
An Empirical Methodology for
Judging the Performance of Parallel Algorithms

on Heterogeneous Clusters

Jackson W. Massey, Anton Menshov, and Ali E. Yilmaz

Department of Electrical & Computer Engineering
University of Texas at Austin

FEM 2016
Florence, Italy, May 2016

Outline

• Motivation
- End of an Era

- Heterogeneous Computing

- Computational Systems

• Proposed Methodology
- Generalized Parallel Efficiency Definition

- Iso-Efficiency Maps

• Applications
- MPI vs. OpenMP vs. MPI/OpenMP for Multi-core CPU with MOM

- Multi-core CPU vs. MIC vs. Multi-core CPU+MIC with MOM

- Iterative vs. Direct MOM Solver

• Summary & Conclusions

Limits of Sequential Computing
“The Future of Computing Performance-
Game Over or Next Level?”
S. H. Fuller, L. I. Millett, Eds.; National
Research Council, 2011.

“The end of the exponential runup in uniprocessor
performance and the market saturation of the
general-purpose processor mark the end of the
“killer micro.” This is a golden time for innovation
in computing architectures and software. We have
already begun to see diversity in computer
designs to optimize for such metrics as power and
throughput. The next generation of discoveries will
require advances at both the hardware and the
software levels.”

Interesting Times
“Gearing up for the next
challenge in high-
performance
computing,” Research
Highlights, Lawrence
Livermore National
Lab, Mar. 2015.

“Are supercomputing’s elite turning
backs on accelerators?” hpcwire.com,
June 2014

Nature, Feb. 2016

“The industry road map released next
month will for the first time lay out a
research and development plan that is
not centered on Moore’s law…”

Clusters of Heterogeneous
Nodes

• 2. Titan - Cray XK7
AMD Opteron 6274+ Nvidia K20x
16 Cores 2.2 GHz

• 10. Stampede
Intel Xeon E5 + Xeon Phi SE10P
2x 8 Cores 2.7 GHz +
61 Cores ~ 1070 GFLOPs

Tianhe-2 Titan

Stampede

Top Supercomputers 2015
(top500.org)

• 1. Tianhe-2
Intel Xeon E5 + Xeon Phi 31S1P
12 Cores 2.2 GHz

Stampede – Poweredge C8220 Node

2 x Intel Xeon E5-2680
- 2.7 GHz
- 2 x 8 cores
- 256-bit vector unit
- 0.3456 TF peak DP

Phi SE10P
- 1.1 GHz
- 61 cores (244 threads)
- 512-bit vector unit
- 1.074 TF peak DP

Clusters of Heterogeneous
Nodes

• Heterogeneous computing
- Coordination of different types of “processors” to perform computations

- Differences include: clock speeds, memory size/speed, instruction sets, …

- Must re-think concepts of computational power, efficiency

- Must account for types of processors not just number of processors

Computational Systems for
Science & Engineering

• Ingredients of “computational systems” (e.g., for solving EM problems)
- System = algorithm + software implementation + hardware architecture

- Ongoing advances in each ingredient

- Often focus on one and make abstractions (sweeping generalizations/
simplifications) about others, assuming/hoping

and improved ingredient => improved system

- Enabled tremendous progress, becoming more difficult/less valid: Algorithm
dependent hardware performance (architects often recognize this), implemen-
tation dependent algorithm performance (coders often recognize this) …

- No “universal best system” for all problems but some systems (much) better for
important problem classes

- How to judge different systems? Define problem, define metrics, apply system,
collect data, observe/explain/compare, …

= Ç Ç
 “best” “best” “best” “best”

 system algorithm implementation hardware

this work

Computational Systems for
Science & Engineering

• Metrics/figures of merit/performance measures for judging CEM systems
- Most important ones:

1. Accuracy: Is error in solution acceptable? (Need a reference)

2. Cost: Is problem solved fast enough? (Need a lower limit)

3. Efficiency: How much of available computational power is wasted? (Must define
available computational power)

4. Scalability: How much should system grow when problem grows to keep metrics
acceptable? (Must define paths to grow problem, system)

5… stability/robustness, error convergence rate, portability, user interface, …

- Efficiency (and scalability) on heterogeneous computers & clusters of them

- Key concepts (computational power, workload)

- Proposed methodology (iso-efficiency contours and acceptable performance)

- Examples comparing different systems

• This work:

Proposed Methodology
- Generalized Parallel Efficiency Definition

- Iso-Efficiency Maps

Efficiency for
Heterogeneous Clusters

• Well-known for homogeneous clusters of P identical processors

obs

1

obs

:

() :

() :

()
(,) :

(,)

p

W

t W p

t W P

t W
e PW

Pt PW


workload

wallclock time to solve problem using only processor

wallclock time to solve problem using all processors

(parallel) efficiency of system

• Generalization to heterogeneous clusters of different types of processors
obs

tot
tot

tot
1

1 / (,)
(,) :

(,)

(,) () :

1
() :

()

P

p
p

p
p

t P W
e C W

C PW

C PW C W

C W p
t W

=
å







(parallel) efficiency of system

total comp. power available to system

average comp. power of system using only processor

L. Pastor and
J. L. B. Orero,
“An efficiency
and scalability
model for
heterogeneous
clusters,” in
Proc. IEEE
Conf. Cluster
Comp., Oct.
2001, pp. 427-
434.

- System of interest = algorithm + software implementation + P processors

Efficiency for
Heterogeneous Clusters

• Properties & interpretation
- Salient feature: Define W to be independent of system!

- Ctot: Part of work that could have been done per sec (if system efficiency=1)

- 1/tobs: Part of work actually done per sec

- Reduces to usual definition for homogeneous clusters

- Ctot, e sensitive to algorithm, software implementation, number/type of processors

used & workload => Can study effect of each ingredient

obs
tot

tot

tot
1

1 / (,)
(,) :

(,)

(,) () :

1
() :

()

P

p
p

p
p

t P W
e C W

C PW

C PW C W

C W p
t W

=
å







(parallel) efficiency of system

total comp. power available to system

average comp. power of system using only processor

L. Pastor and
J. L. B. Orero,
“An efficiency
and scalability
model for
heterogeneous
clusters,” in
Proc. IEEE
Conf. Cluster
Comp., Oct.
2001, pp. 427-
434.

- System of interest = algorithm + software implementation + P processors

Iso-Efficiency Maps

• Maps of iso-efficiency contours
- Generate by sweeping P, W and recording . Plot in plane.

- Example:
tot
C W-

obs
t

Ctot: Part of work that could have been done per sec

1/tobs: Part of work actually performed per sec

e Pitfall: Must find a
way to estimate
tp(W) for large W.
Extrapolating from
larger Ctot often too
rosy. Extrapolating
from smaller W may
not be possible.

F. Wei and A. E.
Yılmaz, “A
Systematic Approach
to Judging Parallel
Algorithms:
Acceptable
Parallelization
Regions in the N-P
Plane,” in Proc. FEM
’14, May 2014.

- System of interest = algorithm + software implementation + P processors

obs
tot

tot

1 / (,)
(,) :

(,)

t P W
e C W

C PW
 (parallel) efficiency of system

Iso-Efficiency Maps

• Maps of iso-efficiency contours

- System of interest = algorithm + software implementation + P processors

obs
tot

tot

1 / (,)
(,) :

(,)

t P W
e C W

C PW
 (parallel) efficiency of system

tot
C W-

obs
t

Ctot: Part of work that could have been done per sec
1/tobs: Part of work actually done per sec

e

- Generate by sweeping P, W and recording . Plot in plane.

- Example: • Specify requirements: e.g.,
- acceptable efficiency e ≥ 0.9
- must do >0.1% of work per sec

• Find highest Ctot that meets
requirements

• Pitfall: Must find a way to
estimate reference tp(W) for
large W. Extrapolating from
larger Ctot often too rosy.
Extrapolating from smaller W
may not be possible.
(F. Wei and A. E. Yılmaz, “A Systematic Approach
to Judging Parallel Algorithms: Acceptable
Parallelization Regions in the N-P Plane,” in Proc.
FEM ’14, May 14.)

Applications
• Benchmark Description

• System Evaluation for Algorithm I – Iterative Solver

• System Evaluation for Algorithm II –Direct Solver

• Computational System Comparison

• CFIE for perfectly conducting closed surface S

• Method of moments solver

• Computational complexity
Matrix fill: Algorithm I=> Iterative solve (TFQMR):

Algorithm II=> Direct solve (MKL LAPACK + ScaLAPACK*):

Example Algorithms

RHS RHS
1

() [] ()
N

S n N N N N N N
n

n   


  J r I f r Z I V

 2
iter RHSO N N N 2O N

Rao, Wilton,
Glisson, IEEE
Trans. AP, May
1982.

 3 2
RHSO N N N

PEC

()
S
J r

0 0
,e m

S

 
   

   

     

  0

0

inc

tan

0 tan

inc S

0

0 0 0

EFIE :

ˆ ˆMFIE :

CFIE EFIE (1) MFIE
4 ; /

S
S

S
S

S S

kl S
S

jk R

j g dS

g dS
j

g dS

g e R





  
   

 

     

 
      

 
  
 







J r R

E r
J r R

n H r J n J r R

R



inc inc,E H

*ScaLAPACK block size = 512

• Workload definition:

• Fill acceptable efficiency e ≥ 0.9

• Solve acceptable efficiency e ≥ 0.5

• Must do >0.1% of work per sec

• Find reference tp(W) for large W by
extrapolating from tp(W) for small W
using asymptotic expressions

Sample Workloads
z

r PEC

r/λ0 N
0.5 1071

0.75 2421

1 4314

1.25 6741

1.5 9693

1.75 13 269

2 17 307

2.5 27 120

3 38 853

3.5 53 085

4 69 192

5 107 949

6 155 310

7 211 947





 

 
   
 
 

   
 
   

       
   

4

fill
0

4

psolve

sol

os iter
0

6 4

posv
0

e
0

Algorithm I

Algorithm II

r
t

r
t N

r
N

r
t

N

1N


2N pos 100N 

Hertzian dipole

0 0,   
0
, 4314r N




0

W
r

y

x

• Asymptotic algorithm costs:

Applications
• Benchmark Description

• System Evaluation for Algorithm I – Iterative Solver

• System Evaluation for Algorithm II –Direct Solver

• Computational System Comparison

Iterative Solver
Intranode CPU Study

Pure OpenMP Hybrid OpenMP/MPI Pure MPI

Vary MPI processes (1-16)
1 OpenMP thread

Vary MPI processes (1-2)
Vary OpenMP threads (1-8)

1 MPI process
Vary OpenMP threads (1-16)

e

Fi
ll

So
lv

e

e

Q: Overall, which parallel
implementation is best?

A: 	ቊ Pure MPI, ܹ ൏ 1
Hybrid OpenMP/MPI or Pure MPI, ܹ ൒ 1

A: Hybrid OpenMP/MPI

Iterative Solver
Intranode CPU Study

Hybrid OpenMP/MPI

Vary MPI processes (1-2)
Vary OpenMP threads (1-8)

e

Fi
ll

So
lv

e

e

Q: Which process/thread
configuration is best?

A: 	

2 MPI processes with
1−2 OpenMP threads, ܹ ൏ 1

2 MPI processes with
8 OpenMP threads, ܹ ൒ 1

A: 2 MPI processes with
8 OpenMP threads

Iterative Solver
Intranode MIC Study

Fi
ll

So
lv

e

e

e

MIC Pure OpenMP

Q: Which process/thread
configuration is best?

A: 	ቊ15−30 OpenMP threads, ܹ ൏ 1.25
60 OpenMP threads, ܹ ൒ 1.25

A: 	ቊ 60 OpenMP threads, ܹ ൏ 1
120 OpenMP threads, ܹ ൒ 1

• MIC Pure
OpenMP
– 1 MPI process
– Vary OpenMP

threads (1-240)

Iterative Solver
Intranode MIC/CPU Study

Fi
ll

So
lv

e

e

e

MIC Pure OpenMP CPU Hybrid OpenMP/MPI

Q: Which hardware + parallel
implementation is best?

• MIC Pure
OpenMP
– 1 MPI process
– Vary OpenMP

threads (1-240)

• CPU Hybrid
OpenMP/MPI
– Vary MPI

processes (1-2)
– Vary OpenMP

threads (1-8)
A: CPU Hybrid
OpenMP/MPI

A: CPU Hybrid
OpenMP/MPI

Iterative Solver
Intranode CPU+MIC Study

Fi
ll

So
lv

e

• Symmetric MIC
run*

• CPU
– 2 MPI processes
– 8 OpenMP

threads each
• MIC

– 1 MPI process
– 60 OpenMP

threads
• Find optimal

workload
balance

Use 25% workload on MIC

W = 1 W = 2

* Simplest method to use
MIC with CPU (not ideal)

Iterative Solver
Internode CPU+MIC Study

Fi
ll

So
lv

e

• Varying number
of nodes (<1-64)

• CPU / node
– 2 MPI

processes
– 8 OpenMP

threads each
• MIC / node

– Symmetric MIC
run*

– 1 MPI process
– 60 OpenMP

threads
– 25% workload

e

e

tot nodes CPUcore
16C P C=

tot nodes CPUcore MICcore
[16 60]C P C C= +

Q: Which hardware + parallel
implementation is best?

CPU Cluster CPU+MIC Cluster

A: 	ቊ CPU Cluster, ܹ ൏ 4
CPU+MIC Cluster, ܹ ൒ 4

A: 	CPU Cluster
* Simplest method
to use MIC with
CPU (not ideal)

Applications
• Benchmark Description

• System Evaluation for Algorithm I – Iterative Solver

• System Evaluation for Algorithm II –Direct Solver

• Computational System Comparison

Direct Solver
Intranode CPU Study

Vary MPI processes (1-16)
1 OpenMP thread

Vary MPI processes (1-2)
Vary OpenMP threads (1-8)

1 MPI process
Vary OpenMP threads (1-16)

So
lv

e

e

Q: Overall, which parallel
implementation is best?

Pure OpenMP Hybrid OpenMP/MPI Pure MPI

A: Pure OpenMP

Direct Solver
Intranode CPU Study

1 MPI process
Vary OpenMP threads (1-16)

So
lv

e

e

Q: Which process/thread
configuration is best?

Pure OpenMP

A: 	

1 MPI process with
8 OpenMP threads, ܹ ൏ 0.75

1 MPI process with
16	OpenMP threads, ܹ ൒ 0.75

Direct Solver
Intranode MIC Study

So
lv

e
Q: Which process/thread

configuration is best?

• MIC Pure OpenMP
– 1 MPI process
– Varying OpenMP

threads (1-240)e

A: 	൞
8 OpenMP threads, ܹ ൏ 1.25
15 OpenMP threads, 1.25 ൑ ܹ ൏ 1.75
30 OpenMP threads, ܹ ൒ 1.75

MIC Pure OpenMP

Direct Solver
Intranode CPU+MIC Study

So
lv

e

• W = 2
• Direct solve

– Automatic offload
(Intel MKL)

– CPU: 1 MPI
process with 16
OpenMP threads

– MIC: 30 OpenMP
threads

Direct: Use MKL automatic varying workload

Direct Solver
Intranode CPU+MIC Study

So
lv

e
Q: Which process/thread

configuration is best?

• CPU+MIC
– CPU: 1 MPI

process with 16
OpenMP threads

– MIC: Varying
OpenMP threads
(1-240), TMICthreads

– Automatic offload:
MKL automatic
varying workload

e

tot CPUcore MICthreads MICcore
16C C T C= +

A: 	ቊ30 OpenMP threads, 1.25 ൑ ܹ ൏ 1.75
60 OpenMP threads, ܹ ൒ 1.75

Direct Solver
Intranode Study

CPU: 1 MPI process with
16 OpenMP threads

MIC: Varying OpenMP
threads (1-240)

MKL automatic offloading

So
lv

e

e

CPU+MIC

A: 	ቊCPU Pure OpenMP, ܹ ൏ 1.25
CPU+MIC, ܹ ൒ 1.25

Q: Which hardware + parallel
implementation is best?

CPU: 1 MPI process
with varying OpenMP

threads (1-16)

CPU Pure OpenMP

MIC: 1 MPI process
with varying OpenMP

threads (1-240)

MIC Pure OpenMP

Direct Solver
Internode CPU+MIC Study

So
lv

e

• Varying nodes
(<1-64), Pnodes

• CPU / node
– 1 MPI process
– 16 OpenMP

threads each
• MIC / node

– MKL automatic
offloading

– 60 OpenMP
threads

– MKL automatic
varying
workload

e

CPU Cluster CPU+MIC Cluster

Q: Which hardware + parallel
implementation is best?

tot nodes CPUcore
16C P C=

tot nodes CPUcore MICcore
[16 60]C P C C= +

A: CPU Cluster

Applications
• Benchmark Description

• System Evaluation for Algorithm I – Iterative Solver

• System Evaluation for Algorithm II –Direct Solver

• Computational System Comparison

Direct vs. Iterative Solver
Internode CPU+MIC Study

Ite
ra

tiv
e

So
lv

e
D

ire
ct

 S
ol

ve

• Varying nodes
(<1-64), Pnodes

• CPU / node
– Iterative: 1-2 MPI

processes with up
to 8 OpenMP
threads

– Direct: 1 MPI
process with up to
16 OpenMP
threads

• MIC / node
– 60 OpenMP

threads
– Iterative: 1 MPI

process & 25%
workload

– Direct: MKL
automatic offload&
varying workload

e

CPU Cluster CPU+MIC Cluster

Q: Which computational
system is better?

tot nodes CPUcore
16C P C=

tot nodes CPUcore MICcore
[16 60]C P C C= +

e

A: 	ቊ Direct Solve on CPU Cluster, ܹ ൑ 3
Iterative Solve on CPU Cluster, ܹ ൐ 3

Summary & Conclusions

Observations
• Judging algorithms, software, hardware

- Era of independently judging algorithms, implementations, and hardware is
(probably) ending

- Will not be able to (credibly) claim
- processor p1 is better/faster/more energy efficient/… than processor p2

without mentioning algorithm & software properties
- algorithm A is better/faster/… than algorithm B without mentioning software &

hardware properties
- Must judge entire system (algorithm + software implementation + hardware)

- can still judge ingredients but in context
- faster not always better, must evaluate cost!

=> Q: Which one is better? Destination 100km away:
(a) Drive in 1h or 2h? A: Of course faster is better.
(b) Drive in 1h spending 10L of fuel or 2h spending 1L of fuel? A: It

depends…
- (parallel) efficiency is a reasonable metric for judging cost of computational

systems, even for heterogeneous computing

Empirical Approach
• Proposed methodology

- Carefully define problem of interest
- Define workload independent of system (not in terms of basic operations [flops])
- Determine average computational power of system under different configurations

- Evaluate efficiency as a function of available computational power, workload,
determine iso-efficiency contours

- Compare & contrast
• Pros & cons

+ Can compare entire computational systems
+ Can compare ingredients (hardware, software implementations, algorithms) by

modifying only one and keeping other ingredients fixed
- Requires (access to) whole system
- Must generate lots of data including those from relatively inefficient simulations

