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Abstract

In MIMO-OFDM systems, by matching transmitter parameters such as modulation order and coding rate, link adaptation can
increase the throughput significantly. However, creating a tractable mathematical mapping model from environmental variables
to transmitter parameters that allows the latter to be optimized in any sense, presents serious challenginges due to the large
number of variables involved, as well as the complexity required in any model with the ability to accurately capture and explain
all factors that affect performance. Machine learning algorithms, which make no mathematical assumptions and use only past
observations to model the input-output relationship, have recently been explored for adaptation in MIMO-OFDM systems. In
this paper we propose a novel machine learning algorithm based on multi-class support vector machines (SVMs). Our algorithm
has considerably smaller operational overhead (including storage requirements) and better performance for link adaptation. With
IEEE 802.11n simulations we show that our new algorithm outperforms existing machine-learning based algorithms. Moreover,
we show that our algorithm is (asymptotically) consistent, in the sense that as the number of training data used increases, our
algorithm obtains the performance-optimal classifier.

I. INTRODUCTION

The limited available frequency spectrum and the demand for higher data rate, require future systems to provide significantly
enhanced spectral efficiency in order to increase link throughput and network capacity. Multiple-input, multiple-output (MIMO)
systems increase the throughput by simultaneously transmitting different streams of data on the different transmit antennas
[1], [2]. They can be used to achieve multiple-fold improvement in the peak data rate provided that the MIMO channel is
well conditioned. And indeed, this is the case in rich-scattering environments. Frequency-selective fading caused by multipath
scattering can be handled by Orthogonal Frequency Division Multiplexing (OFDM). The effects of frequency-selective fading
can be considered as flat over an OFDM subcarrier if the subcarrier is sufficiently narrow-banded. This makes equalization
much simpler at the receiver in OFDM in comparison to conventional single-carrier modulation. As a result, the combination
of MIMO with OFDM is a promising technique to enhance data traffic rate in physical layer.

However, maximizing network throughput in higher layers requires systems to meet reliability constraints to reduce overhead
caused by retransmissions. Hence, both high data rate and high reliability have to be achieved simultaneously. By matching
transmitting parameters such as symbol modulation order, error control coding rate, and spatial multiplexing order to time
varying channel conditions, adaptive modulation and coding (AMC) can increase the transmission rate considerably while
meeting the reliability constraints at the same time [3], [4]. Unfortunately, the sheer number of environmental parameters such
as signal energy, noise variance, channel state information for each subcarrier, time tap, and spatial stream, make it difficult
to tune the transmission parameters appropriately. Moreover, many other additional and potentially subtle factors such as
quantization error, non-gaussian noise effect, and non-linearity of systems make it almost impossible to obtain a mathematical
model which can be tractably optimized to find the optimal (or even near-optimal) parameters to operate the system. Hence,
link adaptation to a time-varying channel and environment conditions is challenging.

Recently, there have been new flexible approaches to use machine learning algorithms for effective link adaptation [5]–[8].
The authors of [5] have proposed a non-parametric supervised learning algorithm based on k-nearest neighbor (k-NN). There,
they show that a subset of ordered post-processing SNR can explain the frame error rate (FER) well, and moreover can do this
with very low dimensions. Using this as a feature space, they further show that an adaptation of the k-NN algorithm provides
accurate mapping from features to modulation and coding schemes (MCSs) and significantly outperforms other link adaptation
algorithms in MIMO-OFDM systems.

In this paper we use the feature set extraction scheme shown in [5], namely ordered post-processing SNR, and develop a
new machine learning algorithm based on multi-class support vector machines. The link-adaptation problem, unlike traditional
classification problems, is in fact an optimization problem, in the sense that we seek to classify in order to optimize an objective
(e.g., expected rate) as opposed to simply aiming to maximizing the probability of determining the “correct label.”



Our new algorithm allows the optimization of such objectives, and our numerical results demonstrate that our algorithm
does in fact outperform algorithms that focus on maximizing probability of correct classification. Indeed we show that our
algorithm is statistically consistent, in the sense that as the number of training data goes increases, we asymptotically compute
the performance-optimal solution. In addition to performance improvement, our algorithm presents significant advantages
important in practice, including reducing time-overhead and significantly reducing memory usage and requirements.

The remainder of this paper is organized as follows. In Section II we describe the system model for the machine learning
link adaptation algorithms and look into the characteristic of the system to give the motivation of our algorithm. Section III
provides the framework for multi-class SVMs, after which point we give our classification algorithm. We report the results
of extensive computations on IEEE 802.11n systems we conducted, in Section IV. Here we show the gains possible using
algorithms that optimize performance rather than classification correctness. Finally, Section V concludes this paper.

II. MIMO-OFDM AMC USING MACHINE LEARNING

A. System Model

1) MIMO-OFDM Systems: In MIMO-OFDM systems with Nt transmit antennas and Nr receive antennas, data will be
transmitted over Ns ≤ min{Nt ,Nr} spatial streams. In frequency domain, a baseband signal x[m,n] for the nth subcarrier of
the mth OFDM symbol, will be multiplied by a pre-coding matrix, F[n] then transmitted over a wireless channel, H[n]. At the
receiver, we use a linear equalizer, G[n] to recover the transmitted signal and complex Gaussian noise, v[m,n] ∼ CN(0,σ2I)
will be added. Then,

y[m,n] =
√

EsG[n]H[n]F[n]x[m,n]+G[n]v[m,n], (1)

where n ∈ {0, · · · ,N− 1} and m ∈ {0, · · · ,NOFDM − 1}. We assume that all the modulation orders and coding rates are same
for all spatial streams and the wireless channel is constant for all OFDM symbols in a single packet.

2) Learning Model: With a feature set X , a label set Y and n training samples T = ((x1,y1), · · · ,(xn,yn)) ∈ (X ×Y )n,
a machine learning algorithm creates a mapping A : X 7→ Y from features to labels and predicts labels for new samples.
Since the resulting mapping completely depends on training samples, it is important to extract relevant features from the data
available. The number of features, however, should be limited, primarily for two reasons. First, a high dimensional feature set
may allow overfitting of the data, and thus requires larger training sets in order to obtain similar predictive performance, also
known as generalization performance. Second, the running time for training grows quickly as the number of features, i.e., the
dimensionality, gets larger. The authors of [5] have proposed a low dimensional feature set, namely ordered post-processing
SNR, that they have shown represents the frame error rate (FER) performance metric very well. In MIMO-OFDM systems
(1), the post-processing SNR for spatial stream a and subcarrier n is defined as follows:

γ[a,n] =
Es|[G[n]H[n]F[n]]a,a|2

∑a′ 6=a Es|[G[n]H[n]F[n]]a,a′ |2 +σ2Ns|[G[n]]a,a|2 . (2)

With zero forcing (ZF) equalizer, GZF [n] = (F∗[n]H∗[n]H[n]F[n])−1F∗[n]H∗[n], it reduces to

γZF [a,n] =
Es

σ2Ns[(F∗[n]H∗[n]H[n]F[n])−1]a,a
. (3)

Following the notation of [5], we define γ(t) ∈{γ[1,0], · · · ,γ[Ns,N−1]} as the tth smallest post-processing SNR for all subcarriers
and spatial streams. In IEEE 802.11n systems, there are N = 52 subcarriers and the selected feature set is

{
x = [γ(5)

ZF ,γ(10)
ZF ,γ(23)

ZF ,γ(40)
ZF ] , if Ns = 1

x = [γ(6)
ZF ,γ(13)

ZF ,γ(24)
ZF ,γ(56)

ZF ] , if Ns = 2
. (4)

Hence we have a 4-dimensional feature set. The goal of a learning algorithm is to map any point in the feature space to the
“best” MCS. Hence, the set of modulation and coding schemes (MCS) of IEEE 802.11n form our set of labels. MCS ranges
from MCS0 to MCS7 for 1 spatial stream, and MCS8 to MCS15 for 2 spatial streams. Given H,Es,σ2 and target FER T , the
“best” MCS is the MCSi with highest rate Ri such that the target FER constraint is met, i.e.,

i = argmax
j
{R j : FER(H,Es,σ2,MCS j)≤T }. (5)

So far, we have defined a feature set and a label set for IEEE 802.11n MIMO-OFDM systems. Given training samples, machine
learning algorithms produce mappings that will predict the best MCSs for future channel realizations.



B. Optimization as Classification: An Example

In the standard classification setup, machine learning algorithms such as k nearest neighbor and support vector machines try
to maximize the classification accuracy, i.e., they seek to maximize the probability that the next point generated is classified
correctly. If we think of this as a reward function, it means we obtain the same reward for correctly classifying a sample,
regardless of the label, and also that we gain nothing by wrongly classifying samples. Yet in our link-adaptation setting, this
assumption is not consistent with actual system-performance, since the penalty for misclassification may not be symmetric.
We illustrate this point in the following simple example.

Example 1: A sample x has a 30% probability to be labeled A and a 70% probability to be labeled B. When the correct
label is A, we get reward 100 by correctly classifying the sample, while if we misclassify it as B we still get reward 50. On
the other hand, correctly classifying a sample with label B gives reward 80 and misclassifying it as A gives only reward 10.
In a classification problem, we classify x as B to minimize the classification error. However in order to maximize the expected
reward, we choose label A since by choosing A, we expect 0.3×100+0.7×50 = 65 which is higher than what we expect by
choosing B: 0.3×10+0.7×80 = 59.

Because some of the MCSs are comparable, in the sense of maximum rate and also FER (namely, for the same channel
conditions, we may have that the FER of one MCS is always at least as great as another’s FER) the above example is precisely
illustrative of the scenario in the MIMO-OFDM link-adaptation problem. First, each correctly classified MCS results in different
performance, its own rate. Second even when we misclassify it, we may get some degraded performance if we classify it as a
lower rate MCS. (By choosing higher rate MCS we will violate the target FER and observe zero performance due to the high
layer overhead.)

In Example 1, there is ambiguity about which label the sample x will be labeled as. If there is no ambiguity, classification
algorithms will do just fine. Hence the situations mentioned above will occur mostly on the mutual boundaries of different
label’s areas. Therefore we need a machine learning algorithm that compares every pair of labels instead of comparing them
altogether because we want to impose asymmetric weights on each pair of labels.

III. MULTI-CLASS SVM WITH ASYMMETRIC WEIGHTS

In this section, we present a multi-class SVM-based algorithm. The key idea is to introduce asymmetric penalties in order
to “favor” making certain classification mistakes over others. We show how the weights for these penalties should be chosen,
based on the objective we would like to maximize. Note that if we are interested in simply maximizing the probability of
correct classification, the weights should all be chosen equal to one another. Then we show that if the weights are properly
chosen, our algorithm is statistically consistent, that is, as the number of training data grows, our classifier is asymptotically
optimal in the sense of the objective to be optimized.

A. Asymmetric Weights for Binary Classification Algorithms

In order to motivate the method of putting asymmetric weights in our algorithm, let us begin with a simpler binary
classification case. Given a feature set X and a label set Y , we assume a probability distribution on (X×Y ), i.e., (x,y)∼ (X×Y ).
The |Y |= 2,Y = {+1,−1} case is referred to as binary classification. With a sample set, T = ((x1,y1), · · · ,(xn,yn)) ∈ (X×Y )n,
we would like to compute a real-valued function f to minimize

E[Ψy( f (x))],

where the expectation is taken over the unknown distribution that generates the sample points x and their labels y. Keeping to
the standard PAC-learning setup, we assume we know nothing about the underlying generative distribution, but we do assume
that the training data we see are all generated iid according to the true distribution. In particular, we assume that the testing
data are also generated according to the same distribution that generates the training data. One possibility is to attempt to find
a function f that minimizes the empirical loss rather than the true expected loss:

1
n ∑

i
Ψyi( f (xi)) (6)

For the standard classification problem, our objective is to minimize the probability of misclassification. Thus, the loss function
of interest is Ψy( f (x)) = I(y 6= sign( f (x))). This function is non-convex, however, and as a consequence, one can show that
the problem (6) becomes a combinatorial optimization problem, and in particular is NP-hard. As a result, alternate tractable
(and in particular, convex) loss functions such as Ψy( f (x)) = φ(y f (x)), where φ(t) = (1− t)+ are typically used.

Thus there are two difficulties that must be overcome. First, we do not have access to the underlying distribution against
which performance is judged, and thus must rely on the empirical distribution. Second, if the true objective is non-convex and
intractable, we must resort to training our algorithm using a tractable loss function. Statistical consistency, which we revisit in
the next section below, requires showing that as the number of samples goes to infinity, both of these problems are overcome.
In the context of binary classification, these problems are well-studied.



Under suitable conditions, minimizing a regularized version of (6) over a sequence of function classes, minimizes the Ψ-risk,
RΨ( f ) = EXY [Ψy( f (x))]. If our objective is classification correctness, we also want the probability of misclassification R( f ) of
that minimizer to approach the optimal risk (Bayes risk). It is shown in [9] and graphically explained in [10] that if we have
a convex loss function φ : R 7→ [0,∞) which is differentiable at 0 and φ ′(0) < 0, any minimizer f ∗ of Ψ-risk yields a Bayes
consistent classifier, i.e., {

f ∗(x) > 0, if P(Y = +1|X = x) > 1/2
f ∗(x) < 0, if P(Y =−1|X = x) > 1/2.

(7)

Now, moving away from the classification correctness problem, we consider the expected reward maximization problem. Let
us fix an x and the two conditional probabilities P(Y = +1|X = x) and P(Y =−1|X = x) by p+ and p−, respectively. Let ri j be
the reward obtained when we classify an i-labeled sample as j. For example, we gain r+− when we misclassify a +1-labeled
sample as −1. Then the expected reward by classifying x as +1 is p+r++ + p−r−+ and the expected reward by classifying it
as −1 is p+r+−+ p−r−−. Therefore, the reward-optimizing classifier f ∗ is as follows:

{
f ∗(x) > 0 , if p+ > r−−−r−+

(r+++r−−)−(r+−+r−+)
f ∗(x) < 0 , if p− > r++−r+−

(r+++r−−)−(r+−+r−+)
. (8)

Note that in the standard classification problem, r++ = r−− = 1 and r+− = r−+ = 0, hence (8) reduces to (7). Now given a
sample point x, we define asymmetric loss functions, φy(y f ) = αyφ(y f ) = αy(1− y f )+ omitting the argument in f (x). Then
Minimizing Ψ-risk is equivalent to finding f that minimizes the following form.

p+φ+( f )+ p−φ−(− f ) (9)

These loss functions penalize f differently according to asymmetric weights α+ and α−. If we define the set R ∈ R2 as

R = {(φ+( f ),φ−(− f )) : f ∈ R}, (10)

then the above minimization can be written as
min
z∈R

〈p,z〉 (11)

where p = (p+, p−).
Lemma 1: If asymmetric weights, α+ and α−, are as follows,

α+

α−
=

r++− r+−
r−−− r−+

, (12)

then the classifier f ∗ that minimizes (9) maximizes the expected reward, i.e., f ∗ follows (8).
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Fig. 1. set R with hinge loss and squared hinge loss

Proof: The set R is shown in Fig. 1 for the hinge loss function φ(t) = (1− t)+ and the squared hinge loss function
φ(t) = ((1− t)+)2 where α+ = 2 and α− = 1. Note that the slope of the line going through the transition area from f > 0 to
f < 0 is −α−

α+
. By taking a line 〈p,z〉= c and sliding it until it touches R, we obtain the solution to (11).



Suppose p+ > r−−−r−+
(r+++r−−)−(r+−+r−+) . Then we have p+

p− > r−−−r−+
r++−r+− = α−

α+
, which means the line is inclined more towards the

vertical axis and the point of contact is in the area of f > 0, hence the first condition of (8) holds. Similarly, it can be shown
that the second condition holds, too.

B. Multi-class Support Vector Machines

For multi-class classification problems, many generalizations of binary SVM have been proposed ( [11]–[16]). Among
those, the one-against-one and the Weston/Watkins methods compare every pair of labels unlike others that compare one label
against the others altogether. As discussed in the previous section, in order to maximize the expected reward, we require
asymmetric weights on the comparison of each pair of labels. Therefore, for our purposes, these form an appropriate basis for
our classification algorithms. In this section we develop the framework for the algorithms with asymmetric weights introduced
in Section III-A. We show that these algorithms actually maximize the expected reward. That is, they are consistent. In order to
do this, we show that the convexified objective asymptotically minimizes the actual objective (which we see is also non-convex),
and moreover minimizes this with respect to the unknown actual underlying distribution.

1) Multi-class SVM framework: The One-against-one method constructs K(K−1)/2 binary SVMs where K is the number
of classes. Given a sample set T of size n, in order to compare label i and j we construct a smaller sample set T i j = {(xt ,yt)∈
T : yt = i∨ yt = j} and let ni j = |T i j|. Then the corresponding binary SVM problem is

min f i j∈H ,bi j∈R
λn
2 ‖ f i j‖2

H + 1
ni j ∑t:(xt ,yt )∈T i j α i j

yt ξ i j
t

s.t. f i j(xt)+bi j ≥ 1−ξ i j
t yt = i

f i j(xt)+bi j ≤−1+ξ i j
t yt = j

ξ i j
t ≥ 0

(13)

where H is a reproducing kernel Hilbert space (RKHS). Following the observation of Section III-A, asymmetric weights α i j
i

and α i j
j are defined as follows:

α i j
i =

√
rii− ri j

r j j− r ji
, α i j

j =

√
r j j− r ji

rii− ri j
. (14)

In the testing phase, for a sample x, we vote for either label i or j according to the classifier f i j. Then after K(K−1)/2 votes,
we predict that x is labeled as the one with the largest vote sum.

The Weston/Watkins method constructs a multi-dimensional classifier f : X 7→RK by solving one big optimization problem.
The idea is that we make the ith element of f , fi, to separate samples of label i from the others by maximizing the sum of
gaps between the samples of label i and the samples of the other labels. The formulation without offsets is as follows.

min f∈H K
λn
2 ∑K

m=1 ‖ fm‖2
H + 1

n ∑n
i=1 Ψyi( f (xi))

s.t. Ψy( f (x)) = ∑K
y′=1 ryy′Φy′( f (x))

Φy( f (x)) = ∑y′ 6=y φ( fy(x)− fy′(x))
φ(t) = ((1− t)+)2

(15)

and the decision rule is
y∗ = arg max

y=1,···,K
fy(x). (16)

2) Consistent Classifiers: In Section III-A, we have shown that minimizing Ψ-risk leads to the expected reward maximization
in binary classification problems. It is by now well known that minimizing the empirical risk asymptotically minimizes the true
expected risk for the case where the loss function is the indicator of misclassification. Putting these two together, we have the
consistency result for the case of binary classification for reward maximization. In this section, we show that the consistency
result of binary classification problems can be generalized for multi-class classification problems.

Before we go further, let us define some notation. The empirical Ψ-risk is defined as R̂Ψ( f ) = 1
n ∑i Ψyi( f (xi)) and the

Ψ-risk is RΨ( f ) = EXY [Ψy( f (x))]. To avoid overfitting we use a squared norm regularizer and the classifier f̂ ∗λ minimizes
the regularized empirical Ψ-risk, R̂reg

Ψ,λ ( f ) = λ
2 ∑K

m=1 ‖ fm‖2
H + R̂Ψ( f ) [17], [18]. Similarly, the classifier f ∗λ minimizes the

regularized Ψ-risk, Rreg
Ψ,λ ( f ) = λ

2 ∑K
m=1 ‖ fm‖2

H +RΨ( f ). Let R( f ) be the expected reward of a function f over the underlying
distribution of (X ×Y ) and the largest achievable expected reward is defined as R∗ = sup{R( f )| f : X 7→ RKmeasurable}.

Theorem 2 shows that the classifier we compute by minimizing regularized empirical Ψ-risk also minimizes Ψ-risk, and
Theorem 4 generalizes the consistency result of Section III-A to multi-class classification problems.

Theorem 2: Given a RKHS H , let K : X×X 7→ R be a corresponding kernel. If K is universal and λn → 0 slowly enough
as n→ ∞, then the classifier f̂ ∗λn

from (15) holds the following condition in probability for all distributions on (X ×Y ).

lim
n→∞

RΨ( f̂ ∗λn
) = inf{RΨ( f )| f : X 7→ RKmeasurable}, R∗Ψ (17)



We adapt the consistency proof for binary classification in [19]. The proof consists of the following five steps.

RΨ( f̂ ∗λn
) ≤ Rreg

Ψ ( f̂ ∗λn
) ≤ R̂reg

Ψ ( f̂ ∗λn
)+ ε ≤ R̂reg

Ψ ( f ∗λn
)+ ε ≤ Rreg

Ψ ( f ∗λn
)+2ε ≤ R∗Ψ +3ε (18)

The first inequality is obvious since the regularizer is positive and the third one is due to the definition of f̂ ∗λn
. The second and

fourth inequalities hold by the so-called “concentration” theorem we will prove soon. Finally, the last step holds as λn goes
to 0.

Proof: Before we prove the theorem, we define the following notations and upper bound the norm of the solutions to (15)
and the norm of Ψ-risk functions by Lemma 3.

r̄ = maxi, j ri, j , i, j ∈ {1, · · · ,K}
M = supx

√
k(x,x) ,x ∈ X

δλ = sup{‖t‖2|t ∈ RK ,
λ‖t‖2

2
2 ≤ supy Ψy(0)}

‖Ψλ‖∞ = sup{|Ψy(t)||y ∈ {1, · · · ,K},‖t‖2 ∈ [−δλ M,δλ M]}
Lemma 3:

∑K
m=1 ‖ f̂ ∗λ ,m‖2

H ≤ δ 2
λ , ∑K

m=1 ‖ f ∗λ ,m‖2
H ≤ δ 2

λ (19)

Proof: Due to the definition of f̂ ∗λ , we have λ
2 ∑K

m=1 ‖ f̂ ∗λ ,m‖2
H + 1

n ∑n
i=1 Ψyi( f̂ ∗λ (xi))≤ 1

n ∑n
i=1 Ψyi(0)≤ supy Ψy(0). Since the

loss function is positive, λ
2 ∑K

m=1 ‖ f̂ ∗λ ,m‖2
H ≤ supy Ψy(0), and by the definition of δλ , the first inequality of the lemma holds.

A similar argument can be formulated for the second one.
If we define a space H K , ((H ,‖ · ‖H )K ,‖ · ‖2), then the lemma implies that f̂ ∗λ , f ∗λ ∈ δλ BH K , where BH is the unit ball

in H K centered at the origin. Also by Hoeffding’s inequality, ∀ f ∈ δλ BH K ,

Pr(|R̂Ψ( f )−RΨ( f )| ≥ ε)≤ 2e
2ε2n
‖Ψλ ‖2∞ . (20)

Next, we define the covering number of a RKHS H , ` = N ((H ,‖ ·‖H ),ε), i.e., there exist f1, · · · , f` such that the disks Di
centered at fi with radius ε cover H . Then we claim that the covering number of H K is at most `K with radius ε

√
K. The

proof is as follows.
∃ f1, · · · , f` s.t. the disks Di( fi,ε) cover H

⇒ ∀ f ∈H ,∃i ∈ {1, · · · , `} s.t. ‖ f − fi‖H ≤ ε
⇒ ∀f ∈H K ,∀ j ∈ {1, · · · ,K},∃i ∈ {1, · · · , `} s.t. ‖f j− fi‖H ≤ ε
⇒ ∀f ∈H K ,∃f′ ∈ { f1, · · · , f`}K .s.t. ‖f− f′‖2 ≤ ε

√
K

⇒ N ((H K ,‖ · ‖2),ε
√

K)≤ `K

(21)

Now, to verify the second and the fourth inequalities of (18) and prove the theorem, we claim that

Pr

{
sup

f∈δλ BH K

|R̂Ψ( f )−RΨ( f )| ≥ ε

}
≤ 2

(
N

(
δλ BH ,

ε
4∆ΨM

√
K

))K

e
ε2n

2‖Ψλ ‖2∞ , (22)

where ∆Ψ = sup f∈δλ BH K
‖5 f Ψy( f )‖2.

First, we upper bound the difference between risk functions of two classifiers. ∀ f1, f2 ∈ δλ BH K , we have

|Ψy( f2(x))−Ψy( f1(x))| ≤ sup
f∈δλ BH K

|5 f Ψy( f )>( f2(x)− f1(x))| ≤ ∆Ψ‖ f2− f1‖2M. (23)

By simply integrating it over the underlying distribution and the sample distribution the following two inequalities hold.

|RΨ( f2)−RΨ( f1)| ≤ ∫
X×Y |Ψy( f2(x))−Ψy( f1(x))| ≤ ∆Ψ‖ f2− f1‖2M

|R̂Ψ( f2)− R̂Ψ( f1)| ≤ 1
n ∑n

i=1 |Ψyi( f2(xi))−Ψy( f1(xi))| ≤ ∆Ψ‖ f2− f1‖2M
(24)

Using triangular inequality, we have,

|(R̂Ψ( f2)−RΨ( f2))− (R̂Ψ( f1)−RΨ( f1))| ≤ 2∆Ψ‖ f2− f1‖2M. (25)

Let ` = N (δλ BH , ε
4∆ΨM

√
K
). Then by (21), N (δλ BH K , ε

4∆ΨM )≤N ((δλ BH )K , ε
4∆ΨM )≤ `K . Defining fi, i ∈ {1, · · · , `K} to be

the centers of the disks that cover the space δλ BH K , ∀ f ∈ δλ BH K we have

|(R̂Ψ( f )−RΨ( f ))− (R̂Ψ( fi)−RΨ( fi))| ≤ 2∆Ψ‖ f − fi‖2M ≤ ε
2
. (26)

Therefore by (20)

Pr

{
sup
f∈Di

|R̂Ψ( f )−RΨ( f )| ≥ ε

}
≤ Pr

{
‖R̂Ψ( fi)−RΨ( fi)| ≥ ε

2

}
≤ 2e

ε2n
2‖Ψλ ‖2∞ . (27)



Finally, plugging the covering number we developed earlier into (27), we conclude the proof.

Pr

{
sup

f∈δλ BH K

|R̂Ψ( f )−RΨ( f )| ≥ ε

}
≤

`K

∑
i=1

Pr

{
sup
f∈Di

|R̂Ψ( f )−RΨ( f )| ≥ ε

}
≤ 2

(
N

(
δλ BH ,

ε
4∆ΨM

√
K

))K

e
ε2n

2‖Ψλ ‖2∞ , (28)

In case of (15) equipped with the Gaussian RBF kernel, we have δλ ≤ K
√

2
λ , ∆Ψ ∼ 1√

λ
, and ‖Ψλ‖∞ ∼ 1

λ . Using the
upper bound for the covering number shown in [20], the term “slowly enough” in Theorem 2 can be clarified as λn → 0 and
nλ 2

n | logλn|−d−1 → ∞ where d is the dimension of the feature space, X .
Theorem 4: Let Ψ(·) be a loss function of the Weston/Watkins method equipped with the squared hinge loss as in (15).
Then,

RΨ( f̂ ∗λn
)→ R∗Ψ in probability

implies
R( f̂ ∗λn

)→ R∗ in probability

Proof: This proof follows closely the proof of classification case in [10].
Let us rewrite the asymmetric Ψ-risk as

RΨ( f ) = EX [EY |x[Ψy( f (x))]] (29)

Now let us fix an arbitrary x ∈ X . We write f instead of f (x) and let py be the conditional probability of label y given a sample
point x. Then the inner expectation of (29) is ∑y pyΨy(f). Since both py and Ψy(f) are nonnegative in (15), we’re guaranteed
to have the infimum of the inner expectation. If we define the subsets R and S of RK

+ as

R = {(Φ1(f), · · · ,ΦK(f))> : f ∈ RK}
S = conv(R) = conv({(Φ1(f), · · · ,ΦK(f))> : f ∈ RK}) (30)

and a matrix R ∈ RK×K as

R =




r11 r21 · · · rK1
...

...
. . .

...
r1K r2K · · · rKK


 (31)

then we have
inff∈RK ∑y pyΨy(f) = inff∈RK ∑y py(∑K

y′=1 ryy′Φy′(f))
= inff∈RK ∑y py(R>~Φ(f))y
= infz∈R〈Rp,z〉= infz∈S 〈Rp,z〉

, (32)

where p = (p1, · · · , pK)>. The last equation holds because the inner product is a linear function. It is shown that the We-
ston/Watkins method with a squared hinge loss function is universally consistent [10], i.e., ∀p ∈ ∆K all sequences {z(n)} ∈S
such that 〈p,z(n)〉 → infz∈S 〈p,z〉, we have argmaxy py as a predicted label when we use a decision rule that chooses a label
y∗ = argminy zy. Notice that this decision rule is equivalent to ours (16) since the loss function Φ(·) is non-increasing. Moreover,
one can easily see that p being in RK

+ and bounded is enough for their proof instead of p ∈ ∆K . Therefore, since Rp ∈RK
+ and

bounded, by solving (32) we get a predicted label y that achieves

max
y

(Rp)y = max
y ∑

y′
py′ry′y (33)

, which means the expected reward is maximized by choosing the label y. Hence our algorithm is consistent in the sense of
maximizing the reward.

These two theorems assure that with a sufficiently large number of samples, the solution to (15) maximizes the expected
reward.

IV. APPLICATION TO MIMO-OFDM SYSTEMS

As we have discussed earlier, Modulation and Coding Schemes for MIMO-OFDM systems have asymmetric rate performance.
and MCSs for one spatial stream case are listed in TABLE I. Aggressive MCS selection can achieve high spectral efficiency
but may have overall worse performance because of unacceptably high FER. On the other hand conservative MCS selection
can guarantee at least a fraction of the performance of the ideal selection, but nevertheless performance is sacrificed. Our
algorithm balances between those two schemes and maximizes the expected throughput.

In this section, we evaluate the performance of our algorithm using IEEE 802.11n based simulation study. We use the packet
error rate simulation data of [21]. Under 2×2 MIMO-OFDM and 4 taps frequency selective fading, 2 sets of 28,000 channels
are generated according to the zero-mean complex-Gaussian distribution with SNR varying from 0 to 27. Then, packet error rate



is simulated for every pair of channel realization and MCS. We extract features from channel state information and associate
them to their ideal MCSs with a target FER 0.1 as we discussed in Section II-A2. Also we use LIBSVM [22], a library for
support vector machines, to construct SVM classifiers. We evaluate the rate performance of our algorithm as well as other
practical advantages such as reducing time overhead and memory usage.

TABLE I
RATE PERFORMANCE FOR ONE SPATIAL STREAM CASE

Ideal MCS
0 1 2 3 4 5 6 7

0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5
1 0 13.0 13.0 13.0 13.0 13.0 13.0 13.0
2 0 0 19.5 19.5 19.5 19.5 19.5 19.5
3 0 0 0 26.0 26.0 26.0 26.0 26.0
4 0 0 0 0 39.0 39.0 39.0 39.0
5 0 0 0 0 0 52.0 52.0 52.0
6 0 0 0 0 0 0 58.5 58.5
7 0 0 0 0 0 0 0 65.0

A. Spectral Efficiency
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Fig. 2. SNR vs. (a) Spectral Efficiency, (b) Frame Error Rate, and (c) Classification Accuracy for different link adaptation algorithms

Spectral efficiency, frame error rate and classification accuracy for different link adaptation algorithms over varying SNR
are shown in Fig. 2 (a), (b) and (c) respectively. In this simulation, Gaussian RBF kernel, K(x1,x2) = e−‖x1−x2‖2/2σ2

is used
and parameters for SVM and k-NN algorithms such as the regularization coefficient, the kernel coefficient and the number of
neighbors are chosen by cross validation methods. Also, a comparison of multi-class support vector machines of [23] shows
that the One-against-one method requires much shorter testing time than the Weston/Watkins method while their performances
are just comparable. Thus, we use the One-against-one method for all the simulations in this paper. As one can see, even
though classification accuracy of our algorithm is worse than the others, it outperforms them in terms of spectral efficiency
performance. (We have gained about 0.5 bps/Hz at higher SNR.) This verifies that maximizing the expected performance is
a different problem from minimizing the classification error rate in machine learning schemes. As shown in Fig. 2 (b), frame
error rate of our algorithm is high at lower SNR and low at higher SNR, which means that our algorithm is aggressive at
lower SNR and conservative at higher SNR.

B. Memory Usage

Since the memory size for mobile devices is limited, small memory usage is desirable. The k-NN algorithm, however, needs
all the pre-observed data to be stored. In our IEEE 802.11n AMC framework, we need to store 28,000 samples. Using a SVM
algorithm with a kernel function, the resulting classifier is expressed as follows.

f (x) =
Ns

∑
i=1

αiΦ(si) ·Φ(x)+b =
Ns

∑
i=1

αiK(si,x)+b (34)

where Ns is the number of support vectors. Hence the memory size needed is proportional to the number of support vectors.
However it is not predictable and can be as large as the number of samples, which means we may not have a considerable
memory reduction by using SVM over k-NN. Hence many approximations to reduce the number of support vectors have



been proposed, and the authors in [24] have provided an exact simplification of support vector solutions, in which the linearly
dependent support vectors in kernel feature space are merged into one support vector, and only effective support vectors remain
without any approximation. Using this simplification method, we can upper bound the number of effective support vectors.

Lemma 5: The number of effective support vectors is at most the dimension of the kernel feature space.
Proof: Finding effective support vectors, s1, · · ·sNs , such that K(s1, ·), · · · ,K(sNs , ·) determine a unique classifier, is equiv-

alent to finding Φ(s1), · · · ,Φ(sNs) that determine a unique subspace in the kernel feature space. Since linearly independent d
vectors can determine a unique subspace in d dimensional space, the minimal number of effective support vectors is at most
the dimension of the kernel feature space.

The dimensions of kernel feature space, i.e., the upper bound of the number of effective support vectors, for well-known kernel
functions such as homogeneous polynomial, inhomogeneous polynomial and Gaussian RBF functions are listed in TABLE II.
As one can see, even high degree polynomial kernel functions show much less memory usage than k-NN’s 28,000. Although it
is a common thought that the classifiers lie in higher dimensional feature space perform better, depending on problems simple
kernels can be comparably effective, too. To compare the two extremes, Fig. 3(a) shows the spectral efficiency performance
of our algorithms with a Gaussian RBF kernel function and a linear kernel function. As shown in the figure, two algorithms
have almost the same performance outperforming k-NN algorithm. Therefore, we can reduce the memory usage significantly
by using a linear kernel function.
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Fig. 3. (a) SNR vs. Spectral Efficiency for algorithms with different kernel functions, (b) The number of training samples vs. testing time for different
algorithms

TABLE II
THE UPPER BOUND OF THE NUMBER OF EFFECTIVE SVS

p 1 2 3 4 5 6 7
(x1 ·x2)p 4 10 20 35 56 84 120

(x1 ·x2 +1)p 5 15 35 70 126 210 330
e−‖x1−x2‖2/2σ2 ∞

C. Testing Time Overhead

MCS selection occurs in real time, hence the testing phase overhead for learning algorithms should be minimized. Testing
phase of k-NN algorithm consists of computing distances between a new sample and the training samples and sorting the
distances to find k nearest neighbors. Therefore it requires O(n logn) time complexity where n is the number of training
samples. On the other hand, in the testing phase of SVM algorithm, we compute Ns kernel functions, thus only O(Ns) time
complexity is required where Ns is the number of support vectors. As we have seen in Section IV-B, the effective number
of support vectors can be reduced significantly depending on the kernel functions. Fig. 3(b) shows the actual testing time to
choose MCSs for 28,000 new channel realizations with different machine learning algorithms. Almost a 70% reduction in
testing overhead is achieved by using our algorithm with a linear kernel function over the k-NN algorithm.



V. CONCLUSIONS

In this paper we have shown that machine learning algorithms with appropriately weighted labels are suitable for AMC in
MIMO-OFDM. We’ve developed a consistent learning algorithm that does not minimizes the classification error but maximizes
the expected reward. Asymmetric weights play a key role to achieve high performance by balancing between aggressive
and conservative label selection. In addition to the performance improvement, our algorithm has practical advantages for
implementation over other machine learning algorithms.

One issue we did not mention is the channel estimation error at the receiver. Perfect channel state knowledge is assumed in
this paper which may not be the case in real systems. Although how badly the estimation error impacts on the performance is
not known, applying robust optimization techniques can be a potential extension of our work to handle this problem. Another
extension is to make our algorithm to adapt to changing target reliability. In reality, different types of data and changing demand
for data rate keep the target reliability changing over time. Since our algorithm cannot tune itself according to different target
error rates, we have to consider more flexible and adaptable algorithms. Reinforcement learning algorithms may work in this
case.
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