin (do nothing).

Lab 17 Real Time OS Page 17.5

Jonathan W. Valvano

The initial system uses spinlock semaphores to provide thread synchronization. These threads will run for a
finite amount of time, then display performance measurements. There are three critical measurements in this real-
time system. The first performance measure is time-jitter. As presented earlier, this initial system has a time jitter of
about ±20µs on its ADC sampling. The second measure is the number of lost data points. If the consumer is
waiting for the SCI port, the DataFifo might fill up, and the Producer would have no place to put the results.
Lost data is particularly a problem when the Interpreter is being used. The last performance measurement is
the number of mathematical calculations completed. This is the least important, but does give us a good indication
of the efficiency of the operating system.

Preparation (do this before your lab period, no software development is required)
1) Install the licensed version of TExaS that came with the book. Download the latest upgrade for the TExaS

simulator from the web page, and install the upgrade into the same folder as the original licensed version. Get the
latest version of the Lab17*.* programs from the web page. The system includes C files, H files, and TExaS
simulator files. This lab may be developed on a real 6812 or on the TExaS simulator. The starter files are
configured for the simulator. To run the Lab17 programs on a real 6812 change the following definitions to
#define LENGTH 130 // find min/max for this many samples
#define BR 13 // Baud rate 38,400 bps
#define RUNLENGTH 20000 // display results and quit when Time==RUNLENGTH
If you are simulating, you first start the TExaS application, then open the microcomputer file Lab17.uc. Next, you
execute OpenS19… and import the Lab17.S19 object code. Run the initial system and observe the waveform
patterns on Port J and Port H using a logic analyzer or scope. Capture and print the logic analyzer trace of PJ2, PJ1,
PJ0, PH4, PH3, PH2, PH1, PH0 during the first 4 ms of execution using PixWizard. Include enough data so that
the execution pattern is clear. Read through the source code to label the significance of each of the eight debugging
signals. I.e., what does it mean when each of the eight signals is high?

2) Draw a call-graph of the system. There are three hardware modules in this system. The timer (OC3, OC4,
TCNT etc.), the serial port, and the ADC. Ignore the parallel ports used for debugging. Draw the hardware modules
as rectangles. Represent each of the five software modules as an oval. There is a software module for each C file
(Lab17, OS, SCI, RxFifo, TxFifo). Partition the ovals into public and private areas. Place names of the
public/private variables/functions in the appropriate areas. Draw arrows showing where one module calls the public
functions of another. A good organization maximizes the number of ovals but minimizes the number of arrows.

RxFifo

SCIinterrupt

serial
RxD TxD

RxFifo_Put

RxFifo_Get

SCI_InChar

Interpreter

TxFifo

TxFifo_Get

TxFifo_Put

SCI_OutCh

incoming serial

read SC0DRL

OS_Signal RxAvailable

OS_Wait RxAvailable

spins if RxFifo empty spins if TxFifo full

OS_Signal TxRoomLeft

OS_Wait TxRoomLeft

write SC0DRL

outgoing serial

SCI_OutUDec

SCI_OutString

3) Next, draw a data-flow graph for the producer/consumer data channel. Similar to the call-graph, hardware
modules and globals are rectangles. In particular, draw the DataFifo memory buffer as a rectangle. Different from
the call-graph, we will draw a separate oval for each function. Only include the software functions that handle the
data. Arrows represent the direction of data flow, not which function called which. Other synchronizing functions

Lab 17 Real Time OS Page 17.6

Jonathan W. Valvano

like OS_Signal and OS_Wait can be added on the side as comments. The above figure shows a data-flow graph
as the interpreter inputs a single character, processes that characters and sends results back through the serial port.
The data does not flow through the OS_Signal OS_Wait SCI_Open and SCI_Close routines. Therefore,
these functions are left off the data-flow graph.

4) Next, look at the assembly listing generated by the compiler. You should also run the software until each
thread has executed at least once, then use the debugger to dump the contents of the three TCB's. Use this
information to draw a picture that includes the 3 values of Id located in the TCB’s of each thread and the 3 values
of the local variable me located on the stacks of each thread. Also draw the 6812 hardware stack pointer, S, and
index register, X, for the thread that is running. Draw something similar to Figure 5.6 in the book.

5) There are categories into which tasks may fall. First, there are I/O bound tasks, where the bandwidth (data
processed each second) is limited by the I/O device. For example, in a data-entry task, it usually doesn't matter how
fast the computer is, the amount of information entered into the system is limited by the input typing rate of the
operator. In a similar fashion, the number of pages printed per second is usually limited by the printer speed, and
not by the speed of the computer. The second category describes tasks with fixed bandwidth, and not limited by
either software or hardware. For example, the weatherman collects temperature data every hour. Temperature
measurements once an hour are all we need, so a faster ADC converter, a faster temperature sensor, or a faster
computer would not enhance the performance of this system. The third category, CPU bound, describes tasks that
are limited by the execution speed of the software. For these systems, a better software algorithm, a better compiler,
and a faster computer will enhance the performance. There are three tasks in this system 1) data acquisition using
Producer and Consumer, 2) operator interaction using Interpreter, and 3) calculations using Math.
Categorize the type of these three tasks.

6) There is a #define DEBUG 1 definition at the top of Lab17.C. Change it to #define DEBUG 0,
recompile and run the system again. This new system has all the debugging instruments removed. What
conclusions can you make about the intrusiveness of these instruments? Re-enable the debugging instruments for the
rest of the lab. I.e., change it back to #define DEBUG 1.

First Part Procedure (no preparation is required)
Data is lost because the Consumer fills the TxFifo and spins waiting because the TxFifo is full. Increase the

size of the TxFifo and DataFifo until no data is lost. Test the system with operator input to the interpreter too.
Make a table showing the three performance parameters (time-jitter, number of data points lost, number of math
calculations performed) versus the size of the two fifos. Take these measurements when no input occurs in the
interpreter.

The logic analyzer trace you captured in the preparation should have illustrated that this system spends a lot of
time spinning in the OS_Wait routine. This behavior is common in I/O bound systems. Cooperative multitasking
requires the tasks to suspend themselves, allowing other tasks to also run. With a preemptive scheduler, threads are
forcefully suspended by the timer interrupt. With a nonpreemptive scheduler (i.e., cooperative multitasking), threads
call the OS when they wish to be suspended (put to sleep.) To illustrate the efficiency of cooperative multitasking,
you will add some "cooperation" to the existing preemptive system. The resulting system will be both preemptive
and cooperative. A preemption-point is explicitly added to the OS and/or the user software at places where the thread
wouldn't mind giving up control of the processor. To immediately suspend a thread, we simply execute

TC3=TCNT+15;
where the "15" is just big enough to allow the read TCNT, add 15, and store TC3 sequence to complete. You will
define a public OS function that puts the running thread to sleep. This function performs just the TC3=TCNT+15;
operation, nothing more. No changes to the TCB or scheduler are necessary. The tricky part is deciding where in
the OS/user software to place calls to this function (preemption-points). One obvious place is in the "spin" portion
of OS_Wait. Your objective in this part is to keep time-jitter below 30 µs, reduce the number of lost data points,
and increase the number of calculations completed, in that order. Rename the file containing the main program so
that the S19 file for the first part is available at the time of checkout.

Make a second table showing the three performance parameters for the preemptive/cooperative system versus the
size of the two fifos. Again take these measurements when no input occurs in the interpreter.

First Part Checkout (show this to the TA)
1) Run the initial Lab17 software system and explain the logic analyzer trace to the TA,
2) Be prepared to discuss the data you collected as part of the preparation,
3) Run the improved preemptive/cooperative system,
4) Discuss why you placed preemption points where you did.

Lab 17 Real Time OS Page 17.7

Jonathan W. Valvano

Description of the Second Part (no preparation is required)
Remove the preemption points from your software, so that it is a pure preemptive system again. The basic idea

of the second part is to replace the spinlock semaphores with blocking semaphores. A thread is in the blocked state
when it is waiting for some external event like input/output (keyboard input available, printer ready, I/O device
available.) If a thread communicates with other threads then it can be blocked waiting for receive data or waiting for
there to be room in the transmit buffer. Both types of blocking that will be implemented in the part of this lab. If a
thread wishes to output to the display, but another thread is currently outputting, it will block. We will use a
blocking semaphore to implement the sharing of the display output among multiple threads.

 All of these features can be implemented by modifying OS_Wait and OS_Signal. One possible way to
implement blocking semaphores is described in Chapter 5 of the book. This implementation uses linked-list data
structures to hold the ready and blocked threads. You will need to create multiple blocked linked lists. In general,
we will have one blocked list with each blocking semaphore. You will extend the semaphore structure to include
both the semaphore value and a pointer to a TCB list containing threads that are blocked on the semaphore. The
semaphore initialization should be extended to clear the linked-list of blocked threads on that semaphore. Except for
the semaphore structure, everything else in the user program (Lab17.c) should remain exactly the same. In this
implementation, a status field and semaphore pointer are added to the TCB. There are other ways to implement
blocking, and you are free to implement other blocking schemes.
New OS_Wait
 1) Save the CCR, then disable interrupts
 2) Decrement the semaphore counter, S=S-1
 3) If the semaphore counter is less than zero then this thread will be blocked

set the status of this thread to blocked,
specify this thread is to be blocked onto the linked list of this semaphore (semaphore pointer)
suspend thread using TC3=TCNT+15;

 4) Restore interrupt status
New ThreadSwitch
 1) Save SP into TCB
 2) If this thread is to be blocked
 move the TCB of this thread from the active list to the blocked list of the specified semaphore
 3) Find the next active thread from the active list
 4) Acknowledge C3F, set TC3, and launch next thread
New OS_Signal
 1) Save the CCR, then disable interrupts
 2) Increment the semaphore counter, S=S+1
 3) If the semaphore counter is less than or equal to zero then
 wake up one thread from the TCB linked list (the one waiting the longest)
 do not suspend execution of the thread that called OS_Signal
 simply move the TCB of the “wakeup” thread from the blocked list to the active list
 4) Restore interrupt status

You will implement a blocking scheduler. If multiple threads are blocked, when it is time to wakeup a thread,
the OS will wakeup the one that has been blocked the longest. If a thread requests a resource that is unavailable,
your system should move the thread to the appropriate blocked linked-list. Careful thought should go into when to
remove a thread from the blocked list. Just like the other parts, the threads never die. They are created at compile
time, and execute in a continuous loop. Careful thought should go into what information should be placed into the
TCB of each thread (e.g., register values, program counter, local variable space etc.) The space for the TCB’s is
allocated statically and never released.

Second Part Procedure (no preparation is required)
1) Debug the blocking semaphore implementation.
2) Run the blocking semaphore system for the same FIFO sizes as you used to make the table in first part.

Make a third table showing the three performance parameters for the blocking semaphore system versus the size of
the two fifos. Again take these measurements when no input occurs in the interpreter. Compare the performance of
the blocking semaphore system to the spinlock semaphore system.

Second Part Checkout (show this to the TA)
Show the operation of the blocking semaphore system. Demonstrate your method to visualize the real time

execution pattern. Discuss your results obtained in this part procedure.

Lab 17 Real Time OS Page 17.8

Jonathan W. Valvano

Description of the Third Part (no preparation is required)
You should replace the round robin scheduler with a priority-blocking scheduler. If more than one thread with

the highest priority is active, the OS will cycle through these active threads and execute each one in turn. The
priority order will be Consumer (high), Interpreter, then Math (low). The Math thread will never block,
and will only run if all the other threads are blocked.

Third Part Procedure
1) Analyze where in the priority-blocking system the largest time-jitter occurs. Make sure the FIFOs are big

enough to prevent lost data.
2) Run the priority-blocking semaphore system for the same FIFO sizes as you used to make the other tables.

Make a fourth table showing the three performance parameters for the priority-blocking semaphore system versus the
size of the two fifos. Again take these measurements when no input occurs in the interpreter. Compare the
performance of the priority-blocking semaphore system to the other semaphore systems.

Third Part Checkout (show your listings to the TA)
1) Demonstrate the final system to the TA and discuss your performance data.

Hints
1) Make small changes and save the changes using new file names, so that when something doesn’t work you can
go back to a version that does work and try something new.
2) You will have to debug this system in small very parts. A mechanism to visualize the real time execution will be
helpful.
3) Avoid infinite loops with the interrupts disabled (a crash).
4) Avoid using breakpoints and single stepping on the real 6812. Remember to use the nonintrusive debugging
techniques that you have developed. If you store data into global memory, the information should be available for
viewing even after a crash or a hardware reset. (Interesting note: because the TExaS simulator models both the
hardware and software, breakpoints and single stepping are appropriate in this setting. A simulator breakpoint halts
both the external hardware and software.)
5) The compiler may allocate local variables within the OC3 handler (even if you didn’t explicitly define any
yourself.) This causes the data to be allocated on one stack and deallocated on another. If this is the case, put the
complex software into a subroutine and call it from the ISR.
6) Look for the most recent files on the network.

