Simulation and Modeling of an ADSL Modem - Channel Model and Receiver Initialization

Magesh Valliappan
Embedded Signal Processing Laboratory
The University of Texas at Austin
Channel Model

✔ Model transmission over copper cable
 – Linear shift invariant (FIR) filter
 – Crosstalk - additive colored noise
✔ Modeled as synchronous data flow (SDF)
Receiver Initialization

✔ Subcarrier detection
 – Handshake signals
 – Pilot phase for phase locked loop

✔ Input power estimation for gain control

✔ Channel delay estimation
 – frame synchronization during initialization

✔ Channel and signal to noise ratio estimation
 – Channel equalization (without cyclic prefix)
 – Bit loading (with cyclic prefix)
Modeling Strategy

✔ Front End
 - Synchronize sample input and output
 - Buffer input samples to achieve variable delay
 • Frame synchronization
 • Enable/disable cyclic prefix

✔ Back End
 - Frame synchronize transmitter and receiver
 • One iteration handles one frame of input/output
 • Simultaneously switch to cyclic prefix mode
Modeling

✔ Model ADC/DAC as one SDF block
 – force synchronized operation
✔ Dynamic dataflow for input data buffer
✔ Back End
 – Processing in SDF blocks
 – Dataflow controlled by boolean logic
 • Boolean dataflow
 – Finite state machine embedded in SDF block
Modeling

✔ Front End
 - Requires dynamic scheduler
 • dynamic data management

✔ Back End
 - Annotated static schedule (SDF, BDF & FSM)
 - All computation intensive units in SDF

✔ Increase in signal processing delay
Results

Channel Response

Channel Length: 256
Cyclic Prefix: 16

Shortened Channel Response
Conclusions

✔ Deliverables:
 - Channel model for ADSL transmission
 • User definable parameters
 - Model for ADSL receiver during initialization
 • Statically schedulable except for dynamic data management
 • Dynamically compute optimal settings