
1654 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 52, NO. 10, OCTOBER 2005

Nonlinear Conductance-Volume Relationship for
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Abstract—The conductance catheter system is a tool to deter-
mine instantaneous left ventricular volume in vivo by converting
measured conductance to volume. The currently adopted con-
ductance-to-volume conversion equation was proposed by Baan,
and the accuracy of this equation is limited by the assumption
of a linear conductance-volume relationship. The electric field
generated by a conductance catheter is nonuniform, which results
in a nonlinear relationship between conductance and volume.
This paper investigates this nonlinear relationship and proposes a
new nonlinear conductance-to-volume conversion equation. The
proposed nonlinear equation uses a single empirically determined
calibration coefficient, derived from independently measured
stroke volume. In vitro experiments and numerical model simula-
tions were performed to verify and validate the proposed equation.

Index Terms—Conductance catheter, conductance-volume rela-
tionship, volume estimation.

I. INTRODUCTION

PRESSURE-VOLUME analysis is an invasive method for
assessing myocardial function. The left ventricular (LV)

pressure-volume relationship generated on a beat-by-beat basis
during transient occlusion of the inferior vena cava allows
hemodynamic characterization of LV systolic and diastolic
functions independent of loading conditions [1]–[4]. There
is interest in applying LV pressure-volume relationships to
characterize the ventricular function in gene-altered mice.
However, the measurement of instantaneous volume has been
problematic due to the small size of the mouse heart and its
rapid rate (up to 700 bpm). Conductance technology has been
miniaturized to generate an instantaneous conductance signal,
which is proportional to volume, to solve this problem [5], [6].

Experimentally a four-electrode catheter is inserted into the
murine LV to generate an electric field and to continuously
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measure the instantaneous conductance signal. The currently
adopted conductance-to-volume conversion equation, proposed
by Baan in 1984, is

(1a)

(1b)

where Vol is the instantaneous volume signal is an
empirical calibration factor, is the blood resistivity ( -m),

is the distance between the voltage sensing electrodes (m),
is the instantaneous measured conductance (S), is the

surrounding myocardial conductance (S), and is the blood
conductance (S) [2]. This conductance-to-volume conversion
equation is heretofore referred to as “the classic equation.”
Experimentally, the stroke volume (SV) is independently mea-
sured by an electromagnetic flow probe or Doppler ultrasound,
and then is determined by forcing the volume difference
resulting from the conversion equation to be the same as the
independently measured SV, i.e.,

(1c)

where and are blood conductance at end-diastole
(ED) and end-systole (ES), respectively. The classic equation
is derived from inspection of the volume ( ) of a cylinder of
blood

(2)

where is the cross-sectional area of the cylinder and is the
height. Blood conductance, , can be calculated by

(3)

where is current (A), is voltage (V), is electric field inten-
sity (V/m), is current density (A/m ), is a surface enclosing
the source electrode, is the path length for potential calcula-
tion, and is the blood conductivity (the reciprocal of blood re-
sistivity ) [9]. If the electric field distribution is uniform, which
means that the electric field intensity is constant inside the ven-
tricle, (3) can be simplified

(4)

Combining (2) and (4) yields

(5)
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Fig. 1. The distribution of electric field intensity in a field generated by
(a) two large and flat electrode plates (b) a four-electrode catheter placed in
a small cylinder-shaped container (c) a four-electrode catheter placed in a
large cylinder-shaped container. A voltage difference of 5 V applies on each
source-electrode pairs.

However, a uniform electric field is only achieved when the
source electrodes are flat and large enough that fringe effect is
negligible [7]–[9]. The electric field generated by LV catheter
electrodes is not uniform. Fig. 1 shows the distribution of
electric field for both cases, simulated by a commercial finite
element package, FEMLAB®, Comsol, Inc., MA. Besides,
this equation was derived for a cylinder, but the ventricle
is not cylindrical. Therefore, in order to compensate for the
differences caused by a nonuniform electric field and the non-
cylinder-shaped ventricle, the empirical factor is multiplied
by (5) to yield (1b), or (1a) if myocardial conductance (Gp) is
incorporated.

The accuracy of this ventricular volume estimation method
has three limitations [7]. The first problem is the assumption
of a linear conductance-volume relationship inherent in the
classic equation. In fact, the nonuniform electric field generated
by the electrodes makes the conductance-volume relationship
nonlinear. This assumption would cause significant errors, es-
pecially when estimating larger volumes. The second problem
involves the accuracy of estimation of myocardial contribu-
tion to the total measured conductance . The
measured conductance is a combination of the elec-
trical properties of the LV blood and myocardium, since both
are conductive. However, only the blood conductance is de-
sired, so the instantaneous parallel myocardium signal should
be removed from the total measured conductance. The third
problem concerns the positioning of the catheter. During in

vivo measurements, deviation of the catheter from the lon-
gitudinal axis of the ventricle may introduce errors into the
volume measurement.

The second and third problems have been studied extensively
and will not be discussed in this paper [2], [7], [10]–[16], but
rather the focus will be on the first problem. A new conduc-
tance-to-volume conversion equation, which compensates for
electric field nonuniformity in a more effective way, is proposed
in this paper. Since this paper focuses on the problem of the ef-
fect of nonuniform electric field, not including the estimation of
myocardial contribution, the proposed equation is a replacement
for (1b), which does not include myocardial conductance .
Therefore, in vitro experiments with known-volume KCl solu-
tions placed in cylindrical insulated Plexiglas are appropriate to
examine and validate the proposed equation. Furthermore, since
the ventricle is not cylindrical, the conductance-volume relation
of a cylinder is not exactly the same as the conductance-volume
relation in the ventricle. Therefore, it is important to have an em-
pirical factor to calibrate the conductance-volume curve. That is
why both the proposed equation and the classic equation have
empirical factors. The details of determining the empirical fac-
tors are presented in (1c) and Section II.

II. METHODOLOGY

A. Closed-Form Solution

The general method for calculating is to solve Laplace’s
equation, , in the chosen coordinate system [9], and
then obtain by . Once is known, blood con-
ductance can be calculated by (3). For a spherical coordinate
system , the Laplace’s equation is

(6)

Assume that the source electrodes are spheres with radius
placed in an infinite homogeneous medium. By this simplifica-
tion, is independent of , and the standard solution for the
axisymmetric form is

(7)

where and are coefficients determined by boundary con-
ditions, and are Legendre polynomials whose values
can be obtained from well-established tables. For a single spher-
ical electrode with voltage placed in an infinite medium, its
boundary conditions can be expressed by

(8a)

(8b)

Applying the above boundary conditions to (7) yields

(9)

(10)

where represents the radius vector, is its scalar, and .
For two source electrodes with opposite voltage, and ,
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Fig. 2. Two source electrodes and two sensing electrodes are placed in an
infinite media.

separated by a distance (see Fig. 2), the electric field intensity
caused by those two electrodes is superposable

(11)

where

(12)

If two extra voltage-sensing electrodes, which do not carry cur-
rent, are placed between the two source electrodes separated by
a distance (see Fig. 2), the conductance of this infinite medium

measured between the two sensing electrodes can be es-
timated by using (3) and (11), and the result is

(13)

It assumes that the radius of the sensing electrodes is small
enough so that their influences on the electric field distribution
are negligible. In both in vivo and in vitro experiments, the mea-
sured fluid is surrounded with either myocardium or a container
wall, which confines the distribution of electric field and makes
the measured conductance a function of the fluid volume. To
further simplify the problem, assume that the measured finite
fluid volume is large enough so that the electric field intensity
still can be calculated by (11). If the shape of the measured fluid
is a cylinder with a radius of R, i.e., its cross-sectional area is

, then the conductance of the measured fluid is

(14)

Combining (2), (13), and (14) yields

(15)

Equation (15) is derived from a cylinder, but the shape of ven-
tricle is not cylindrical. This equation does not have an empir-
ical factor, like in the classic equation, to force volume dif-
ferences resulting from the smallest and largest blood conduc-
tance ( and ) the same as independently measured
SV. Therefore, an empirical factor, , must be introduced to ap-
proach this drawback wherein all of the dimensional constants
( , etc.) are included in this factor. Furthermore, since the ra-
dius of the electrodes is small compared to the distance be-
tween the two source electrodes , the factor
in (15) is approximately 1. The improved equation, which is
heretofore referred to as “the analytic approximation,” is

(16a)

where the value of can be determined experimentally by

(16b)

This analytic approximation was derived under several un-
realistic assumptions. However, without these assumptions to
simplify the problem, a true analytic solution may not be calcu-
lable. Hence, an empirical method was used to derive the con-
ductance–volume relationship in the following sections.

B. In Vitro KCl Solution Experiments and Simulations

In vitro experiments were performed in KCl solution to ex-
amine the conductance-volume relationship of the conductance
catheter. Several cylindrical holes were drilled in thick blocks
of Plexiglas. The conductivity of the Plexiglas is essentially
zero. The conductivity of KCl solution (0.1 mole of KCl in
1 liter of water) used to fill those holes was 1.26 S/m at 23
C. Both miniaturized mouse (SPR-839) and rat (SPR-838)

conductance catheters made by Millar Instruments, Houston,
Texas, were used to evaluate the conductance-volume relation-
ship in different volume ranges. The mouse catheter has four
0.25-mm-long platinum ring electrodes with 0.2-mm radius.
The interelectrode center-to-center spacing for the mouse
catheter is 0.5, 4.5, and 0.5 mm, respectively. The rat catheter
has four 0.25-mm-long platinum ring electrodes with 0.2-mm
radius. The interelectrode spacing for the rat catheter is 0.5,
9.0, and 0.5 mm, respectively. The true volume is defined as
the solution volume between the two inner voltage-sensing
electrodes.

The catheter was inserted into the center of the cylindrical
hole and fixed using a mechanical holder. It is important for
reproducibility for the catheter to be exactly in the center. The
block of plexiglas was placed on a platform whose height
is adjustable to control the depth of catheter insertion. The
catheter depth is defined as the distance between the fluid surface
and the top of the top electrode. A constant 10-kHz, 30- A
peak excitation ac current was applied to the two outermost
electrodes to generate the electric field. The voltage difference
between two inner electrodes was measured. The magnitude of
the voltage signal from the two inner electrodes is proportional
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Fig. 3. (a) A 3-D FEMLAB model (b) cross-sectional view (c) the
conductance-volume plot of FEMLAB simulation and in vitro KCl experimental
data using the rat catheter.

to the resistance between the inner electrode pair. This signal
is then amplified and rectified to remove the carrier frequency,
10 kHz. The reciprocal of this signal was taken to yield the
conductance-magnitude-proportional voltage output, calibrated
to conductance.

Numerical finite element models were constructed using
FEMLAB® to mimic the in vitro KCl solution experiments.
The solution-filled cylindrical holes are modeled with cylinders
in FEMLAB, which have insulated boundaries and corre-
sponding radiuses. The center of the cylinders along the z axis
is emptied in order to model the insulated catheter tube. Four
small cylinders with conductivity of 9 661 000 S/m (platinum)
are used to model the metal electrodes [Fig. 3(a), (b)]. The
inner pair is to model the floating voltage-sensing electrodes,
so all their boundaries are insulated. The outer pair is to model
the current source electrodes: one is grounded, and the other
one has a current density of 238.7 A/m on one 2-mm-radius
circular boundary, which gives 30 A totally to the KCL solu-
tion. The finite elements used in this paper are quadratic, and a
linear iterative solver with drop tolerance of was used.

The measured solution conductance corresponds to blood
conductance in in vivo experiments, so we still use to
represent the measured solution conductance in the following

Fig. 4. The conductance g versus �(g ) plot of FEMLAB simulation data.

sections. The equivalent SV in the plexiglas experiments and
simulations is the difference between the largest and smallest
measured solution volumes. Both the experimental and simula-
tion results show that the conductance-volume relationship is
curved, not linear [Fig. 3(c)]. Each point of the experimental
data in Fig. 3(c) is the average of three measurements using the
mouse catheter.

C. Empirical and Numerical Analysis

Experimentally, when the measured volume increases enor-
mously, the catheter-measured conductance approaches a
saturation value, denoted as [Fig. 3(c)]. Theoretically, if
the radius of the container approaches zero, the catheter is sur-
rounded with a nonconductive Plexiglas wall. In that instance,
neither current nor electric fields exist between the electrodes,
which results in zero measured conductance. Furthermore,
the electric field distribution between the two inner sensing
electrodes is more uniform when the radius of the container is
very small [Fig. 1(b), (c)]. Therefore, as the cylinder shrinks
to approach the catheter size, the conductance-to-volume re-
lationship should approach the equation for a uniform electric
field distribution, i.e., (5). From the above observations, the
conductance-volume relationship of the four-electrode catheter
must satisfy the following three conditions:

1) has an asymptote as volume approaches infinity;
2) goes through the origin, i.e., Vol is zero when is zero;
3) approaches (5) at small volume range, i.e.,

There are many possible equations that meet these three
criteria. We tried to find a simple one that not only satisfies
those criteria but also can accurately predict the conductance-
volume relationship. In the classic equation, is fixed, so the
conductance-volume relationship is linear. If is a function
of measured conductance , not a constant, the equation
has the potential to be nonlinear. Fig. 4 shows the - plot
of FEMLAB® simulation results.
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Fig. 5. Plot of maximum measurable conductance g versus catheter depth
for the mouse and rat catheters.

The simulation data can be well-fit by a quadratic polynomial,
which has at least two coefficients to be determined. However, in
in vivo measurements, only the SV, measured by an electromag-
netic flow probe, is available to calibrate the equation, which
means that only one undetermined coefficient is allowed. There-
fore, a linear approximation is used. The linear regression line
shown in Fig. 4 fits the simulation data reasonably well in this
mouse- and rat-sized LV volume range, although estimated
from the quadratic and linear equations are different. Hence, a
new equation is proposed

(17a)

where

(17b)

When approaches approaches zero, which makes
Vol in (17a) increase without bound, meeting the first criterion.
When is zero, Vol is forced to zero, which satisfies the second
criterion. Further, when approaches zero, the derivative of
(17a) with respect to is , meeting the third criterion.

However, (17a) has a severe drawback: it does not have an
empirical factor to calibrate the independently measured SV. As
it is stated above, an empirical factor is needed in order to accu-
rately estimate the volume of a noncylindrical object.

On the other hand, the parameter, , in (17a) is very difficult
to determine. Experimentally, is a function of catheter depth
for shallow insertions of the catheter (see Fig. 5). It is because
the upper electric field is confined and then affects the measured
conductance. The electric field intensity decreases dramatically
with increasing distance, so the effects coming from electric
fields far away from the catheter are negligible. Therefore, once
the submerged depth of the catheter exceeds a critical level, the
measured conductance is independent of catheter depth. In in
vivo murine experiments, it is impossible to keep the catheter
away from the aortic valve, which means that the electric field
will be confined or affected. As a result, the estimated from

Fig. 6. Comparison of finite element simulation and in vitro KCl experimental
data in conductance g versus �(g ) plot, where each experimental point is the
average of three measurements.

in vitro saline experiments may be different from the real in
vivo. This small error causes a large effect in the results.

To solve these two problems, is replaced by an empirical
factor, , and (17a) then becomes

(18a)

where

(18b)

Equation (18a) is heretofore referred to as “the empirical ap-
proximation.” The empirical factor, , is determined by forcing
the calculated SV from the empirical approximation to be the
same as the independently measured SV. Mathematically, it can
be calculated by

where

(18c)

The larger positive solution for is appropriate.

III. RESULTS

Fig. 6 compares the finite element simulation and in vitro KCl
experimental data in a - plot, where each experimental point
is the average of three measurements. The experimental data are
consistent with the simulation results.

Fig. 7(a), (b) shows -Vol plots comparing the experimental
data, measured by the mouse and rat catheters, respectively, with
the classic, analytic, and empirical approximation equations.
The volume ranges of these two experiments correspond to the
LV volume seen in mice and rats, respectively. The catheter
depths are 6 and 4 mm for the mouse and rat catheters, respec-
tively. Both figures show that the classic equation overestimates
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Fig. 7. Comparison of measured data with the classic, analytic, and empirical
approximation equations in a conductance-volume plot. These data were
measured by (a) the mouse catheter and (b) the rat catheter.

the volumes and the analytic approximation underestimates the
volumes, while the empirical approximation is closest to the true
volumes. The classic equation overestimates volume by an av-
erage of 492 l in the rat catheter experiment and 5.5 l in the
mouse catheter experiment, while the volume error estimated by
the empirical equation is only 46 l in the rat catheter experi-
ment and 0.6 l in the mouse experiment. The volume error is
reduced to only about 10% of the original value by use of the
empirical equation.

IV. DISCUSSION

The nonuniform electric field generated by the catheter
electrodes makes the relationship between measured conduc-
tance and its corresponding volume (Vol) nonlinear. The
classic conductance-to-volume conversion equation is linear.
So, one reason to introduce the empirical factor, , is trying to
fit the inherently nonlinear conductance-volume relationship

Fig. 8. Plot of true conductance-volume curve versus the classic equations
with different values of �. The volume range is seen in rat LV and the data
were collected using the rat catheter.

Fig. 9. Comparison of the classic equation, the true conductance-volume
curve, the measured data (circles) and its regression line. The volume range is
seen in mouse LV and the data were collected using the mouse catheter.

by changing the conductance-volume slope to match the inde-
pendently measured SV [2]. As a matter of fact,
is for the uniform electric field, but the slope of the true con-
ductance-volume curve for this nonuniform electric field is
not constant. Actually, the slope gets larger as conductance
increases [see Fig. 3(c)]. Therefore, is always larger than
1 and the classic conversion equation tends to overestimate
volume, as is illustrated in Fig. 8, which uses the data from
the rat-sized volume experiment. The value of , is
determined using (1c). This volume-overestimated situation
gets worse in the larger conductance-volume range, in which
true volume increases rapidly as conductance only increases
slightly [Fig. 3(c)]. The experiments show that the accuracy of
the classic conversion equation has much room to be improved
in the range of volumes seen in a rat LV [see Fig. 7(b)]. In the
range of volumes seen in a mouse LV, the estimation of the
classic equation is acceptable with a small volume offset (see
Fig. 9). Although the relationship between conductance and
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volume is approximately linear in the mouse-sized LV range,
the slope of its regression line is still larger than 1, which means
1/ is also larger than 1. However, the classic equation forces
volume to be zero when measured conductance is zero (the
classic equation: , if .
Therefore, it still overestimates volume by a volume offset in
the mouse-sized LV range, which is illustrated in Fig. 9.

The analytic approximation (16a), (16b) and the empirical
approximation (18a)–(18c) are both nonlinear. Their slopes in
conductance-volume plot vary with measured conductance, and
are not a fixed number. This feature makes them more attrac-
tive in larger volume range, such as LV seen in rats or mice
with LV hypertrophy. However, the performance of the analytic
approximation is not satisfying, since the analytic approxima-
tion was derived under the assumption that the electrodes are
placed in a large medium. In both in vivo and in vitro experi-
ments, the catheter is actually placed in a finite and very limited
space. In addition, the boundary conditions introduced by the
finite volume of measured fluid would result in many nonzero
high-order terms in the analytic solution of Laplace’s equation,
(7), which means that (11) is too simplistic to describe the real
electric field distribution. Therefore, the relationship between
conductance and volume is actually much more complicated
than the analytic approximation. Since a true analytic solution
might not be calculable, the empirical analysis was performed.

From Fig. 7, the real conductance-volume relationship falls
between the analytic approximation and the classic equation,
and the curve of empirical equation is between the two equations
and well predicts the true conductance-volume relationship in
both mouse and rat LV volume ranges.

To apply the proposed equation on in vivo murine experi-
ments, we propose an experimental procedure: one can mea-
sure and record the conductance signals in the LV first, and
then use an aortic flow probe to measure SV independently.
After these measurements are done, one bleeds the mouse and
places the blood in a test tube in a water bath at 37 C. One
then measures its conductance with the conductance catheter
centered in the test tube, and converts it to blood resistivity
by use of a conductance-to-resistivity lookup table built from
in vitro saline experiments. Another alternative method is to use
the mean value of blood resisitivities measured from a subset of
mice in the same strain. Once the parallel myocardial conduc-
tance is estimated using techniques published in the previous lit-
erature [2], [10]–[12], [16], blood conductance can be obtained
by subtracting the estimated myocardial conductance from the
total measured conductance. Then, one determines the empirical
factor from (18c), so that the resulting SV from the empirical
approximation equation will be the same as the SV measured
by the aortic flow probe. Finally, the blood conductance is con-
verted to the LV volume by use of the empirical approximation
equation, (18a). If myocardial conductance is incorporated, the
empirical approximation equation becomes

(19)

Because of the need to measure the resistivity of the mouse
blood, the actual conductance-to-volume conversion is done
off-line.

V. CONCLUSION

The effects of the nonuniform electric field on the con-
ductance-volume relationship was explored and discussed.
The nonlinear conductance-volume relationship caused by
the nonuniform electric field has been analyzed using both
fundamental electromagnetic theory and an empirical method.
Since the classic equation is inherently linear, it cannot predict
the conductance-volume relationship very well, especially in
larger volume range, e.g., LV seen in rats. Even in the mouse
LV volume range, a volume offset is unavoidable by use of
the classic equation. If the empirical equation is used instead,
volume error can be reduced to only about 10% of the original
value based on the data presented in this paper. In conclu-
sion, the nonlinear empirical conductance-to-volume equation
showed the best overall performance and is recommended for
use.
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