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ABSTRACT
Gorilla is a methodology for generating FPGA-based solu-
tions especially well suited for data parallel applications with
fine grain irregularity. Irregularity simultaneously destroys
performance and increases power consumption on many data
parallel processors such as General Purpose Graphical Pro-
cessor Units (GPGPUs). Gorilla achieves high performance
and low power through the use of FPGA-tailored paralleliza-
tion techniques and application-specific hardwired accelera-
tors, processing engines, and communication mechanisms.
Automatic compilation from a stylized C language and tem-
plates that define the hardware structure coupled with the
intrinsic flexibility of FPGAs provide high performance, low
power, and programmability.

Gorilla’s capabilities are demonstrated through the gener-
ation of a family of core-router network processors process-
ing up to 100Gbps (200MPPS for 64B packets) supporting
any mix of IPv4, IPv6, and Multi-Protocol Label Switching
(MPLS) packets on a single FPGA with off-chip IP lookup
tables. A 40Gbps version of that network processor was run
with an embedded test rig on a Xilinx Virtex-6 FPGA, ver-
ifying for performance and correctness. Its measured power
consumption is comparable to full custom, commercial net-
work processors. In addition, it is demonstrated how Go-
rilla can be used to generate merged virtual routers, saving
FPGA resources.

Categories and Subject Descriptors: C.5.m [Computer
System Implementation]:Miscellaneous

General Terms: Performance, Design, Experimentation

Keywords: FPGA, network processor, templates

1. INTRODUCTION
Specialized hardware can be significantly higher in perfor-

mance and significantly lower in power than programmable
processors [13]. Designing and implementing high quality
specialized hardware requires an expert. Unfortunately, few
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application domain experts are experts in high performance
hardware design and vice-versa.

Gorilla helps to bridge the gap between hardware experts
and domain experts, providing each with the ability to fo-
cus on what they do best and automatically combining the
efforts to generate highly efficient hardware. Gorilla is de-
signed to maximize utilization of the most critical hardware
resources in the system. In many systems, the most critical
resources are the external pins of the chip. Critical resources
are encapsulated in accelerators that perform core domain-
specific functions and contain appropriate critical state. Do-
main experts define accelerator functionality and algorithms
in a stylized C (Gorilla C). Domain experts also write ap-
plication code that contains explicit calls to accelerators in
Gorilla C.

Gorilla uses parameterized templates, which are generally
defined by hardware experts, to encapsulate efficient hard-
ware structures. Gorilla’s compiler accepts a template along
with template parameters that include arbitrary functions,
state machines, and constants and generates synthesizable
Verilog that defines customized hardware. A canonical ar-
chitecture is a template designed to implement a specific
class of applications.

The Gorilla compiler is used to combine application and
accelerator code with the appropriate templates to generate
specialized hardware that implements the application. Go-
rilla generates Verilog that is intended for FPGAs but could
be used to generate ASICs. However, when Gorilla is used
to design FPGAs, the dual benefits of high efficiency spe-
cialized hardware that competitive with application-specific
processors and full programmability through the FPGA fab-
ric are achieved. In fact, Gorilla on FPGAs is more general
than application-specific processors.

A family of network processors that achieve similar per-
formance and power to application-specific processors while
running on an FPGA at 100MHz is generated to demon-
strate the Gorilla methodology. One instance, targeting
a single Xilinx Virtex-7 VHX870T, achieves 100Gbps (200
Million-Packets-Per-Second (MPPS)) in a single FPGA while
processing any mix of IPv4, IPv6, and multi-labeled MPLS
packets. To our best knowledge this is the highest through-
put for a FPGA-based network processor generated from a
high level specification. A 40Gbps instance was run on a
single Xilinx Virtex-6 XC6VLX240T FPGA on an ML605
prototyping board.

The network processing template is far more general than
simply network processing. By replacing accelerators, it is
especially well suited for streaming applications and data



parallel applications whose performance and power scale
poorly due to fine grain processing irregularity caused by
data dependencies and irregular access to shared resources.
The potential for reuse by factoring functionality from the
template in the Gorilla style is significant.

The contributions of this paper are as follows:

• The Gorilla methodology that includes a programming
model consisting of stylized sequential C calling ac-
celerators written by a domain expert, the concept of
highly parameterized templates written and assembled
by a hardware expert, and a tool chain that automat-
ically combines the two to generate hardware compa-
rable in quality to hand-written hardware.

• A library of infrastructure templates including hier-
archical arbitration, load balancing, reordering queue,
and rate adaptation templates. Their parametric na-
ture enables easy exploration of the design space to
find the best configuration for a specific application.

• A case study of a network processor family, capable of
processing any combination of IPv4, IPv6, and MPLS
packets at up to 100Gbps at 100MHz, that has been
synthesized, placed-and-routed, and verified for cor-
rectness in available FPGAs. An IPv4-only version
running at 40Gbps (100MPPS) was run on a Xilinx
ML605 prototyping board, measured for performance
and power, and verified for correctness. All were gen-
erated using the Gorilla methodology.

2. PACKET PROCESSING
Because we use packet processing as our example, we de-

scribe it here. Internet routers process incoming packets to
determine which output port they should be forwarded to.
How a packet is processed is defined by the first part of the
packet, known as the header. Packets can be of different
types, each type requiring different processing steps. A sin-
gle type of packet could have a variable number of labels
that change the number of total processing steps. Packets
can also be encapsulated in other packets, potentially requir-
ing the router to look beyond the first header to complete
the processing.

Figure 1 shows a simplified chart showing the processing
steps of a router supporting IPv4/IPv6/MPLS. The grey
rectangles are steps that require global and/or shared state
accesses. The entry point in processing of a packet in this
figure is Dispatch step. It checks the packet layer 2 protocol
and jumps to the appropriate state for processing the pro-
tocol header (In figure 1 we are showing only one layer 2
protocol which is Ethernet.) Ethernet step detects the layer
3 protocol and also checks the integrity of Ethernet header.
Processing IPv4 (one of the possible layer 3 protocols) con-
sists of extracting the packet fields, checking the integrity
of the fields, classifying the packet by looking up the source
and destination addresses, and finally updating the packet
header fields. In many router applications, the source and
destination IP addresses together determine the output port,
though our simplified code does not reflect that. The desti-
nation port for the packet is determined using lookup process
and packet is forwarded to that port. Processing IPv6 is sim-
ilar to IPv4 except that IPv6 has longer addresses. A MPLS
header may contain multiple labels. The next action is de-
termined using the result of the MPLS label lookup, whether
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Figure 1: IPv4/IPv6/MPLS Packet Processing

it is processing another MPLS label, deleting the current
label, attaching a new label, or processing another encap-
sulated protocol. The exit point for processing a packet in
Figure 1 is the Emit step.

3. GORILLA METHODOLOGY
In this section we describe the Gorilla programming model,

its tool chain, and the concept of canonical architectures.

3.1 Programming Model
Gorilla domain code consists of a sequence of steps, where

each step is C code that (i) calls accelerators that imple-
ment specific functionality and handle accesses to expensive
and/or shared resources, (ii) performs computation, and (iii)
determines the next step. Accelerator calls within a single
step must be independent of each other, a condition that
is checked by the Gorilla compiler. Gorilla’s infrastructure
guarantees that each step is fully complete before the next
step starts, giving the illusion of a sequential programming
model to the domain expert. The results of all previous steps
as well as accelerator calls are available to the current step.
The same program of steps (but not necessary the same path
through the program) is executed on each input data, such
as a packet in a network processing application. Figure 2
shows example domain code. The accelerators themselves
can be written as a domain program consisting of steps that
can call other downstream accelerators. An example of such
case is given in Section 4.

3.2 Canonical architecture
A canonical architecture is a highly parameterized tem-

plate designed to efficiently implement a specific application
class. Parameters enable the easy trading off of performance,
resource sizing, and selecting options such as scheduling al-
gorithms. The template contains code to implement any of
the valid parameter values. The Gorilla tool chain combines
a canonical architecture with domain code and parameter
values provided by the domain expert to generate an effi-
cient, specialized hardware implementation.



IPv4_check() {
status = IPv4_header_integrity_check(Header);
if (status == CHKSUM_OK)
Next_step = IPv4_lookup;

else
Next_step = Exception;}

IPv4_lookup() {
Da_class = lookupx.search(Header.IPv4_dstaddr);
Sa_class = lookupy.search(Header.IPv4_srcaddr);
if (Da_class == NOT_FOUND)
Next_step = Exception;

else if(Sa_class == NOT_FOUND)
Next_step = Exception;

else
Next_step = IPv4_modify;}

IPv4_modify() {
if((IP_update_fields(Header) == ZERO_TTL))
Next_step = Exception;

else {
Dport = Da_class.dport;
Next_step = Emit;

}}

Figure 2: Simplified IPv4 steps
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Figure 3: Compilation process for composite tem-
plates and user programmed templates

Figure 4 shows a canonical architecture discussed in Sec-
tion 4.1. Though it was no simpler to write than a single
implementation, it generates a wide range of possible imple-
mentations of substrates for packet processing applications.

3.3 Gorilla Tool Chain
The Gorilla tool chain consists of domain code compiler

and scripts (Figure 3) and was developed using the ANTLR
[1] tool and Perl. The input to the tool chain is the (i) do-
main code for the templates, (ii) all templates in the design
and (iii) other parameter values. The compiler generates a
specialized hardware implementation using these inputs.

The domain code compiler ensures that there are no de-
pendencies or structural hazards when accessing accelerators
in each step. The compiler splits a step to resolve such haz-
ards when necessary. The compiler splits the domain code
into three parts: (i) Request Builder logic, (ii) Context Edit
logic, and (iii) Jump logic. Request Builder logic computes
arguments for the accelerator requests and issues the re-
quests. Context Edit logic updates thread contexts as well

as global variables, using accelerator replies and state from
previous steps. Jump logic determines the next step based
on the results of the computations in the current step.

The code is currently compiled to Verilog that is then ei-
ther inserted into a multithreaded template or is used to
generate a pipeline. Multithreaded hardware supports mul-
tiple “threads”, where each thread is processing a specific
unit of work, such as a single packet in a network proces-
sor. Threads are switched in hardware when progress on
the running thread is blocked due to long or variable la-
tency operations or contention for resources. Multithread-
ing enables applications to transparently trade off acceler-
ator usage (e.g., one data element requires 10 accelerator
calls to process and another requires none.) As the num-
ber of bidders (requesters) for accelerators grows, contention
for shared resources increases as well, increasing variability,
making multithreading more and more important. The mul-
tithreading template automatically handles all multithread-
ing scheduling and storage issues and receives/sends the data
through scratch pad memories.

As an alternative, if (i) there are only forward jumps in
the domain code and (ii) accelerator delays are constant,
the compiler can automatically generate a pipelined imple-
mentation from the domain code by assembling the Request
Builder, and Context Edit of all processing steps into a
straight pipeline. Pipelining avoids the overhead of thread
scheduling and thread context memories, delivering high
throughput when the maximum latency is fixed and rea-
sonably small. Pipelining is less efficient when latencies are
long, there are irregular transitions in control flow, or there
are data dependencies between pipeline stages.

4. EXAMPLE: NETWORK PROCESSOR
Fine grain irregularities are common in packet process-

ing due to heavy control flow dependency on data and con-
tention for shared resources, making it an ideal application
to demonstrate Gorilla’s capabilities. We implemented a
packet processing canonical architecture and a router do-
main code that supports IPv4, IPv6, and MPLS in Gorilla
C. The IPv4, IPv6, and MPLS applications have 10, 12, and
13 steps respectively. Most of the steps fully utilize scratch
pad memory (128bits wide) bandwidth. There are currently
between one to six accelerator calls, depending on the packet
protocol and router configuration, for each packet.

The Verilog code that was generated by the Gorilla tool
chain is passed through the standard Xilinx tools for simula-
tion and implementation on an FPGA. Two man-years were
spent on building the tools and infrastructure templates.
Once completed, however, the IPv6 protocol required only
two man-weeks and the MPLS protocol four man-weeks.

4.1 NP canonical architecture
The canonical architecture for our Network Processor (NP)

is shown in Figure 4. Every component is a highly pa-
rameterized template. When packets enter the NP, a pro-
grammable pre-processor adds necessary meta data to packet
headers and splits the packets into a header and a body,
passing the header through the processing pipeline and stor-
ing the body in a separate buffer. A header is assigned, in
a load balanced fashion, to an arbitrary thread in an arbi-
trary engine. Engines which are the main packet processing
elements contain hardware compiled from the domain code,
creating an entirely hardware implementation of the domain
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Figure 4: NP canonical architecture: Black mod-
ules are domain-specific templates. The sizing of
resources as well as resource management policies
are settable using parameters in the respective tem-
plates.

code. Domain code makes calls to the hardware accelerators
that are also compiled by the Gorilla compiler. Most hard-
ware accelerators are pipelined, rather than multithreaded,
since the accelerators are given dedicated resources with
deterministic latencies. Once processing is complete, the
header goes through a programmable post-processor to strip
the meta data, get recombined with its body, and forwarded
in arrival order.

Header processing domain code is compiled with a multi-
threaded engine template by the Gorilla compiler. It reads
pre-written packet header information from scratch memo-
ries that the packet pre-processing domain code compiled
with the preprocessor template has written. Special actions
are taken by compiler as well as engine address translation
to map the packet protocol fields into block RAM mem-
ory addresses. When the engine encounters a long latency
operation, such as an accelerator call, the engine uses its
multithreading support to switch to a ready thread whose
accelerator calls have all returned.

Accelerators are essentially the same as in any network
processor including IP lookup accelerator or flow counting
accelerator. Accelerators that have dedicated off-chip QDR
memory with deterministic delay are compiled to pipelined
implementations. For example a trie-based lookup consists
of different steps to walk through the trie levels. Each step
can be written in Gorilla C to process the current node and
chase the pointer to the next level node. Retrieving node
information from the memory is done as an accelerator call
which in this case is a memory (downstream accelerator) for
our lookup accelerator.

4.2 Trie Lookup Accelerator
Many techniques have been proposed for high throughput

IPv4 lookup engines [8, 12, 15, 40]. To support a large num-
ber of prefixes, Gorilla provides a lookup accelerator that
stores the forwarding table in off-chip SRAM QDRII [26]
that supports a new double word read operation and a new
double word write operation every memory clock cycle.
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Figure 5: Simplified IPv4 trie lookup architecture
including arbitration structures

We implemented a common trie lookup algorithm [12] as
domain code. The algorithm divides an IPv4 address into
three chunks of 20b, 4b, and 8b. At each stage, the QDR
address is calculated using the current address chunk and
the value returned from the QDR in the previous stage. If
the entry is a leaf entry, no further read requests for that
particular lookup are made. Since the pipelined lookup ac-
celerator is clocked at 100MHz and the QDR is clocked at
300MHz, three requests from three different stages of the
lookup pipeline are sent to QDR memory each 100MHz clock
cycle. We use rate adaption logic between the trie lookup
pipeline and QDR for this purpose. A simplified version of
the generated pipelined architecture for our IPv4 trie lookup
algorithm is shown in Figure 5.

Figure 6 shows the capacity requirements, in 18 bit words
per entry, for different RIPE [30] routing tables. We use a
single QDR chip for each QDR channel and assume a four
million word QDR part.

The IPv6 lookup accelerator is similar to the IPv4 lookup
accelerator except the number of trie levels is 6 instead of
3. Therefore, each IPv6 lookup accelerator has twice delay
as IPv4 lookup and requires two QDR memory channels to
provide full bandwidth.

The NP prototype supports multiple MPLS labels per
packet. The prototype’s MPLS lookup is a two level ar-
chitecture with the first level acting as a cache for the sec-
ond level. The first level of MPLS lookup is done using a
multi-bin indexed table indexed with a hash function. If the
lookup hits at the first level, it takes eight clock cycles. If
the lookup misses, it is handled using exactly the same archi-
tecture as IPv4 lookup. Clusters direct their missed lookup
requests to a global lookup unit which use off-chip QDR
memory to lookup the MPLS labels. The MPLS lookup ac-
celerator uses a direct mapped table with one million entries
stored in QDR memories.

Our prototype’s IPv4 and IPv6 lookup accelerators as-
sume no locality and always access the QDR SRAMs for all
memory reads, to ensure that full performance will always
be available, regardless of the traffic pattern. Such immunity
to performance “divots” is critical in high-end applications,
such as core routers; otherwise, they would be highly suscep-



Prefixes Trie Config Level1 entries Level2 entries Level3 entries Total

rrc00, Ripe NCC
Amsterdam

344,029 20,4,8 1,048,576 1,053,584 679,680 2,442,000

rrc01, Linx London 338,947 20,4,8 1,048,576 1,020,416 534,016 2,336,000
rrc02, Sfinx Paris 274,115 20,4,8 1,048,576 865,104 210,924 2,019,142
rrc16, Miami 344,029 20,4,8 1,048,576 1,051,792 352,512 2,276,624

Figure 6: Lookup unit storage requirement in 18bit words
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100 IPv4 LU 1 1 0 0
100 IPv6 LU 2 1 0 0
100 IPv4 LU-FC 3 2 0 0
100 IPv6 LU-FC 5* 3 27% 0
200 IPv4 LU 2 1 0 0
200 IPv6 LU 4 2 0 0
200 IPv4 LU-FC 6* 3 42% 0
200 IPv6 LU-FC 10* 5* 69% 27%

Figure 7: QDR random transaction rate bud-
geting(LU: destination lookup, LU-FC: destination
lookup, source lookup and flow counting), assuming
maximum of four 300MHz QDR channels per FPGA
configurations with * cannot fit in current FPGAs

tible to performance attacks. The control processor accesses
QDR memories through the network processor to update
IPv4, IPv6, and MPLS tables. Although our current lookup
architecture can handle the required lookup throughput for
our application, using compressed lookup structures and/or
caching can reduce the number of off-chip transactions and,
consequently, save power.

4.3 Flow Counting
Network processors in routers keep track of millions of

flows for security, management, and QoS purposes [34]. In
order to demonstrate Gorilla performance and programma-
bility for flow counting, we implemented a counter scheme
in which a 216 bit partitionable counter can be manipulated
for each packet. That 216 bit counter can be split into three
independent 72 bits counters (36 bits QDR data width ×
Burst length of 2.)

A pipelined flow counting architecture, which is very sim-
ilar to the pipelined lookup architecture, is used for counter
updates. The only difference is that writes are also required.
Therefore a counter update operation includes three reads
and three writes each from different stage of the pipeline.
Read operations and write operations are each performed by
a dedicated data channel provided by QDR SRAMs. The
prototype counts the number of packets for each flow ID,
which is generated by concatenating the class IDs associ-
ated with source and destination lookups. The flow ID is
used as the index to the counter array. Because we support
3 72b of counter per packet, up to two other 72b counters
for each packet are supported by the prototype.

4.4 FPGA Pins
Figure 7 shows the required number of QDR channels for

each of the Gorilla configurations we explored. Although
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there are enough pins to go beyond four channels, we did
not achieve post place and route timing closure for more
than four channels running at 300MHz. Thus, we assume
that a maximum of four 300MHz QDR channels are feasible
on a single FPGA, making the entries in the table that re-
quire more than four channels infeasible using current mem-
ory technology and FPGAs. Therefore, 200MPPS packet
processing with single level flow counting is memory bound.
Hierarchical flow counting can address the problem, but has
not yet been implemented in our system.

The QDR consortium recently announced the availability
of QDRII+ memories with Random Transaction Rate(RTR)
of 600M operations/sec [27] in the near future. This technol-
ogy could double off-chip bandwidth and, therefore, further
improve performance.

Higher throughput can be achieved providing a portion
of the traffic has lower memory throughput demands. For
example, an MPLS packet with only cluster level lookup
does not use QDR channels, allowing other packets to use
the extra bandwidth. Figure 7 shows the minimum portion
of the MPLS traffic that does not require off-chip memory
accesses for delivering the desired performance with both
QDRII and QDRII+ standards.

4.5 NP Evaluation
We targeted three different FPGAs designed for network-

ing applications and synthesized various configurations of
Gorilla on those three FPGAs using the Xilinx ISE 13.1
tools. The Xilinx Virtex-5 TX240T FPGA (used on the
NetFPGA-10G board [22]) is used to implement the IPv4-
only NP. We targeted the Xilinx Virtex-6 HX380T for our
50Gbps multi-protocol (IPv4, IPv6, and MPLS) NP and the
Xilinx Virtex-7 VHX870T for our 100Gbps multi-protocol
NP. In all cases, the core (engines, clusters, load balanc-
ing, merging, pre-processing and post-processing) run at
100MHz, while external QDR SRAMs run at 300MHz.
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Figure 8 shows the simulation component of our verifica-
tion process for our NP family. The Click software router
[17] was used as the reference system to verify the correctness
of NP. In all reported performance results, the functional-
ity of NP is checked against Click software router and post
place and route timing closure is met. Synopsys VCS was
used to simulate the NP for performance and functionality
testing and debugging. Performance results using 100MPPS
(50Gbps) and 200MPPS (100Gbps for 64 bytes packets) in-
put traffic rates are shown in Figure 9 and Figure 10 respec-
tively. Packets are dropped whenever performance does not
reach the input traffic rate. We use clusters-engines-threads
notation to represent a specific configuration. For example
in a 16-8-4 configuration there are 16 clusters, 8 engines, and
4 threads.

The largest configuration which fit in Virtex-6 HX380T
achieves 50Gbps (100MPPS) supporting all three protocols
simultaneously and the largest configuration which fit in
Virtex-7 VHX870T achieves 200MPPS supporting all three
protocols simultaneously without flow counting.

IPv4 Routing: We generated the IPv4 traffic by extract-
ing only minimum size packets from the CAIDA [3] traffic
dump files. In addition to minimum size packet work loads,
we tested our IPv4 router using several of equinex-chicago
anonymized traffic traces from CAIDA. The major steps in
the processing of IPv4 is processing layer two protocol (e.g.
Ethernet), extracting and validating the IPv4 header, Look-
ing up source and destination addresses, and modify the
packet. Also for IPv4 and IPv6 packets, flow counting adds
an extra Gorilla step. There are other steps to handle con-
trol packets as well as packets with integrity problem in their
headers.

Figure 10 shows that 200MPPS IPv4 routing performance
without flow counters can be achieved using three different
16-6-* configurations (16-4-4 configuration has some packet
loss.) With flow counting, two of the configurations (16-6-2,
and 16-6-4) deliver 200MPPS.

IPv6 Routing Because we did not have IPv6 traces, we
IPv4 packets in our minimum-sized IPv4 traffic traces to
IPv6 packets. We used a six-level trie for the lookup accel-
erator with random entries in the route table. Although the
IPv6 program is quite similar to the IPv4 program, it reads
128bit addresses instead of 32bit addresses, putting more
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pressure on scratch memory. Therefore the header fields
may need to be read in multiple steps. Also the trie lookup
operation for IPv6 takes twice as long as IPv4 lookup.

MPLS Switching We wrote three Gorilla processing
steps to extract the tag, tag lookup, and tag manipulation.
These steps read the MPLS header, lookup the MPLS tag,
and do the label swap operation respectively. If MPLS head-
ers are stacked, the program jump back from the tag ma-
nipulation step to read the next tag.

We generated a variety of MPLS packets with different
numbers of stacked labels ranging from one to four. As is
shown in Figure 10, most of the Gorilla configurations can
handle MPLS 1 traffic, that only contains MPLS packets
with one label, without packet loss. MPLS 4, that contains
MPLS packets with four labels, needs four tag lookups and
four iterations of MPLS steps. As a result only the 16-6-
4 configuration can deliver the desired performance when
flow counting is off. When flow counting is turned on, the
prototype delivers 195.7 MPPS for MPLS4 traffic.

Mixed Traffic In addition to homogeneous IPv4, IPv6,
and MPLS test traffic, we generated mixed traffic combining
different packet types to study the effect of protocol versa-
tility on the Gorilla generated NP. For example, MPLS-1-
IPv4 contains one labeled MPLS packets interleaved with
IPv4 packets. When IP traffic is mixed with MPLS traf-
fic, the performance degrades (Figure 10) due to the static
inter-cluster packet scheduling algorithm we used in current
prototype. We expect that a slightly more dynamic sched-
uler will fix this problem.

4.5.1 FPGA Resource Utilization
Figure 11 shows FPGA utilization as well as packet pro-

cessing throughput using a Virtex-5 TX240T with different
numbers of engines and threads. We report FPGA resource
utilization for two different systems, an Embedded test sys-
tem as well as a NetFPGA integrated system.

• Embedded test system is an NP without a framer and
external memory controllers. Internal packet genera-
tors, internal statistical collectors, and internal lookup
memories are used instead.

• NetFPGA integrated system is an NP targeting the
NetFPGA-10G that includes 4*10Gbps Ethernet MAC
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Figure 11: FPGA resource utilization and perfor-
mance of Gorilla on Virtex-5 TX240T

Engines Threads Virtex-6 LUT
utilization%

Virtex-7 LUT
utilization%

Four One 27 28
Four Two 35 34
Four Four 50 48
Six One 42 39
Six Two 53 51
Six Four 75 73

Figure 12: FPGA utilization of Gorilla on Virtex-
6 VHX380T, Clusters=8 and Virtex-7 855T, Clus-
ters=16

controllers connected to FPGA Multi-Gigabit I/Os.
This system includes necessary QDR-II controllers for
lookup and flow counter accelerators. The integration
of the NP with all necessary NetFPGA-10G IP demon-
strates the fact that a single FPGA IPv4 router includ-
ing MAC controllers is feasible.

Figure 11 shows that an 8-4-4 configuration (which deliv-
ers 100MPPS) fits in a NetFPGA integrated system with
Virtex-5 TX240T. In addition to raw throughput, the figure
shows throughput per execution context as well as normal-
ized throughput per area. As is expected, for a particular
number of engines, increasing number of threads improves
the throughput per area while increasing the number of en-
gines reduces the throughput per area.

Figure 12 shows the FPGA resource utilization of the em-
bedded test system on both Virtex-6 VHX380T, and Virtex-
7 855T. We explored an extensive amount of the design space
to meet the post place and route timing closures for these
two FPGAs. This exploration was only possible due to the
parametric nature of the templates in the system.

4.5.2 Scheduling, Arbitration, and Reordering
The Gorilla resource management templates enables easy

trading off between area and performance. Figure 13 shows
the performance of Gorilla running IPv4 packet routing us-
ing two different lookup delays (32 and 128 cycles), and two
different thread schedulers. When the number of threads
is increased, performance saturates earlier with low latency
accelerators than with high latency accelerators. A round
robin thread scheduler switches to the next thread when-
ever a thread accesses an accelerator, regardless of whether
the next thread is ready or not. A ready-to-execute thread
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Figure 13: Multithreaded Gorilla throughput scal-
ing for IPv4 with 100MPPS source rate (clusters=8,
engines=2)

scheduler switches to a thread which is not stalled every
cycle. Although the ready-to-execute thread scheduler per-
forms better for large number of threads, it requires a re-
order queue because processing of packets might finish out
of order. Consequently, ready-to-execute thread scheduling
imposes a considerable area overhead on the design (10%-
15% for large configurations.) When accelerator latencies
are small, round robin scheduling saves area. However for
large latency accelerators we need ready-to-execute schedul-
ing for performance scaling.

Another parametric template in the Gorilla infrastruc-
ture is the arbitration structure. Arbitration for accesses to
global accelerators is done in a hierarchical fashion. Either
fair, yet complex arbiters or low overhead unfair arbiters
are possible. Due to the large contention on global arbiters
comparing to local arbiters, in most cases strong fairness is
only required for global arbiters. This works perfectly for
our design because of two reasons. Firstly, the local sched-
ulers, like the thread scheduler and the engine scheduler,
are self throttling, ensuring freedom from starvation even
with an unfair scheduler. Secondly, there are many more
local arbiters than global arbiters. Consequently there are
many small, lightweight arbiters and few large arbiters in
the design. Using fair local arbiters in a large configuration
imposes an 8% area overhead on the whole design.

4.6 Board Implementation
Since we did not have access to high performance network-

ing test gear, our real implementation included an embed-
ded test platform on the FPGA to generate random packets
and verify that they were processed correctly. Note that we
met timing closure with exactly the same network processor
integrated with real Gigabit transceivers and memory con-
trollers on equivalent FPGA with real I/Os, indicating we
will run correctly with real interfaces and memory.

We implemented a 16-3-2 configuration of IPv4-only Go-
rilla with embedded peripherals on a Xilinx Virtex 6 ML605
board [37]. The implementation includes an embedded packet
generator unit, an embedded packet collector, and a statis-
tic report generator. The lookup engines (Section 4.2) are
using a BRAM-based module which exactly emulates the
QDR timing. The working board validates the functionality



0 

10 

20 

30 

40 

50 

60 

8.1.1 1.8.1 1.1.8 6.2.2 2.6.2 2.2.6 %
 u

ti
liz

at
io

n
( 

V
ir

te
x7

 V
H

8
5

0
T)

  

# of VRs (MPLS, IP, IP/MPLS)  

Area for 10*10G virtual routers 

Separated 

Merged 

Protocol merged 

Figure 14: Protocol-Based Virtual Router Consoli-
dation in Gorilla

of NP on real hardware and that the delivered performance
is consistent with the Verilog simulation results. The board
handles 40Gbps (100MPPS) traffic (injecting a new packet
every clock cycle) using 55% of LUT resources.

Using the Xilinx system monitor tool, the measured cur-
rent and voltage driving the FPGA core logic (VCCint and
the corresponding driving current) indicated power is less
than 4 watts. Although it does not include I/O, the power
is stunningly low. The core logic power of Gorilla is com-
parable or better than the power consumption reported for
state of the art network processors [23,28]. The I/Os should
be similar, implying that our total solution will be at least
power competitive.

4.7 Performance Analysis
The network processor achieves its high performance from

a combination of reasons. Since the accelerators are the
most critical resources in the system, as long as the accel-
erators always have work to do, the system’s throughput
is maximized. Hardware-implemented finite state machines
issue calls very quickly, ensuring that each thread is produc-
ing as many requests to accelerators as possible. Aggressive
multithreading with hardware-implemented synchronization
of accelerator calls maximizes the number of ready threads
which, in turn, maximizes the number of accelerator calls
and makes writing the domain code easy and sequential.
Gorilla engines can issue a full set of accelerator calls every
cycle, compared to tens of cycles needed for a single acceler-
ator call on a more conventional, instruction-based network
processor. Accelerators are themselves designed to maxi-
mize throughput. The end result is a system that maximizes
the number of accelerator calls and, therefore, performance.

The aggressive parameterization of the templates enables
rapid, extensive exploration of the implementation space,
enabling the search for an optimized configuration in a rea-
sonable time and accommodating last minute changes. Thus,
templates can dramatically improve productivity.

5. VIRTUAL ROUTER CONSOLIDATION
Router virtualization is a technique to share the same

packet processing hardware across different virtual routers
to reduce capital and operational expenditures. FPGAs
provide unique opportunity for building hardware virtual
routers. Different techniques have been proposed for con-

solidating virtual routers on a single FPGA [19, 39]. A
router virtualization framework should provide three impor-
tant characteristics (i) isolated performance, (ii) reconfig-
urability, and (iii) scalability in terms of number of virtual
routers.

We do not present a full fledged virtualization framework.
Instead, we demonstrate how a flexible and modular net-
work processor design using Gorilla can consolidate virtual
routers efficiently. Consolidating virtual routers can be done
either using isolated hardware or merged hardware. For ex-
ample, when 10 10Gbps virtual routers are consolidated,
10 isolated routers can be instantiated, each handling its
own traffic flow, or a single 100Gbps router that handles the
merged flows. In a hardware router in which resources are
allocated for worse case traffic patterns, individual routers
can be merged while maintaining performance isolation for
each virtual router.

Given a set of virtual routers, each supporting different
protocols, it is possible to create a customized network pro-
cessor that supports all the virtual routers with guaran-
teed throughput and minimal resource utilization. When
virtual routers with the same protocol(s) are merged, area
efficient techniques like multithreading and pipelining help
to improve performance per area comparing to an isolated
configuration. When virtual routers implementing different
protocols are merged, one can support all the protocols by
simply instantiating engines that support all required pro-
tocols. Although this method might save area by reusing
common structures, resources are used inefficiently because
the engines are more general than they need to be.

Our solution, protocol-based consolidation, uses a heuristic
algorithm where groups of virtual routers are merged only
if the virtual routers have some common protocol. Merging
is only considered if the merged area is less than the area
of isolated implementation of virtual routers. We demon-
strate the result of such protocol-based consolidation by im-
plementing 10*10G virtual routers using Gorilla. Each of
the virtual routers supports one of the following: MPLS
only, IPv4 only, or both MPLS and IPv4 protocols. Only
single label MPLS processing is considered in this study. Six
different virtual router configurations are considered. For
example, in the 8.1.1 configuration there are eight MPLS-
only virtual routers, one IPv4-only virtual router, and one
IPv4/MPLS virtual router.

Figure 14 shows the LUT utilization of each of these con-
figurations on Virtex-7 855T using isolated, merged, and
protocol-based consolidation methods. When the protocol-
based consolidation method is used on an eight MPLS, one
IPv4, and one IPv4/MPLS virtual router configuration, the
MPLS only routers are merged but not the other two vir-
tual routers. However for the one MPLS, eight IPv4, and
one IP/MPLS configuration all virtual routers are merged.
This is due to the fact that for 80Gbps a single label MPLS
processing requires fewer engines and fewer threads per en-
gine than IPv4 processing. As the result, isolating a 80Gbps
MPLS router from the other two routers saves a consider-
able area. On the other hand, when building a 80Gbps IPv4
router, the incremental area overhead for equipping engines
with MPLS processing steps is smaller than adding two iso-
lated 10G MPLS routers. Overall, for the sample virtual
router configurations, protocol-based consolidation saves on
average 33% of area comparing to the isolated method and
15% of area comparing to the normal merged method.



6. RELATED WORK
The architectural techniques including using accelerators,

course grain pipelining, multithreading, parallelism among
multiple engines, and hierarchical arbitration have been used
extensively in the past. However, to the best of our knowl-
edge, they have not been combined the Gorilla way. Also,
they have not been automatically generated from stylized C
or utilized FPGAs to provide programmability. The excep-
tion is our own patented work, that was not evaluated in the
patent [6].

Templates (called different names in different languages
including “templates” in C++ and “macros” in Lisp) have
long been used in software to improve reuse. Effective pa-
rameterized hardware, though explored repeatedly in the
past, has not yet achieved widespread acceptance. Recent
research [24, 33] has demonstrated the power of templates,
especially for high performance and/or low power designs.
Gorilla differs in that it separates the functionality (appli-
cation) from the parameterized template while others are
more of a parameterized implementation. Others [25] have
separated functionality and the micro-architecture, but do
not focus on high parameterization of the micro-architecture
(template.)

Requiring the user to provide a template in addition to
domain code that describes functionality is Gorilla’s key
differentiator from traditional C-to-gates tools, such as Au-
toESL [2] and CatapultC [4], that attempt to infer the ap-
propriate hardware structure. Some researchers tried to in-
corporate the architectural information while synthesizing
the high level code but their method is limited to generat-
ing single processing engine on a pre-defined datapath [29].

Among many publications related to automatic compila-
tion of applications into hardware, Convey [36] and Opti-
mus [14] are perhaps the most similar to Gorilla. Convey
provides predefined building blocks for a particular applica-
tion personality to domain code. The tool chain compiles
domain code to pipelined implementations called systolic
structures. Temporal common sub-expression elimination,
or loops in the pipeline, is used to reduce area overhead.
Gorilla is more free formed than Convey, implementing state
machines rather than application-specific processors, and fo-
cuses on balancing the performance-area trade off by sizing
high level resources like engines and clusters. Optimus maps
StreamIt [35] applications, that are described using stream-
ing graph and filter kernels, to FPGAs. Gorilla targets ap-
plications with more control flow irregularity and shared re-
source access irregularity.

Many projects aim to improve the programmability prob-
lem for high performance FPGA-based packet processing
applications. Some focus on the programmability aspect,
without achieving high performance [18,31]. NetFPGA [20]
uses a set of libraries and reference designs in order to sim-
plify the implementation of new packet processing systems.
However a hardware expert is needed to design the entire
hardware implementation. A Xilinx project targets 100Gbps
network processing and traffic management in a pair of FP-
GAs, but is designed in a traditional way and is not yet
available [11]. Another project [16] demonstrated 40Gbps
in a FPGA for MPLS-only packet processing without any
high level programmability features. Gorilla generated net-
work processors, on the other hand, can handle 200MPPS
(64B packets) for any mix of IPv4, IPv6, and MPLS on a
single Virtex7 FPGA and it is programmable with C.

Routebricks [7] is a parallelized version of the Click soft-
ware router and is the fastest pure software router we are
aware of. Routebricks runs at 23.4M packets per second
(12Gbps with 64B packets) on four systems, each containing
eight Nehalem cores for a total of 32 cores. Routebricks sup-
ports four flows of 3Gbps each, a significantly easier problem
than the single 100Gbps flow Gorilla supports. Gorilla also
has deterministic performance and resiliency against adver-
sarial traffic, and consumes much less power.

Packetshader [32] achieves 40Gbps on a system with two
quad-core Nehalem processors, 12GB of memory, two I/O
hubs and two NVIDIA GTX480 cards. Packetshader per-
formance is dependent on intelligent NICs that balance load
between cores and is currently limited by PCIe performance.
The load balancers make PacketShader venerable to adver-
sarial traffic. The partitioning introduces overhead to keep
common state between cores. In addition, each GTX480
consumes up to 250W.

There are many custom network processors including those
from Cavium [5], EZChip [9], Xelerated [38], Freescale [10],
and LSI [21]. Based on their processor data sheets, Gorilla’s
performance is roughly the same as EZChip’s and Xeler-
ated’s recently announced 100Gbps network processors and
faster than all other vendors. A Gorilla NP is more flexible
than those solutions because it is implemented entirely on
an FPGA and is also at least as easy to program. From
architectural perspective the difference between Gorilla and
other network processors is that the hardware is specialized
for the application and parallelization is expressed and man-
aged using structures which are scalable in FPGAs.

7. CONCLUSIONS AND FUTURE WORK
We describe the Gorilla programming model, templates,

canonical architectures, and tool chain. Gorilla separates
the work of domain experts from the work of hardware ex-
perts, enabling each to work in their area of expertise and
automatically and efficiently combining that work.

We use Gorilla to generate a family of network processors
capable of handling almost all combinations of MPLS, IPv4,
and IPv6 traffic at 200MPPS rate in a single FPGA. The
packet processing engines, accelerators, packet splitter and
reassembly are written by domain experts in a subset of
sequential C, automatically compiled to hardware, and then
merged with parameterized templates written by hardware
experts. Domain experts only need to concentrate on their
domain and can safely ignore hardware and parallelization
issues. Hardware experts, on the other hand, only need to
focus on hardware, rather than having to know the details
of the implementation.

We studied the required FPGA resources using three mod-
ern FPGAs to demonstrate that FPGAs have enough logic,
memory, and IO resources to deliver the required packet
processing performance for the mentioned applications. We
reported the performance results for various traffic loads and
processor configurations.

Although we focused on packet processing as the proof of
concept for Gorilla methodology, we believe that the same
methodology can be applied on other data parallel applica-
tions like genome sequencing, or hardware simulation accel-
eration. We plan to port more application spaces and ap-
plications to Gorilla and to build a router using the Gorilla
generated network processor described in this paper.
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