2.1 Frequency Responses
For each LTI system in problem 1.1 on homework assignment #1,
a) plot the pole-zero diagram for the transfer function.
b) is the filter bounded-input bounded-output (BIBO) stable? why or why not?
c) give a formula for the frequency response.
d) plot the magnitude response.
e) if the system is BIBO stable, pick the best one of the following choices to describe the frequency selectivity of the filter: lowpass, highpass, bandpass, or bandstop.

(1) Causal five-tap averaging filter. Transfer function from solution to homework problem 1.1:

\[H(z) = \frac{Y(z)}{X(z)} = \frac{1}{5} (1 + z^{-1} + z^{-2} + z^{-3} + z^{-4}) = \frac{1}{5} \left(\frac{z^{4} + z^{3} + z^{2} + z^{1} + 1}{z^{4}} \right) \]

a) Pole-zero plot: The zeroes occur at \(e^{j2\pi \frac{m}{N}} \) where \(m = 1 \ldots N-1 \). In our case, the four zeros are 0.3090 + j0.9511, -0.8090 + j0.5878, and their complex conjugates. The four artificial poles are repeated.

b) BIBO: The causal system is bounded-input bounded-output stable because the region of convergence (ROC) \(z \neq 0 \) includes the unit circle. FIR filters are always BIBO stable.

c) Frequency response: Since the unit circle is in the ROC, we replace \(z \) in \(H(z) \) with \(e^{j\omega} \):

\[H(e^{j\omega}) = \frac{1}{5} (1 + e^{-j\omega} + e^{-2j\omega} + e^{-3j\omega} + e^{-4j\omega}) \]

Discrete-time frequency domain is periodic in \(\omega \) with period 2\(\pi \) due to the \(e^{j\omega} \) terms.

d) Magnitude response: The phase response is linear with constant slope of -2, except at discontinuities at the four nulls in the magnitude response (two in positive frequencies and two in negative frequencies). At nulls in magnitude response, a jump of \(\pi \) occurs in phase response. Group delay is 2
samples.
e) Lowpass filter. For an averaging filter, the first sidelobe peaks at -13.5 dB, regardless of number of coefficients \(N \) provided that \(N > 2 \). For \(N > 1 \), the null bandwidth is \(2\pi / N \), or \(0.4\pi \) for \(N = 5 \). Not a great lowpass filter, but lowpass nonetheless. The continuous-time frequency \(f_0 \) corresponding to \(2\pi / N \) can be found using \(2\pi / N = 2\pi f_0 / f_s \), i.e. \(f_0 = f_s / N \). This is the basis for choosing lengths of the averaging filters in homework problem 1.3.

(2) Causal discrete-time approximation to first-order differentiator

Transfer function:

\[
H(z) = \frac{Y(z)}{X(z)} = 1 - z^{-1} = \frac{z^{-1}}{z}
\]

a) Pole-zero diagram: Transfer function has a zero at \(z = 1 \). An “artificial” pole occurs at \(z = 0 \). The zero on the unit circle will have a gain of zero at the 0 rad/sample in the magnitude response (see lecture slide 6-6). The zero location at \(z = 1 \) means that for \(z = e^{j\omega} = 1 \), the value of \(\omega = 0 \).

b) BIBO: The causal system is bounded-input bounded-output stable because the region of convergence (ROC) \(z \neq 0 \) includes the unit circle. FIR filters are always BIBO stable.

c) Frequency response: Since the unit circle is in the ROC, we replace \(z \) in \(H(z) \) with \(e^{j\omega} \) and we obtain

\[
H(e^{j\omega}) = 1 - e^{-j\omega}
\]

d) Magnitude response: The gain above 0.3 rad/sample goes above 0 dB. The gain in the passband region is approximately 5.5 dB at 0.7 rad/sample. Additionally, the phase response is linear with constant slope of \(-\frac{1}{2} \).

e) Highpass filter because it attenuates lower frequency components below 0.3 rad/sample. Notch filter because it notches out (eliminates) the zero frequency component. The in-class

Course Web site: http://www.ece.utexas.edu/~bevans/courses/realtime
demonstration of filtering the Mandrill (Baboon) image called it highpass.

(3) **Causal discrete-time approximation to a first-order integrator.** Transfer function:

\[H(z) = \frac{Y(z)}{X(z)} = \frac{1}{1 - z^{-1}} \]

a) Pole-zero diagram: The pole is on the unit circle, \(z = 1 \) and the zero is at the origin.

b) BIBO: Not BIBO stable, because the pole is at \(z = 1 \), which is on the unit circle. Another reason is that the ROC \(|z| > 1 \) does not include the unit circle.

c) Frequency response: Since the ROC does not include the unit circle, substituting \(z = e^{j\omega} \) in the \(z \)-transform expression does not hold. Instead, the frequency response can be calculated by finding the impulse response of the system and taking the discrete-time Fourier transform. The impulse response is given by \(h[n] = u[n] \); i.e., for an input of a discrete-time impulse \(\delta[n] \), the output is \(h[n] = h[n-1] + \delta[n] \) with \(h[-1] = 0 \). The frequency response is the discrete-time Fourier transform of the unit step:

\[
F\{u[n]\} = H(e^{j\omega}) = \frac{1}{1 - e^{-j\omega}} + \pi \sum_{k=-\infty}^{\infty} \delta(\omega - 2\pi k)
\]

The discrete-time Fourier transform is periodic in \(\omega \) with period \(2\pi \).

d) Magnitude response: \(|H(e^{j\omega})| = \left| \frac{1}{1 - e^{-j\omega}} + \pi \sum_{k=-\infty}^{\infty} \delta(\omega - 2\pi k) \right| \leq \left| \frac{1}{1 - e^{-j\omega}} \right| + \pi \sum_{k=-\infty}^{\infty} \delta(\omega - 2\pi k) \]

We can approximate the left term by plotting the first term on the right side of inequality. This is not the exact plot of discrete-time Fourier transform. We have manually added the right term, which is a Dirac delta at \(\omega = 0 \) in \([0, \pi]\).

e) Type of filter: Not applicable because system is not BIBO stable. Magnitude response is unbounded as frequency approaches zero. Otherwise magnitude response resembles a lowpass filter. If a signal had DC component removed, e.g. by a notch filter, the LTI system could be used to filter other frequencies.

Course Web site: http://www.ece.utexas.edu/~bevans/courses/realtime
(4) Causal bandpass filter with center frequency \(\omega_0 \).
For plots, place poles close to but inside the unit circle, e.g. set the pole radius \(r \) to be 0.9 or 0.95 (from the hints) and a value of \(\omega_0 \) between \(\pi/4 \) and \(3\pi/4 \). We’ll use \(r = 0.9 \) and \(\omega_0 = \pi/2 \):

\[
H(z) = \frac{1 - \cos \omega_0 z^{-1}}{1 - 2(\cos \omega_0) r z^{-1} + r^2 z^{-2}}
\]

a) Pole-zero diagram: Zero at \(\cos(\omega_0) \). Poles at \(re^{j\omega_0} \) and its complex conjugate.

b) BIBO: The filter is BIBO stable since the poles are inside unit circle, i.e. \(|r| < 1\).

c) Frequency response: Since \(|r| < 1\), we obtain frequency response by substituting \(z = e^{j\omega} \):

\[
H(e^{j\omega}) = \frac{1 - \cos \omega_0 e^{-j\omega}}{1 - 2(\cos \omega_0) r e^{-j\omega} + r^2 e^{-2j\omega}}
\]

d) Plot of magnitude response for \(r = 0.9 \): We plot the magnitude response for multiple values of \(\omega_0 \), i.e. \(\omega_0 = \frac{\pi}{2}, \omega_0 = \frac{\pi}{4}, \) and \(\omega_0 = \pi \).

e) Type of filter: Bandpass for \(0.8 < r < 1 \).
The zero at \(\cos(\omega_0) \) helps create the bandpass response at \(\omega_0 = 0 \) and \(\omega_0 = \pi \). Without the zero, the response would have been a lowpass and highpass filter, respectively.

```matlab
close all; r = 0.9;
w0 = pi/2;
figure; freqz([1 -cos(w0)],[1 -2*r*cos(w0) r^2]);
[h1,z1] = freqz([1 -cos(w0)],[1 -2*r*cos(w0) r^2]);
w0 = pi/4;
[h2,z2] = freqz([1 -cos(w0)],[1 -2*r*cos(w0) r^2]);
w0 = pi;
[h3,z3] = freqz([1 -cos(w0)],[1 -2*r*cos(w0) r^2]);

figure; plot(z1/pi, 20*log10(abs(h1)),'k-','LineWidth', 3);
plot(z2/pi, 20*log10(abs(h2)),'k-','LineWidth', 3);
plot(z3/pi, 20*log10(abs(h3)),'k-','LineWidth', 3);
xlabel( 'Normalized Frequency (\pi rad/sample)' );
ylabel( 'Magnitude (dB)' );
legend( '\pi/2','\pi/4','\pi' ); grid minor;
```

Course Web site: http://www.ece.utexas.edu/~bevans/courses/realtime
2.2. Finite Impulse Response Filter Design for Audio Signals. 30 points.

This problem explores ways to process audio signals.

Please download the audio wave file ‘twosignals.wav’ from the homework Web site: http://users.ece.utexas.edu/~bevans/courses/realtime/homework/twosignals.wav

This audio file is the sum of two audio signals– a gong sound and a bird chirping. The gong sound and the bird chirping occupy different frequency bands. The gong sound is different from the gong file from the Johnson, Sethares and Klein book.

(a) Plot the spectrum of the ‘twosignals’ audio track using plotspec and spectrogram. Approximately what frequency band does the gong sound occupy? Approximately what frequency band does the bird chirp occupy?

```matlab
% take in gong and bird chirping signals
[twosignals, fs] = audioread('twosignals.wav');
% time and frequency plot
figure; plotspec(twosignals,1/fs);

nwin = 10240; % divide chirp signal into block of nwin samples
noverlap = 3/4*10240; % number of samples in each block of chirp signal % that overlaps with the previous block
nfft = []; % specifies the number of frequency points used to % calculate the discrete Fourier transforms.
figure; spectrogram(twosignals, nwin, noverlap, nfft, fs, 'yaxis');
h = colorbar; % set the colorbar(dB) in y axis
ylabel(h, 'Magnitude, dB'); ylabel('Frequency, kHz');
xlabel('Time, s'); title('Spectrogram of the signal');
```

The Gong signal: Frequency components in the 250-2000 Hz band that fade over time with pattern of tiny horizontal streaks.

The Bird Chirp signal: Frequency components in 2500-3900 Hz that do not fade over time and appear to be randomly distributed. Some frequency components of bird chirp signal may occupy
the region of 250-2000 Hz. But since this is a classification problem, we may assume most of bird chirp signal frequency components fall in the range of 2500-3900 Hz.

(b) Design an FIR filter using the Parks-McClellan algorithm (a.k.a. Remez Exchange algorithm and Equiripple design algorithm) to extract the gong signal from the ‘twosignals’ audio track. Then, apply the filter to the ‘twosignals’ audio track, play back the filter output to validate that the gong signal has been extracted, and plot the filter output using plotspec.

```matlab
%% Set the Nyquist frequency to be half of the sampling rate fs.
fnyquist = fs/2;
% Define the passband frequency fpass in Hz
fpass = 1500;
% Define the stopband frequency fstop in Hz
fstop = 1500+150;
ctfrequencies = [0 fpass fstop fnyquist];
idealAmplitudes = [1 1 0 0 ];
pmfrequencies = ctfrequencies / fnyquist;
% Number of coefficients is filter order plus one
filterOrder = 130;
lowpass_flt = firpm( filterOrder, pmfrequencies, idealAmplitudes );
figure; freqz(lowpass_flt);
twosignals_lp = conv(lowpass_flt,twosignals');
sound(twosignals_lp,fs);
figure; plotspec(twosignals_lp,1/fs);
figure; spectrogram(twosignals_lp, nwin, noverlap, nfft, fs, 'yaxis');
h = colorbar; % set the colorbar(dB) in y axis
ylabel(h, 'Magnitude, dB'); ylabel('Frequency, kHz');
xlabel('Time, s'); title('Spectrogram of the signal');
```

The 130th order FIR filter does not have enough stopband attenuation to remove all the audible components of the bird chirp. The stopband attenuation is about -50 dB. The spectrogram of the filtered signal would show some traces of remaining frequency components in the 2500-4000 Hz region. By increasing the order to 250, stopband attenuation is at 80 dB and sufficient at filtering out the bird chirp. The gong signal has a principal frequency at 970 Hz.
(c) Design an FIR filter using the Parks-McClellan algorithm (a.k.a. Remez Exchange algorithm and Equiripple design algorithm) to extract the bird chirp from the ‘twosignals’ audio track. Then, apply the filter to the ‘twosignals’ audio track, play back the filter output to validate that the gong signal has been extracted, and plot the filter output using plotspec.

```matlab
% Sampling rate fs of sound card set when reading twosignals file
fnyquist = fs/2;
% Define passband and stopband frequencies in Hz
fpass = 2000;
fstop = 2000-200;
ctfrequencies = [0 fstop fpass fnyquist];
idealAmplitudes = [0 0 1 1 ];
pmfrequencies = ctfrequencies / fnyquist;
% Number of coefficients is filter order plus one
filterOrder = 114;
highpass_flt = firpm( filterOrder, pmfrequencies, idealAmplitudes );
figure; freqz(highpass_flt);
twosignals_hp = conv(highpass_flt,twosignals');
sound(twosignals_hp, fs);
figure; plotspec(twosignals_hp, 1/fs);
figure; spectrogram(twosignals_hp, nwin, noverlap, nfft, fs, 'yaxis');
h = colorbar; % set the colorbar(dB) in y axis
ylabel(h, 'Magnitude, dB'); ylabel('Frequency, kHz');
xlabel('Time, s'); title('Spectrogram of the signal');
```
Among the frequency components in the bird chirp signal, 2500 Hz is the strongest in magnitude. However, the filter passband frequency is set around 2000 Hz because the 2000 – 2500 Hz frequencies belong to the bird chirp. You may find that if the 2000 – 2500 Hz components are included at the gong sound signal in part (b), you will hear the some bird chirp sound towards the end of the 5 seconds simply because the signal-to-noise ratio is relatively low.

Course Web site: http://www.ece.utexas.edu/~bevans/courses/realtime
The 114th order FIR filter does not have enough stopband attenuation to remove all of the audible components of the gong sound. By increasing the order to 200, the stopband attenuation is at 80 dB and sufficient at filtering out the gong sound.

(d) Take the extracted gong signal in part (b) and perform downsampling by 2. Downsampling by 2 keeps every other sample and discards the rest. Here’s Matlab code for downsampling vector vec by 2:

```matlab
vecDownsampledBy2 = vec(1:2:length(vec));
```

- Play the downsampled filtered gong signal at the same playback rate as the filtered gong signal. How does it differ from the gong signal extracted in part (b)?
- Plot the magnitude spectrum of the downsampled filtered gong signal and compare it against the magnitude spectrum of the gong extracted in part (b).

Solution: When the downsampled gong signal is played back at the same rate as the gong signal, the frequency components in the downsampled gong signal are twice those of the gong signal. The principal frequency is now 1940 Hz instead of 970 Hz. We also notice that the sound clip lasts half as long. We can look at a single cosine signal $x[n]$ at frequency $\omega_0 = 2 \pi f_0 / f_s$ in order to see what is happening:

$x[n] = \cos(\omega_0 n)$

$y[n] = x[2n] = \cos(\omega_0 (2n)) = \cos(2 \pi (f_0 / f_s) (2n)) = \cos(2 \pi ((2f_0) / f_s) n)$

If we play back $y[n]$ at the same sampling rate as that of $x[n]$, frequency components in $x[n]$ are doubled in $y[n]$. That also means the frequencies in $x[n]$ from $\pi/2$ to π will be aliased in $y[n]$.

Since the downsampled signal vector is half as long as the original, the FFT of the downsampled signal vector should be half as long as well. Thus, we have half as many samples to represent frequencies from 0 Hz to $\frac{1}{2} f_s$ Hz. Accordingly, the frequency of each tone in the signal will double, and the spectrum will stretch in width by a factor of 2.

(e) Take the extracted gong signal in part (b) and perform upsampling by 2. Upsampling by 2 inserts zero after every sample. Here’s Matlab code for upsampling row vector vec by 2:

```matlab
vec = cumsum( ones(1,10) );
upsampledLength = 2*length(vec);
```
vecUpsampledBy2 = zeros(1, upsampledLength);
vecUpsampledBy2(1:2:upsampledLength) = vec;

• Play the upsampled filtered gong signal at the same playback rate as the filtered gong signal and also at twice the playback rate. How does it differ from the gong signal extracted in part (b)?

• Plot the magnitude spectrum of the upsampled filtered gong signal and compare it against the magnitude spectrum of the gong extracted in part (b).

For the sanity of others, you might put in a pair of headphones when working this problem.

```
upsampledLength = 2*length(twosignals_lp);
reconstrGongUpsampledBy2 = zeros(1, upsampledLength);
reconstrGongUpsampledBy2(1:2:upsampledLength) = twosignals_lp;
sound(reconstrGongUpsampledBy2,fs);
figure; plotspec(reconstrGongUpsampledBy2,1/fs);
% lowpass filtering removes aliasing created by upsampling
reconstrGongUpsampledBy2_lp = conv(lowpass_flt, reconstrGongUpsampledBy2);
sound(reconstrGongUpsampledBy2_lp,fs);
figure; plotspec(reconstrGongUpsampledBy2(lp,1/fs);
```

Upsampling is a sampling operation, which causes replicas of the spectrum of the signal being sampled. When playing the upsampled gong signal at the same playback rate as the gong signal, the principal frequency at 970 Hz is halved. Playing back the left waveform at the same playback rate gives the gong signal at halved frequencies plus a high frequency ringing (which correspond to replicas of the gong signal at halved frequencies shifted by 4000 Hz to the left and right).

2.3 Finite Impulse Response (FIR) Filter Design for Treatment of Tinnitus Loudness.

Tinnitus, a.k.a. “ringing of the ears”, is a symptom due to an underlying condition in the auditory system. It could have resulted from injury, infection, or other causes. People with tinnitus hear a tone, clicking, hiss, roaring or buzzing when no external sound is present [1][2]. The tinnitus sound could be at low, medium or high audible frequencies, and may occur in one ear or both

Course Web site: http://www.ece.utexas.edu/~bevans/courses/realtime
ears. The tinnitus sound might be temporary or chronic. Those suffering from chronic tinnitus would hear the same sound in the same frequency range each time. The tinnitus sound has a principal frequency that can be determined through auditory testing. Hearing sound that contains the principal frequency and frequencies close to the principal frequency is particularly painful.

This problem asks you to design a discrete-time filter to alleviate the loudness of tinnitus:

"Maladaptive auditory cortex reorganization may contribute to the generation and maintenance of tinnitus. Because cortical organization can be modified by behavioral training, we attempted to reduce tinnitus loudness by exposing chronic tinnitus patients to self-chosen, enjoyable music, which was modified ("notched") to contain no energy in the frequency range surrounding the individual tinnitus frequency. After 12 months of regular listening, the target patient group \(n = 8 \) showed significantly reduced subjective tinnitus loudness and concomitantly exhibited reduced evoked activity in auditory cortex areas corresponding to the tinnitus frequency compared to patients who had received an analogous placebo notched music treatment \(n = 8 \). These findings indicate that tinnitus loudness can be significantly diminished by an enjoyable, low-cost, custom-tailored notched music treatment, potentially via reversing maladaptive auditory cortex reorganization." [3]

The proposed treatment for tinnitus [3] alters participants' favorite music to remove an octave of frequencies around the tinnitus frequency \(f_c \). An octave means a range of frequencies from \(f_i \) to \(2f_i \). Since \(f_c \) would be in the middle of the octave, \(f_i = (2/3)f_c \). After 12 months of listening to the filtered music, patients reported lessening of tinnitus loudness.

A good rule of thumb in filter design is that the transition region is about 10% of the passband width. In this case, the passband width is \((2/3)f_c\).

Here are the bandstop filter specifications for your design:

- For frequencies 0 Hz to 0.6 \(f_c \), the passband ripple should be no greater than 1 dB.
- For frequencies \((2/3)f_c\) to \((4/3)f_c\), the stopband attenuation should be at least 80 dB.
- For frequencies above \(1.4f_c\), the passband ripple should be no greater than 1 dB

Please use a tinnitus frequency \(f_c \) of 3000 Hz and a sampling rate \(f_s \) of 44100 Hz.

(a) Design FIR filters with the minimum filter order to meet the specification by using the Equiripple, Least Squares, and Kaiser Window design methods. FIR equiripple design is also known by many other names: Parks-McClellan, Remez Exchange and Chebyshev Design. Please submit a plot of the magnitude and phase response for each filter design. Validate that each filter design meets the filter specifications.

Solution: Equiripple (Remez) design

Parameters: \(f_s = 44100 \) Hz, \(f_{pass1} = 1800 \) Hz, \(f_{stop1} = 2000 \) Hz, \(f_{stop2} = 4000 \) Hz, \(f_{pass2} = 4200 \) Hz, \(A_{pass1} = A_{pass2} = 1 \) dB, \(A_{stop} = 80 \) dB. Using fdatool, we get an initial estimate of the order to be 606 to meet to the above specifications. Here is the initial look at this and by zooming into stopband and passband, we see that the filter specifications are met.
However, the filter order is high. We can manually adjust the filter specification values input into fdatool so that the filter would have a lower order for the minimum order design. By changing $A_{\text{stop}} = 600$ dB, the filter order reduces to 560, while still meeting the original specifications. We can check this in fdatool by zooming into the stopband, or by exporting the filter design to the Matlab workspace as variable `Num` and using `freqz(Num)` and zooming into the stopband.
Solution: Least Squares design

This method has difficulty in meeting filter specifications at stopband frequencies.

Solution I: Using fdatool, a 1100th-order filter meets specs using these values: \(f_s = 44100 \) Hz, \(f_{\text{pass}} = 1800 \) Hz, \(f_{\text{stop}1} = 2000 \) Hz, \(f_{\text{stop}2} = 4000 \) Hz, \(f_{\text{pass}2} = 4200 \) Hz, \(W_{\text{pass}1} = 1 \), \(W_{\text{stop}} = 100 \), \(W_{\text{pass}2} = 1 \). \(W_{\text{stop}} \) is the weighting of importance in meeting the stopband specification.

Using fdatool, a 960th-order filter meets specs using these values: \(f_s = 44100 \) Hz, \(f_{\text{pass}} = 1800 \) Hz, \(f_{\text{stop}1} = 1980 \) Hz, \(f_{\text{stop}2} = 4020 \) Hz, \(f_{\text{pass}2} = 4200 \) Hz, \(W_{\text{pass}1} = 1 \), \(W_{\text{stop}} = 200 \), \(W_{\text{pass}2} = 1 \). \(W_{\text{stop}} \) is the weighting of importance in meeting the stopband specification.
Solution II: we can use the Matlab command `firls` to search for the minimum order. The filter order was 1200. Here is code to obtain filter coefficients and plot the magnitude response.

```
% HW2, Prob3, FIR design using least squares method, Fall 2014
clear all; close all; clc;
fn=44100/2; % Nyquist frequency
h=firls(1200,[0/fn 1800/fn 2000/fn 4000/fn 4200/fn 1], [1 1 0 0 1 1]);
[h1,f]=freqz(h,1,1024,fn*2);
figure(1); plot(f,20*log10(abs(h1))); grid on;
ylabel('Magnitude(dB)'); xlabel('Frequency (Hz)');
figure(2); plot(f,360/(2*pi)*unwrap(angle(h1)));
ylabel('Phase(degree)'); xlabel('Frequency (Hz)');
grid on;
```

Here is a plot of the magnitude response (left) and the zoomed-in version of the passband (right).

Magnitude response meets the original specifications. Here is a plot of the phase response:
Solution: Kaiser window design

First Try: Parameters: $f_s = 44100$ Hz, $f_{pass1} = 1800$ Hz, $f_{stop1} = 2000$ Hz, $f_{stop2} = 4000$ Hz, $f_{pass2} = 4200$ Hz, $A_{pass1} = A_{pass2} = 1$ dB, $A_{stop} = 80$ dB. Using fdatool, order is 1108 based on a minimum order design:

Filter design misses stopband attenuation specification over 2000-4000 Hz by 0.25 dB.

Second Try: By changing $A_{stop} = 80.25$ dB, filter specifications are met, and the order is 1122.
Third Try: The order can also be manually specified. However, with \(Fc1 = 1900 \), \(Fc2 = 4100 \), and \(\beta = 0.5 \), a filter order greater than 250000 will be needed to make the stopband attenuation reach 80 dB.

(b) Plot the impulse response of the FIR filter designed by the Parks-McClellan (Remez) algorithm. What symmetry is in the impulse response?

Solution: The 561 coefficients of the impulse response are plotted, and the spacing between samples is the sampling period of \(1/(44100 \text{ Hz}) \) or 0.0227 ms. The duration of the impulse response is 561 samples from index 0 to 560. The extent of the impulse response would be \(560 / (44100 \text{ Hz}) = 12.7 \text{ ms} \). The impulse response has even symmetry about its midpoint, which gives linear phase. Although not asked, the group delay is 280 samples or 6.3492 ms.
Also plotted the zooms into to show the impulse response near its midpoint (specifically coefficients at around indices 280).

(c) Give the filter lengths required for filters designed for each filter design method. Which method gives the shortest filter length?

Solution: The filter length is the filter order plus one. This is because the filter order is the highest negative power of z. All filter designs have linear phase. The Remez method gives the shortest linear phase FIR filter with real-valued coefficients.

<table>
<thead>
<tr>
<th>Filter type</th>
<th>Order</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remez</td>
<td>560</td>
<td>561</td>
</tr>
<tr>
<td>Least Squares</td>
<td>960</td>
<td>961</td>
</tr>
<tr>
<td>Kaiser window</td>
<td>1122</td>
<td>1123</td>
</tr>
</tbody>
</table>

(d) Analyze the implementation complexity of each FIR filter design: 1) How many multiplication operations are needed? 2) How much memory (in words) would it take to store the FIR coefficients and the circular buffer for the current and past inputs?

Solution: An FIR filter of N coefficients takes N multiplications and N-1 additions to compute an output sample. It requires a linear buffer of N words to store the impulse response (filter coefficients) and a circular buffer of N words to store the current input and previous N-1 inputs. Total storage is 2N words. *A word is the size of the data type for coefficients and data.*

References

