UNIVERSITY OF TEXAS AT AUSTIN TRIN G FEEEITY (R TEERE AT AUSYIN
E"é‘ECE ol
ELECTRICAL & llT?“PUTER ENGINEERING ‘f

ICES

‘%’% mﬁ'ﬁj

An Empirical Methodology for
Judging the Performance of Parallel Algorithms
on Heterogeneous Clusters

Jackson W. Massey, Anton Menshov, and Ali E. Yilmaz

Department of Electrical & Computer Engineering
University of Texas at Austin

FEM 2016
Florence, Italy, May 2016

ﬁECE gt e
. ICES
Outline N\

\%(
%mﬁ'ﬁ

 Motivation

- End of an Era
- Heterogeneous Computing
- Computational Systems
* Proposed Methodology
- Generalized Parallel Efficiency Definition
- Iso-Efficiency Maps
* Applications
- MPI vs. OpenMP vs. MPI/OpenMP for Multi-core CPU with MOM
- Multi-core CPU vs. MIC vs. Multi-core CPU+MIC with MOM

- lterative vs. Direct MOM Solver

« Summary & Conclusions

UNIVERSITY OF TEXAS AT AUSTIN T G FEREITY (TR AT RS

Limits of Sequential Computing '“Eﬂkj

%
\%(
%me’-

“The Future of Computing Performance-
Game Over or Next Level?”

Processor Performance Plateaued about 2004

Microprocessor Performance “Expectation Gap” over Time (1985-2020 projected)

S. H. Fuller, L. I. Millett, Eds.; National
e e Research Council, 2011.
! { sleve]|?~
% A l b
100000 - - ..o"t

10,000 | ~o® Jr
_ =

1,000 | Transistors
' {Thousands)
10°
100 |
' 5
10 Sequential
x Performance
1085 1990 1995 2000 2005 2010 215 w0 1 04 (SpeciNT)
Year of Introduction Frequency
3 (MHz)
“The end of the exponential runup in uniprocessor | 10
performance and the market saturation of the 2 Typical Power
general-purpose processor mark the end of the 10 Watts)
“killer micro.” This is a golden time for innovation | 3 Cores
in computing architectures and software. We have 10
already begun to see diversity in computer
designs to optimize for such metrics as power and 1{:}‘U
throughput. The next generation of discoveries will
require advances at both the hardware and the 1975 1980 1985 1990 1995 2000 2005 2010 2015

software levels.” [Data

UNIVERSITY OF TEXAS AT AUSTIN

[SEE=ECE

ELECTRICAL & COMPUTER ENGINEERING

Interesting Times

TEIN GRIFRIEITY (8 TREAE AY AUSTIN

i

Y

“Gearing up for the next
challenge in high-
performance
computing,” Research
Highlights, Lawrence
Livermore National

Lab, Mar. 2015.

mmm Central processing unit (CPLU)
mEmm Multicore CPU

e Memory (MEM)

mm Cache

== Graphic processing unit {GPL)

.

™

S

Mew programming models

1995
Single CPU per node
with main memaory

A

20002010
Multiple CPUs per node
gharing main memory

b SN

vy

20002010
Accelerators usher in
era of heterogeneity

2014
Accelerators share common
view of memaory with CPU

:

~
J

-
b

 d

-

. vy

2015
Simple low-power cores and
non-uniform Memaory access

2017-2018
Processor in memory

~, “Are supercomputing’s elite turning
backs on accelerators?” hpcwire.com,
June 2014 Accelerators

i Intel Xeon Phi
il Chedrype eed

i 1B Cedl

w AT Radlenn

i Nwidia Kepler
i Wwiclia Fermi

THE SEMICONDUCTOR INDUSTRY
WILL SOON ABANDON ITs pupsurT Nature, Feb. 2016
OF MOORE'S LAW.

NOW THINGS COULD GETA LOT

MORE INTERESTING.

“The industry road map released next
month will for the first time lay out a
research and development plan that is
not centered on Moore’s law...”

T G FEREITY (TR AT RS

IMEE=ECE) Clusters of Heterogeneous f;g‘g
Nodes ‘m,wf

Top Supercomputers 2015
(top500.0rq)

« 1. Tianhe-2 > o
Intel Xeon ES + Xeon Phi 31S1P s
12 Cores 2.2 GHz R

o 2. Titan - Cray XK7 Tianhe-2 Titan
AMD Opteron 6274+ Nvidia K20x Performance Development

10 EFlop/s

16 Cores 2.2 GHz — —o— Sum —a—#1 —a— #500

« 10. Stampede 100 PFlopis oo’
Intel Xeon E5 + Xeon Phi SE10P 10 PFiopls

2x 8 Cores 2.7 GHz + 1 Pricps
61 Cores ~ 1070 GFLOPs
E 10 TFlopls Ie o® T
1 TFlopis ®® °°

Ry
100 GFlop/s A‘
10 GFlop/s
1 GFlop/s

100 MFlop/s
1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

Lists

TR G FRIEITY O RS AY AUSTIN

IMEE=ECE) Clusters of Heterogeneous A}
ICES

Nodes NS

Stampede — Poweredge C8220 Node

2 X Intel Xeon E5-2680 Phi SE10P

- 2.7 GHz - 1.1 GHz

- 2x8cores 61 cores (244 threads)
- 256-bit vector unit 512-bit vector unit

- 0.3456 TF peak DP - 1.074 TF peak DP

Linux OS

« Heterogeneous computing
- Coordination of different types of “processors” to perform computations

- Differences include: clock speeds, memory size/speed, instruction sets, ...
- Must re-think concepts of computational power, efficiency

- Must account for types of processors not just number of processors

TR SRV (TR AV AR

[BEE=ECEl Computational Systems for [771

- : : ICES Y
Science & Engineering ”%{"ﬂf

* Ingredients of “computational systems” (e.g., for solving EM problems)
- System = algorithm + software implementation + hardware architecture

- Ongoing advances in each ingredient

- Often focus on one and make abstractions (sweeping generalizations/
simplifications) about others, assuming/hoping

“pest” “pest” “pest” “pest”
— N M
system algorithm implementation hardware

and improved ingredient => improved system

- Enabled tremendous progress, becoming more difficult/less valid: Algorithm
dependent hardware performance (architects often recognize this), implemen-
tation dependent algorithm performance (coders often recognize this) ...

- No “universal best system” for all problems but some systems (much) better for
important problem classes

- How to judge different systems? Define problem, define metrics, apply system,
collect data, observe/explain/compare, ...

this work

TR SRV (TR AV AR

[BEE=ECEl Computational Systems for [771

- : : ICES Y
Science & Engineering ”%{"ﬂf

» Metrics/figures of merit/performance measures for judging CEM systems
- Most important ones:

1. Accuracy: Is error in solution acceptable? (Need a reference)
2. Cost: Is problem solved fast enough? (Need a lower limit)

3. Efficiency: How much of available computational power is wasted? (Must define
available computational power)

4. Scalability: How much should system grow when problem grows to keep metrics
acceptable? (Must define paths to grow problem, system)

5... stability/robustness, error convergence rate, portability, user interface, ...

* This work:

Efficiency (and scalability) on heterogeneous computers & clusters of them

Key concepts (computational power, workload)

Proposed methodology (iso-efficiency contours and acceptable performance)

Examples comparing different systems

UNI OF TEXAS AT AUSTIN
COMPUTER ENGINEERING

VERSITY
ELECTRICAL &

Proposed Methodology

- Generalized Parallel Efficiency Definition

- Iso-Efficiency Maps

UNIV O F TEXAS AT AUSTIN
E COMPUTER ENGINEERING

'ERSITY
ELECTRICAL &

Efficiency for

Heterogeneous Clusters

TR SRV (TR AV AR

,&mﬂ

7N

ICES] % .
b

K
g pua ¥

- System of interest = algorithm + software implementation + P processors

« Well-known for homogeneous clusters of P identical processors
W: workload

t (W) : wallclock time to solve problem using only processor p

t . (W) : wallclock time to solve problem using all P processors

e(P,W

)& -0

Pt (P,W)

t (W)

: (parallel) efficiency of system

 Generalization to heterogeneous clusters of different types of processors

L. Pastor and
J. L. B. Orero,
“An efficiency
and scalability
model for
heterogeneous
clusters,” in
Proc. IEEE
Conf. Cluster
Comp., Oct.
2001, pp. 427-
434.

1/t (P,W)

: (parallel) efficiency of system

C_(P,W)= Z C (W) : total comp. power available to system

C W)=
6(tot) CtOt(ij)
P
p=1
1
C (W)=
(W) V)
p

: average comp. power of system using only processor p

UNIV O F TEXAS AT AUSTIN
E COMPUTER ENGINEERING

'ERSITY
ELECTRICAL &

TR SRV (TR AV AR

7N
<

L

Efficiency for ICESY
%‘%’%Mm&j

Heterogeneous Clusters

- System of interest = algorithm + software implementation + P processors

L. Pastor and
J. L. B. Orero,
“An efficiency
and scalability
model for
heterogeneous
clusters,” in
Proc. IEEE
Conf. Cluster
Comp., Oct.
2001, pp. 427-
434.

e(C W)=

tot?

C_(P,W)=

C (W) 2

1/t (P,W)

: (parallel) efficiency of system
C. .(P,W)
P

Z C (W) : total comp. power available to system

p=l1

: average comp. power of system using only processor p

1
t,(W)

» Properties & interpretation
- Salient feature: Define W to be independent of system!

- C,. Part of work that could have been done per sec (if system efficiency=1)

- 1/t,,,: Part of work actually done per sec

- Reduces to usual definition for homogeneous clusters

- C,. € sensitive to algorithm, software implementation, number/type of processors

used & workload => Can study effect of each ingredient

T G FEREITY (TR AT RS

Wi 0
Iso-Efficiency Maps NN/

\%(
%mﬁ'ﬁ

- System of interest = algorithm + software implementation + P processors
2 1/t (P,W)
C. (P,W)

eC W) : (parallel) efficiency of system

» Maps of iso-efficiency contours
- Generate by sweeping P, W and recording ¢, . Plotin C,_, —Wplane.

- Example: o Pitfall: Must find a
; way to estimate
10* i 7, ; i t,(W) for large W.
: ; -0o Extrapolating from
10° L A &1, e it o larger C,, often too

0.8 rosy. Extrapolating
from smaller W may
07 not be possible.

06 F WeiandA.E.
05 Yilmaz, “A
~ Systematic Approach

to Judging Parallel
Algorithms:
Acceptable

C,... Part of work that could have been done per sec Ei;?ﬂﬁ'fﬂ“ﬂ; P

Plane,” in Proc. FEM

1/t,,: Part of work actually performed per sec '14, May 2014.

UNIVERSITY OF TEXAS AT AUSTIN

ELECTRICAL & COMPUTER ENGINEERING

T G FEREITY (TR AT RS

L)

Iso-Efficiency Maps N

- System of interest = algorithm + software implementation + P processors

o 1/t (PW)

C W
e(o) Ctot(P7W)

: (parallel) efficiency of system

» Maps of iso-efficiency contours

- Generate by sweeping P, W and recording ¢, . Plotin C,_, —Wplane.

- Example:

s

e Sample

_..
<,

10°

10

Computational Power (C.y: (1/8))

—_
<
w

10

0.5 1 4 8

Work (T/Ig =7/)\)
C,... Part of work that could have been done per sec
1/t Part of work actually done per sec

« Specify requirements: e.g.,

- acceptable efficiency e 2 0.9

- must do >0.1% of work per sec
Find highest C,, that meets
requirements

Pitfall: Must find a way to
estimate reference t,(W) for
large W. Extrapolating from
larger C,, often too rosy.
Extrapolating from smaller W

may not be possible.

(F. Wei and A. E. Yiimaz, “A Systematic Approach
to Judging Parallel Algorithms: Acceptable
Parallelization Regions in the N-P Plane,” in Proc.
FEM 14, May 14.)

TEIN GRIFRIEITY (8 TREAE AY AUSTIN

UNIVERSITY OF TEXAS AT AUSTIN
ELECTRICAL & COMPUTER ENGINEERING f

ICE

Y

Applications

 Benchmark Description
« System Evaluation for Algorithm | — Iterative Solver
« System Evaluation for Algorithm Il —Direct Solver

« Computational System Comparison

. IGE&
Example Algorithms / j

g pue

» CFIE for perfectly conducting closed surface S

1 / / ’ N
quoJIJs<r>g<R>ds TN
inc ElnC,HlnC
EFIE:E™(r) = jjv () p(R)S 1.(r) |\‘ =
jcog . \\ PEC P G
~_
MFIE :axH"™ (r)=J} —ﬁx[VxHJS (r’)g(R)dS'J
S Rao, Wilton,
CFIE = aEFIE + (1 - a)1,MFIE g Glisson, |EEE
g(R)= e_jk°R/47fR; Mo =My & /////'v 1;a8nzs.' B

» Method of moments solver
N
Jg(r)= Zl[n]fn (r)= LAy, = Vieng,
n=1
« Computational complexity
Matrix fill: O(Nz) Algorithm |=> lterative solve (TFQMR): (NlterNRHSN)

Algorithm I1=> Direct solve (MKL LAPACK + ScaLAPACK*): O(N®+ Ny, N*?)
*ScalLAPACK block size = 512

UNIVERSITY OF TEXAS AT AUSTIN

[SEE=ECE

ELECTRICAL & COMPUTER ENGINEERING

Sample Workloads

III*MI.IRFHIS{IIEEF "‘,‘-Vr AY Hk'“ﬁ
sor €

/ VAVAVAVAVAVa v s)
Ay aTaYAV
i mmn\nﬁ%%:e"gﬂ%
¢ o HAAAF KX A AT

Nl N2 Npos=100

Hertzian dipole

« Asymptotic algorithm costs:

fill o«
Algorithm I ¢ o

Algorithm II ¢ oc

o
10

=

=k

4

N

pos” iter

pos

EAAAAAT
AR
é"ﬂummyg

ol

e
SSTeTES

=

K
&
e
A
&8
=

T

Workload definition: w = -

0

Fill acceptable efficiency e > 0.9
Solve acceptable efficiency e > 0.5
Must do >0.1% of work per sec

Find reference t (W) for large W by
extrapolating from t,(W) for small W

using asymptotic expressions

r/2, \
0.5 1071
0.75 2421
1 4314
125 6741
1.5 9693
1.75 13269
2 17307
25 27120
3 38833
3.5 53085
4 69192
5 107949
6 155310
7 211947

TEIN GRIFRIEITY (8 TREAE AY AUSTIN

UNIVERSITY OF TEXAS AT AUSTIN
ELECTRIC AL & COMPUTER ENGINEERING f

ICES

Y

Applications

« Benchmark Description
« System Evaluation for Algorithm | — Iterative Solver
« System Evaluation for Algorithm Il —Direct Solver

« Computational System Comparison

E=ECE .
lterative Solver IcES k
Q: Overall, which parallel

implementation is best? Inw QPU M %ms

Pure OpenMP Hybrid OpenMP/MPI Pure MPI

o — Pure MPI w<1
Hybrid OpenMP/MPI or Pure MPI, W >1

. . .)] tobs
inted M intel A. . intel) M inteD A s+ Sample >0.9
SR |, ST - . S | ST

- 0.8

. - 07

. _ 06
<05

05 1 2 05 1 2 05 1

(1/8))

L :
2
Work (W =r/Ay) Work (W =r/X) Work (W =r/A) e
— _ES pl
i{; >09
S _ | 07
= - 0.5
O fu : o :
(7)) % = . 0.3
A: Hybrid OpenMP/MPI
1042‘3.5 1 2 1OAOEB 1 ;10“:).5 1 2
Work (W =7/)\) Work (W =r/X) Work (W =r/Ay)
1 MPI process Vary MPI processes (1-2) Vary MPI processes (1-16)

Vary OpenMP threads (1-16) Vary OpenMP threads (1-8) 1 OpenMP thread

Ty

lterative Solver m{;;%
Q: Which process/thread

configuration is best? Inw QPU M %’%msj

e Hybrid OpenMP/MPI

10
tobs
>09 — ¢ 1
@ (2 MPI processes with W <1
= o7 = » 1-2 OpenMP threads,
LL . g "] 2 MPI processes with W1
g \ 8 OpenMP threads, =
<05
10
0.5 1 2
e Work (W =r/X)
10’
|
~ s Sample
>09 é 10°
0 ©
() g 107 .
> | = A: 2 MPI processes with
3 g 8 OpenMP threads
03 =
%10‘3
<0.t ©
10
0.5 1 2

Work (W =r/X)

Vary MPI processes (1-2)
Vary OpenMP threads (1-8)

UNIVERSITY T G FEREITY (TR AT RS

OF TEXAS AT AUSTIN
m'éECE =
TRICAL & COMPUTER ENGINEERING fk

b f lterative Solver ICES)

Q: Which process/thread

configuration is best? Inw MIQ m %’%msj

MIC Pure OpenMP e

10’
~ = R « MIC Pure
= 7o OpenMP
: o — 1 MPI process

0.7 — Vary OpenMP
threads (1-240)

ws| A {15—30 OpenMP threads, W < 1.25

Computational Power (

60 OpenMP threads, W = 1.25

05 1 2
Work (W = 'T'/)\U)
z >09
> 07
0.5

Solve
Computational Power (C

- A. 60 OpenMP threads, W <1
" {120 OpenMP threads, W =1

Work (W = 'I'/)\g)

THE GNIFREEITY (5 TERAE AV AUSYIN

\ﬁECE . mﬂ
Q: Which hardware + parallel Ite ratlve SOIVer mEEk

implementation is best? Inm MIQ/QPL m “ha,.m.

MIC Pure OpenMP CPU Hybrld OpenMP/MPI e

7 g 0 @fel ~o 0., MIC Pure
=P 10[—— — 5 - OpenMP
3w ' o8 — 1 MPI process
i o7~ Vary OpenMP
- i) 06 threads (1-240
§ 107 <05 A: CPU H}’brld
: 4 OpenMP/MPI
0.5 Work (M}:-r/)“’) 2 05 Work (M}:r/,\u) 2 |
e « CPU Hybrid
z OpenMP/MPI
= >09
: — Vary MPI
o processes (1-2)
05 — Vary OpenMP
threads (1-8)

0.3

Solve
Computational Power (C

A: CPU Hybrid
OpenMP/MPI

1
Work (W =r/Ay) Work (W =r/Ay)

UNI OF TEXAS AT AUSTIN
COMPUTER ENGINEERING

VERSITY
ELECTRICAL &

lterative Solver

Fill

Solve

120 T 1800 :
—s— MIC Fill —e— MIC Fill
——CPU Fill 1600 [| —e—cPU Fill
100 |
1400 | [pr———gp————
— 80r 1 12001
z 1000
= 60
L 800 r
= 40 {6004
400 -
20
200+
0 | ! . | 0 | | | .
0 20 40 60 80 100 0 20 40 60 80 100
MIC % MIC %
90 1400
80 1
1200 +
701
—_ 1000
7 60]
4
= 50 1 800
= 40l _
& 600 |
30F
400 -
20 . [
10 : : : ' 200 ' : ' :
0 20 40 60 80 100 0 20 40 60 80 100

MIC %

MIC %

Use 25% workload on MIC

TR G FRIEITY O RS AY AUSTIN

70N

Intranode CPU+MI|C Study N/
1 W=2

« Symmetric MIC
run*

- CPU

— 2 MPI processes
— 8 OpenMP
threads each

« MIC

— 1 MPI process

— 60 OpenMP
threads

- » Find optimal

workload

balance

* Simplest method to use
MIC with CPU (not ideal)

TR G FRIEITY O RS AY AUSTIN

.h_l_\.r“m:ié‘ﬁ.éﬁ . wﬂ
O Which harduan lterative Solver 44 /%

Q: Which hardware + parallel

implementation is best? Inw QPU+MIQ w %.gmg

o CPU Cluster ~ CPU+MIC Cluster e
E;m S E CPU+MIC Cluster, w > 4 »03 of nodes (<1-64)
SRS 07 ol .
“ « CPU/node
E %10 10 Q.7 _ 2 MPI
g 107 08 processes
S 10° 10° <05 — 8 OpenMP
10‘?).5 1 k(2 /}\) 4 810.2.5 1 k(2 /)\) 4 8 threads eaCh
Work (W =1r/X; Work (W =+/\;
e e MIC / node
102 102
_ S T S — Symmetric MIC
g 10 — {10’ =09 run*
o o 1°° o7 — 1 MPI process
% - o o — 60 OpenMP
) §1O'2 102 0.3 threads
E & <q. —_ 0
S0 A: CPU Cluster 0t 25% workload
104 ; , p 805 1 2 4 g * Simplest method
Work (W =r/X) Work (W = 7/q) to use MIC with
Ctot - Pnode516CCPUcore Ct nodes [160 ore + GOCMICcore] CPU (not |dea|)

TEIN GRIFRIEITY (8 TREAE AY AUSTIN

UNIVERSITY OF TEXAS AT AUSTIN
ELECTRICAL & COMPUTER ENGINEERING f

ICE

Y

Applications

« Benchmark Description
« System Evaluation for Algorithm | — Iterative Solver
« System Evaluation for Algorithm Il —-Direct Solver

« Computational System Comparison

Q: Overall, which parallel

implementation is best? Inw QPU m %%,mwj

Pure OpenMP Hybrid OpenMP/MPI Pure MPI

e

@ >0.9

< 07
O
2 - 05
o :
CD ‘i 0.3

S A: Pure OpenMP ' <at

10-‘23.5 1 2 10‘;.5 1 210-1).5 1 2
Work (W =1/Ag) Work (W =1r/Aq) Work (W =r/A\y)
1 MPI process Vary MPI processes (1-2) Vary MPI processes (1-16)

Vary OpenMP threads (1-16) Vary OpenMP threads (1-8) 1 OpenMP thread

m' Direct Solver .c{;—-
Q: Which process/thread

configuration is best? Inw QP U m %’%msj

Pure OpenMP

e

>08 r 1 MPI .
o process with
4 . A 4 8 OpenMP threads, W<075
o | "] 1 MPI process with
>
@ o | 16 OpenMP threads, W2 0.75
<0.1

Work (W =1/Ag)

1 MPI process
Vary OpenMP threads (1-16)

Q: Which process/thread

configuration is best? Inw M IQ M %’%msj

MIC Pure OpenMP
* MIC Pure OpenMP

— 1 MPI process
' 1 — Varying OpenMP
€ threads (1-240)

10°

10’

=
~
=)
Si 10°
$ — 0
=4 3 7
CI>J < 10k
o = |
N 3
=102
+—
—
3
S 10°
104
0.5 1 2

Work (W = T'/)\o)

8 OpenMP threads, W < 1.25
A: < 15 OpenMP threads, 1.25<W < 1.75
30 OpenMP threads, W =>1.75

UNIVERSITY

AS AT AUSTIN
ELECTRICAL C PUTER ENGINEERING

OF

TEX A

& COM

Solve

Time (tol)s (b))

100

80 [

60

40 [

20

intel/ | (inlel') |
|

U N1 ERENTY (5 TR AV ALSTIY
sor €

Direct Solver ..;{;7@‘

ntranode CPU+MIC Study S/

e W=2
 Direct solve

— Automatic offload
(Intel MKL)

— CPU: 1 MPI
process with 16
OpenMP threads

— MIC: 30 OpenMP
threads

- Solve - Fixed Workload

Solve - MKL Automatic Varying Workload

20

40

MIC %

60

80 100

Direct: Use MKL automatic varying workload

Q: Which process/thread

configuration is best? Inw QPU +M IQ M “*ﬁme,j

- CPU+MIC
— CPU: 1 MPI
e T process with 16
. s";’;lplei e OpenMP threads

10’

10°

1 — MIC: Varying
' OpenMP threads
o (1 '240)’ TMICthreads
- — Automatic offload:

Computational Power (Cio; (1/3))

G>J 107"}
[e)
D2 MKL automatic
i varying workload
10
10*
0.5 1 2
Work (W = T'/)\o)
C =16C

CPUcore _|_ TMICthreadsCMICcore A 30 OpenMP threads) 125 S W < 175
" {60 OpenMP threads, W = 1.75

HE=LCT

Q: Which hardware + parallel

MIC Pure OpenMP CPU Pure penMP

THE GNIFREEITY (5 TERAE AV AUSYIN

sor €

Direct Solver ..;{;7{'
implementation is best? Int a Qd@ S ||S’y *"ﬁ;rm

CPU+MIC

Solve

Computational Po

e {11

Sample

. 1
Work (W =r/A) Work (W =r/A)

MIC: 1 MPI process CPU: 1 MPI process
with varying OpenMP with varying OpenMP
threads (1-240) threads (1-16)

CPU+MIC, W =1.25

N {CPU Pure OpenMP, W < 1.25

0.5 1 2
Work (W =r/A\y)

CPU: 1 MPI process with
16 OpenMP threads
MIC: Varying OpenMP
threads (1-240)
MKL automatic offloading

@D

>(.9

0.7

0.5

0.3

THE GNIFREEITY (5 TERAE AV AUSYIN

\ﬁECE . mﬂ
Q: Which hardware + parallel DIreCt SOIVer IGEﬁk

implementation is best’r‘l nw Q P U + M IQ w %;.ms

Varying nodes
(<1'64)’ I:)nodes
CPU / node

— 1 MPI process

€ — 16 OpenMP
T S threads each

« MIC /node

— MKL automatic
offloading

: : — 60 OpenMP
10 A: CPU Cluster <o threads

4 | al .
%05 1 2 4 %05 1 2 4 8 — MKL automatic

Work (W =1/X) Work (W =r/Ay) .
varying
workload

CPU Cluster CPU+MIC Cluster

10?

—_
o
n

nnnnn

10

_.
OAA

10° 10°

Solve

Computational Power (Ci, (1/s))
=

C_ =P 16C C [16C, ... +60C

tot nodes CPUcore tot nodes MICcore]

TEIN GRIFRIEITY (8 TREAE AY AUSTIN

UNIVERSITY OF TEXAS AT AUSTIN
ELECTRICAL & COMPUTER ENGINEERING f

ICE

Y

Applications

« Benchmark Description
« System Evaluation for Algorithm | — Iterative Solver
« System Evaluation for Algorithm Il —Direct Solver

« Computational System Comparison

TR G FRIEITY O RS AY AUSTIN

\ﬁECE .) wﬂ
o Direct vs. lterative Solver ce2 /%

system is better? Inw QPU+M IQ m %.amm

lterative Solve

Direct Solve

10

- CPU Cluster 2 CPU+MIC Cluster e

« Varying nodes
709 (<1-64)’ I:)nodes

e« CPU / node

— lterative: 1-2 MPI
processes with up
to 8 OpenMP
threads

10 A { Direct Solve on CPU Cluster, W <3 _ Direct: 1 MPI

Iterative Solve on CPU Cluster, W > 3 process with up to

— 16 OpenMP

- Sl threads

« MIC/node
— 60 OpenMP
threads

. — lterative: 1 MPI
10° <0t process & 25%
workload

0.5 1 2 4 8 0.5 1 2 4 8 .
Work (W = /o) Work (W = r/A,) — Direct: MKL

C =P 16C C 16C.,, 60C automatic offload&
tot nodes CPUcore tot nodes[ore + MICcore] Varying workload

Computational Power (C (1/3))
=

10°

obs

10

Computational Power (Ciy (1/s))

ELECTRICAL & COMPUTER ENGINEERING

Summary & Conclusions

UT==le TN
Observations '“Eﬁ/(J

%pn #

 Judging algorithms, software, hardware

- Era of independently judging algorithms, implementations, and hardware is
(probably) ending
- Will not be able to (credibly) claim
- processor p1 is better/faster/more energy efficient/... than processor p2
without mentioning algorithm & software properties
- algorithm A is better/faster/... than algorithm B without mentioning software &
hardware properties
- Must judge entire system (algorithm + software implementation + hardware)
- can still judge ingredients but in context
- faster not always better, must evaluate cost!
=> Q: Which one is better? Destination 100km away:
(a) Drive in 1h or 2h? A: Of course faster is better.

(b) Drive in 1h spending 10L of fuel or 2h spending 1L of fuel? A: It

depends...
- (parallel) efficiency is a reasonable metric for judging cost of computational

systems, even for heterogeneous computing

BIE=ECE VRS
Empirical Approach U 7

ﬂ%,
g pue

* Proposed methodology
- Carefully define problem of interest
- Define workload independent of system (not in terms of basic operations [flops])
- Determine average computational power of system under different configurations
- Evaluate efficiency as a function of available computational power, workload,
determine iso-efficiency contours
- Compare & contrast

* Pros & cons
+ Can compare entire computational systems
+ Can compare ingredients (hardware, software implementations, algorithms) by
modifying only one and keeping other ingredients fixed
- Requires (access to) whole system
- Must generate lots of data including those from relatively inefficient simulations

