
Lab 8d Interrupting Keyboard Interface and Calculator Page 8d.1

Jonathan W. Valvano

Lab 8d Interrupting Keyboard Interface and Calculator
This laboratory assignment accompanies the book, Embedded Microcomputer Systems: Real Time Interfacing, by
Jonathan W. Valvano, published by Brooks-Cole, copyright © 2000.
Goals • Redesign the hardware interface between a keyboard and a microcomputer using interrupts;
 • Study the concept of critical sections and nonintrusive debugging.

Review • Valvano Chapter 4 on basic interrupt mechanisms and reentrant programming,
 • Valvano Chapter 5 on key wakeup interrupts,
 • Valvano Section 8.1 on keyboard scanning and debouncing,
 • The chapter on output compare in the Motorola Reference Manual.
Starter files • OC3 and IC projects, RXFIFO.H, and RXFIFO.C

Background
 The interface to the keyboard will be performed using interrupts. Microprocessor controlled keyboards are
widely used, having replaced most of their mechanical counterparts. This experiment will illustrate how a parallel
port of the microcomputer will be used to control a keyboard matrix. The hardware for the keyboard is similar to
the examples shown in Figures 8.1 and 8.2. In each case your computer will drive the rows (output 0 or HiZ) and
read the columns. The low level software that inputs, scans, debounces, and saves key’s in a FIFO runs in the
background using interrupts. To scan the keyboard, the software drives the first row low (output 0), while the
other rows are off (output HiZ). The software then reads the columns, and any keys are pressed in that row will be
identifies as zeros in the column position. If no keys are pressed in that row, then all column inputs will be high. In
a similar manner the software checks the other three rows. To recognize that a key has been pressed (or released),
your software will drive all four rows low (output 0), and detect a rise or fall on any of the column signals using
input capture. Your system need not be about handle two-key rollover. For example, when some people type
“1,2,3”, they push “1”, push “2”, release “1”, push “3”, release “2”, then release “3”. In this lay, when we type
“1,2,3”, we push “1”, release “1”, push “2”, release “2”, push “3”, then release “3”.

12

top view

bottom view

2
4 5 6

3
7 8 9

clear 0 help

4

5
6
7
8

 2nd

 enter

wires on 0.1" centers

38 4569 7

1 2 3

4 5 6

7 8 9

0

2nd

EnterHelpClear

A B C

D E F

1
1 2 3

Figure 8.1. 0-9 keyboard, with up arrow, down arrow, 2nd, CLEAR, HELP, and ENTER.

 Low-level device drivers normally exist in the BIOS ROM and have direct access to the hardware. They
provide the interface between the hardware and the rest of the software. Good low-level device drivers allow:
 • new hardware to be installed;
 • new algorithms to be implemented
 synchronization with gadfly, interrupts, or DMA

Lab 8d Interrupting Keyboard Interface and Calculator Page 8d.2

Jonathan W. Valvano

 error detection and recovery methods
 enhancements like automatic data compression
 • higher level features to be built on top of the low level
 OS features like blocking semaphores
 user features like function keys
and still maintain the same software interface. In larger systems like the Workstation and IBM-PC, the low level
I/O software is compiled and burned in ROM separate from the code that will call it, it makes sense to implement
the device drivers as software TRAP’s (SWI’s) and specify the calling sequence in assembly language. In
embedded systems like we use, it is OK to provide KEY.H and KEY.C source code files that the user can
compile with their application. Linking is the process of resolving addresses to code and programs that have been
complied separately. In this way, the routines can be called from any program without requiring complicated
linking. In other words, when the device driver is implemented with a TRAP, the linking is simple. In our
embedded system, the compiler will perform the linking.

1 2 3

4 5 6

7 8 9

0

1
2
3

8

4
5
6

top view bottom view

A2
1 2 3

A4
4 5 6

7 8 9

A6

0

A3
A5
A8
A1

 V

 V

ADD

DEL C C 9

"A"

5

1
2
3

6

"B"

B6

 C

 C

 V

 V

A9

DEL ADD

B3

B2
B1

B5

wires on 0.1" centers

Figure 8.2. 0-9 keyboard with ADD, DEL, ? C, ? V, ? C, ? V.

 In this keyboard lab, you will design the keyboard interface using interrupt synchronization. You will use
both input capture and output compare interrupts to read and debounce the switch. There are two advantages of
interrupts in an application like this. Placing the key input into a background thread, frees the main program to
execute other tasks while the software is waiting for the operator to type something (unfortunately this system
doesn’t have anything else to do). The second advantage of interrupts is the ability to create accurate time delays
even with a complex software environment. In particular, the output compare interrupt can be used to accurately
wait for the bouncing to stop. A prototype keyboard device driver follows. As always, you are encouraged to
modify this example, and define/develop/test your own format. This time we have all four categories of the device
driver software.

1. Data structures: global, protected (accessed only by the device driver, not the user)
OpenFlag boolean that is true if the keyboard port is open
 initially false, set to true by Key_Open, set to false by Key_Close
 static storage (or dynamically created at bootstrap time, i.e., when loaded into memory)
Fifo FIFO queue, with Clr, Put, Get
 dynamic storage created by Key_Open
 linkage between Keyboard interrupt and Key_InChar
2. Initialization routines (called by user)
Key_Open Initialization of keyboard port
 Sets OpenFlag to true
 Initialized hardware, size of FIFO queues

Lab 8d Interrupting Keyboard Interface and Calculator Page 8d.3

Jonathan W. Valvano

 Returns an error code if unsuccessful
 hardware non-existent, already open, out of memory, hardware failure, illegal parameter
 Input Parameters(Fifo size)
 Output Parameter(error code)
 Typical calling sequence
 if(!Key_Open(100)) error();
Key_Close Release of keyboard port
 Sets OpenFlag to false
 Release memory of FIFO queues
 Returns an error code if not previously open
Output Parameter(error code)
 Typical calling sequence
 if(!Key_Close()) error();
3. Regular I/O calls (called by user to perform I/O)
Key_InChar Input an ASCII character from the keyboard port
 Tries to Get a byte from the Fifo
 Returns data if successful
 Returns an error code if unsuccessful
 device not open, Fifo empty, hardware failure (probably not applicable here)
 Output Parameter(data, error code)
 Typical calling sequence (you are free to change it so Key_InChar waits for next input)
 while(!Key_InChar(&data)) process();
Key_Status Returns the status of the keyboard port (checks FIFO to see if data is waiting)
 Returns a true if a call to Key_InChar would return with a key
 Returns a false if a call to Key_InChar would not return right away, but rather it would wait
 Returns a true if device not open, hardware failure (probably not applicable here)
 Typical calling sequence
 if(Key_Status()) Key_InChar(&data);

4. Support software (protected, not directly accessible by the user).
There are five interrupt service handlers. A separate input capture interrupt is attached to each column
ICHan0, ICHan1, ICHan2, ICHan3
 Occurs when a key is touched or released
 This handler disarms all input captures, and arms an OC handler to occur 20 ms from now
OCHan
 Occurs 20 ms after a key is touched or released
 Scans the matrix, if exactly one key, it puts ASCII code into the Fifo
 This handler disarms itself and arms all input captures

 Nonintrusiveness is the characteristic or quality of a debugger that allows the software/hardware system to
operate normally as if the debugger did not exist. Intrusiveness is used as a measure of the degree of perturbation
caused in program performance by an instrument. For example, a printf statement added to your source code
and single-stepping are very intrusive because they significantly affect the real time interaction of the hardware
and software. When a program interacts with real time events, the performance is significantly altered. On the
other hand, dumps, dumps with filter and monitors (e.g., output strategic information on LED’s) are much less
intrusive. A logic analyzer that passively monitors the address and data by is completely non-intrusive. An in-
circuit emulator is also nonintrusive because the software input/output relationships will be the same with and
without the debugging tool.
 A program segment is reentrant if it can be concurrently executed by two (or more) threads. This issue is
very important when using interrupt programming. To implement reentrant software, place local variables on the
stack, and avoid storing into global memory variables. Use registers, or the stack for parameter passing (normal C
call/return method). Typically each thread will have its own set of registers and stack. A nonreentrant subroutine
will have a section of code called a vulnerable window or critical section. An error occurs if
 1) one thread calls the nonreentrant subroutine
 2) is executing in the “vulnerable” window when interrupted by a second thread
 3) the second thread calls the same subroutine or a related subroutine. There are a couple of scenarios

Lab 8d Interrupting Keyboard Interface and Calculator Page 8d.4

Jonathan W. Valvano

 A) 2nd thread is allowed to complete the execution of the subroutine
 control is returned to the first thread
 the first thread finishes the subroutine.
 B) 2nd thread executes part of it, is interrupted and then re-entered by a 3rd thread
 3rd thread finishes
 control is returned to the 2nd process and it finishes
 control is returned to the 1st process and it finishes
 C) 2nd thread executes part of it, is interrupted and the 1st thread continues
 1st thread finishes
 control is returned to the 2nd thread and it finishes
A vulnerable window may also exist when two different subroutines access the same memory-resident data
structure. Consider the situation where two concurrent threads are communicating with a FirstInFirstOut (FIFO)
queue. What would happen if the PUTFIFO subroutine executed in between any two assembly instructions of the
GETFIFO routine (or vice versa.)
 An atomic operation is one that once started is guaranteed to finish. In most computers, once an
instruction has begun, the instruction must be finished before the computer can process an interrupt. Therefore, the
following read-modify-write sequence is atomic because it can not be reentered.
 inc counter where counter is a global variable
On the other hand, this read-modify-write sequence is not atomic because it can start, then be interrupted.
 ldaa counter where counter is a global variable
 inca
 staa counter
In general, nonreentrant code can be grouped into three categories all involving nonatomic writes to global
variables. The first group is the read-modify-write sequence.
 1) a read of global variable produces a copy of the data
 2) the copy is modified
 3) a write stores the modification back into the global variable
Example: Money +=100; which may be implemented in assembly as
 ldd Money where Money is a global variable
 addd #$100
 std Money Money=Money+$100
In the second group is the write followed by read, where the global variable is used for temporary storage:
 1) a write to the global variable is used to save the only copy important data
 2) a read from the global variable expects the original data to still be there
Example:
short thePort;
void function(void){
 thePort = PORTH; // save in global
// a bunch of stuff that may modify PORTH, but not thePort
 PORTH = thePort;} // restore original value
In the third group, we have a non-atomic multi-step write to a global variable:
 1) a write part of the new value to a global variable
 2) a write the rest of the new value to a global variable
Example:
short position[2]; // (x,y) location
void function(void){
 position[0] = PORTA; // x position
 position[1] = PORTB; // y position
}

Reentrant programming is very important when writing software in the context of multiple threads (interrupts).
Obviously, we minimize the use of global variables. But when global variables are necessary must be able to
recognize potential sources of bugs due to nonreentrant code. We must study the assembly language output
produced by the compiler. For example, we can’t determine whether the following read-modify-write operation is
reentrant or not without knowing if it is atomic:
 time++;

Lab 8d Interrupting Keyboard Interface and Calculator Page 8d.5

Jonathan W. Valvano

The following read-modify-write operation is reentrant when using Metrowerks, because it is atomic:
 PORTH = PORTH | 0x01; // set PH0

Preparation
 Show the required hardware connections. Label all hardware chips, pin numbers, and resistor values. You will
need 10 kΩ pull-up resistors on the column inputs. You should look at the voltage versus time signals on a scope
to determine if hardware drivers are required, and to check if your particular keyboard has switch bounce. Please
check for valid (0 to +5V) digital signals on your external hardware before connecting them to your computer.
 The first main program you write will be used to test the keypad device driver. You are allowed to add lots of
SCI output to assist in testing and debugging the keyboard interface. You could write this main program so that it
inputs from your keyboard and outputs to the LCD display.
 In the second main program you will design a four-function 16-bit unsigned fixed-point calculator. All
numbers will be stored in fixed-point format with a constant of 0.01. The full-scale range is from 0 to 655.34. You
should be able to use the fixed-point routines developed in a previous lab, by converting to keyboard input and
LCD output. The matrix keyboard will include the numbers ‘0’-‘9’, and the letters ‘+’, ‘-’, ‘*’, ‘/’, ‘=’ and ‘.’. The
HD44780 LCD display will show both a 16-bit global accumulator, and a 16-bit temporary register. You are free
to design the calculator functionality in any way you wish, but you must be able to: 1) clear the accumulator and
temporary; 2) type numbers in using the matrix keyboard; 3) add, subtract, multiply, and divide; 4) display the
results on the HD44780 LCD display. No SCI input/output is allowed in the calculator program.

Procedure
 Configure the keyboard and connect it to the system. Once again, test the device driver software in small
pieces. You can use output ports and a scope to visualize when interrupts are occurring, when data is put into the
Fifo, and when data is get from the Fifo. Collect some latency data (time from key touch to Fifo put)
measurements and discuss them in your report. The exact time the key is touch will be recorded in the timer latch
by the input capture hardware.

Deliverables (exact components of the lab report)
A) Objectives (1/2 page maximum)
B) Hardware Design
 keyboard interface, showing all external components
C) Software Design (no software printout in the report)
 Explain how your software removes switch bounce
 A call-graph illustrating the modularity of the software components of the calculator system
D) Measurement Data
 Keyboard latency data
E) Analysis and Discussion (1 page maximum)

Checkout
 You should be able to demonstrate the calculator functions. You should show the TA your method(s) to
nonintrusively visualize the background thread interrupting the critical section of the foreground thread. Prove to
your TA that your Fifo implementation has no critical sections (proof could be theoretical or experimental.)
Your software files will be copied onto the TA’s zip drive during checkout.

Hints
1) Try using the debugging techniques developed in earlier labs.
2) Look at how the RxFifo is used to pass data from the SCI input interrupt to the SCI_InChar function in the
file SCIa project.
3) The time executing in an interrupt service routine must be small and bounded. It is not appropriate to wait 20
ms inside an ISR.

