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This paper discusses the dynamic behavior of probes
embedded in convective media during temperature
measurements. In certain conditions the temperature
measured by a probe can be written as the convolution of
the true temperature with the impulse response of the
probe. We present a general method to find the natural
response of any kind of probe, and then we present results
for a more realistic 1-D model for the thermistor probe in a
thermodilution catheter. The results of these analyzes can be
applied to enhance the dynamic response of temperature
measurements made by probes in convective media.

We begin with a methodology for developing a
convolutional model for temperature probes in a medium
with a time-independent convection coefficient, even though
it can be non-uniform along the boundary. The requirement
of a constant, non-uniform convection coefficient will make
it possible to write a linear time-invariant relationship
between the true and measured temperatures. The bulk
temperature of the fluid will be the magnitude to be
measured. The step response measured by the finite size
probe can be written:
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where the coefficients dn and λn are a function of the
physical and thermal properties of the probe. Equation (1)
illustrates the fact that, for a probe with a generic geometry,
the solution can always be written as a summation of
exponentials.

The next step is to use Duhamel’s equation to write the
convolutional response to a generic input Tin(t).
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In other words, Tin(t) is the true fluid temperature and
Tout(t) is the probe response. The hard problem here is to
solve the eigenvalue problem for a composite body, to find
the coefficients of the exponentials. The only way to do this
in complex geometries, is by using numerical methods.

Next, to illustrate the general method presented, we
develop a model for the temperature probe in a
thermodilution catheter. We created a model for the
thermistor in a standard Swan-Ganz thermodilution
catheter. The thermistor probe is located a few centimeters
from the catheter tip. Some simplifications are adopted. In
the real catheter, the thermistor would not have the shape of
a  parallelepiped, but the shape of an oblate spheroid. Also
the coating would not have uniform thickness. However,
the model will provide a good qualitative understanding of
the behavior of the probe. Another simplifying assumption
will be that the catheter body is adiabatic. The derivative in
Equation (2) is the impulse response of the probe. This
response has an initial lag. Physically, the lag is caused by
the presence of the protective shell. Mathematically, the lag
is caused by the presence of one or more exponentials with
negative coefficients, which cancel the positive exponentials
for small values of time.

The catheter probe has a response that can be written as
a summation of exponential responses.  The most
significant components are the first three components. The
first harmonic is about 12 times the second, and 25 times
the third. It is interesting to notice that the coefficients in
Equation (2) define completely the response of the probe. If
one is capable of measuring these values, then one will
have the complete description of the behavior of the probe
for any convection coefficient.

A good example of this kind of temperature
measurement is the thermodilution curve. The catheter is
inserted such that thermistor is located in the pulmonary
artery, and a cold bolus of saline is injected in the right
atrium. The resulting fluid temperature in the pulmonary
artery, Tin(t), is shown as the solid line. The dotted lines
are the thermistor responses approximated by Eq. (2).
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Armed with this model, we can now attempt the
significant problem of signal enhancement. This model
describes the smearing of the temperature signal because of
the finite probe size.  We believe it is possible to use this
model to correct for this smearing, thereby recovering the
true fluid temperature.


